mbedtls/docs/architecture/tls13-experimental.md
Paul Elliott fe08944246 Fix spelling error
Signed-off-by: Paul Elliott <paul.elliott@arm.com>
2021-11-30 10:55:53 +00:00

415 lines
18 KiB
Markdown

TLS 1.3 Experimental Developments
=================================
Overview
--------
Mbed TLS doesn't support the TLS 1.3 protocol yet, but a prototype is in development.
Stable parts of this prototype that can be independently tested are being successively
upstreamed under the guard of the following macro:
```
MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL
```
This macro will likely be renamed to `MBEDTLS_SSL_PROTO_TLS1_3` once a minimal viable
implementation of the TLS 1.3 protocol is available.
See the [documentation of `MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL`](../../include/mbedtls/mbedtls_config.h)
for more information.
Status
------
The following lists which parts of the TLS 1.3 prototype have already been upstreamed
together with their level of testing:
* TLS 1.3 record protection mechanisms
The record protection routines `mbedtls_ssl_{encrypt|decrypt}_buf()` have been extended
to support the modified TLS 1.3 record protection mechanism, including modified computation
of AAD, IV, and the introduction of a flexible padding.
Those record protection routines have unit tests in `test_suite_ssl` alongside the
tests for the other record protection routines.
TODO: Add some test vectors from RFC 8448.
- The HKDF key derivation function on which the TLS 1.3 key schedule is based,
is already present as an independent module controlled by `MBEDTLS_HKDF_C`
independently of the development of the TLS 1.3 prototype.
- The TLS 1.3-specific HKDF-based key derivation functions (see RFC 8446):
* HKDF-Expand-Label
* Derive-Secret
- Secret evolution
* The traffic {Key,IV} generation from secret
Those functions are implemented in `library/ssl_tls13_keys.c` and
tested in `test_suite_ssl` using test vectors from RFC 8448 and
https://tls13.ulfheim.net/.
- New TLS Message Processing Stack (MPS)
The TLS 1.3 prototype is developed alongside a rewrite of the TLS messaging layer,
encompassing low-level details such as record parsing, handshake reassembly, and
DTLS retransmission state machine.
MPS has the following components:
- Layer 1 (Datagram handling)
- Layer 2 (Record handling)
- Layer 3 (Message handling)
- Layer 4 (Retransmission State Machine)
- Reader (Abstracted pointer arithmetic and reassembly logic for incoming data)
- Writer (Abstracted pointer arithmetic and fragmentation logic for outgoing data)
Of those components, the following have been upstreamed
as part of `MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL`:
- Reader ([`library/mps_reader.h`](../../library/mps_reader.h))
MVP definition
--------------
- Overview
- The TLS 1.3 MVP implements only the client side of the protocol.
- The TLS 1.3 MVP supports ECDHE key establishment.
- The TLS 1.3 MVP does not support DHE key establishment.
- The TLS 1.3 MVP does not support pre-shared keys, including any form of
session resumption. This implies that it does not support sending early
data (0-RTT data).
- The TLS 1.3 MVP supports the authentication of the server by the client
but does not support authentication of the client by the server. In terms
of TLS 1.3 authentication messages, this means that the TLS 1.3 MVP
supports the processing of the Certificate and CertificateVerify messages
but not of the CertificateRequest message.
- The TLS 1.3 MVP does not support the handling of server HelloRetryRequest
message. In practice, this means that the handshake will fail if the MVP
does not provide in its ClientHello the shared secret associated to the
group selected by the server for key establishement. For more information,
see the comment associated to the `key_share` extension below.
- If the TLS 1.3 MVP receives a HelloRetryRequest or a CertificateRequest
message, it aborts the handshake with an handshake_failure closure alert
and the `mbedtls_ssl_handshake()` returns in error with the
`MBEDTLS_ERR_SSL_HANDSHAKE_FAILURE` error code.
- Supported cipher suites: depends on the library configuration. Potentially
all of them:
TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384, TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_128_CCM_SHA256 and TLS_AES_128_CCM_8_SHA256.
- Supported ClientHello extensions:
| Extension | MVP | Prototype (1) |
| ---------------------------- | ------- | ------------- |
| server_name | YES | YES |
| max_fragment_length | no | YES |
| status_request | no | no |
| supported_groups | YES | YES |
| signature_algorithms | YES | YES |
| use_srtp | no | no |
| heartbeat | no | no |
| apln | no | YES |
| signed_certificate_timestamp | no | no |
| client_certificate_type | no | no |
| server_certificate_type | no | no |
| padding | no | no |
| key_share | YES (2) | YES |
| pre_shared_key | no | YES |
| psk_key_exchange_modes | no | YES |
| early_data | no | YES |
| cookie | no | YES |
| supported_versions | YES (3) | YES |
| certificate_authorities | no | no |
| post_handshake_auth | no | no |
| signature_algorithms_cert | no | no |
(1) This is just for comparison.
(2) The MVP sends only one shared secret corresponding to the configured
preferred group. This could, however end up with connection failure if the
server does not support our preferred curve, as we have yet to implement
HelloRetryRequest. The preferred group is the group of the first curve in
the list of allowed curves as defined by the configuration. The list of
mandatory-to-implement groups (in absence of an application profile
standard specifying otherwise) as defined in section 9.1 of the
specification gives the preferred order as follows: `secp256r1`, `x25519`,
`secp384r1` and finally `secp521r1`. If we could therefore fix the use of
`secp256r1`, then we would be guaranteed that the server supported it,
however our current curve preference order puts `x25519` before
`secp256r1` and changing this for only TLS1.3 would be potentially
difficult (we have no desire to change TLS1.2 behaviour). The likelihood
of finding a server that doesn't support `x25519` is quite low and indeed
the end user could themselves change the order of preference of curves
using the `mbedtls_ssl_conf_curves()` API if they wished to do so, so we
are leaving the current preference order intact.
(3) The MVP proposes only TLS 1.3 and does not support version negotiation.
Out-of-protocol fallback is supported though if the Mbed TLS library
has been built to support both TLS 1.3 and TLS 1.2: just set the
maximum of the minor version of the SSL configuration to
MBEDTLS_SSL_MINOR_VERSION_3 (`mbedtls_ssl_conf_min_version()` API) and
re-initiate a server handshake.
- Supported groups: depends on the library configuration.
Potentially all ECDHE groups but x448:
secp256r1, x25519, secp384r1 and secp521r1.
Finite field groups (DHE) are not supported.
- Supported signature algorithms (both for certificates and CertificateVerify):
depends on the library configuration.
Potentially:
rsa_pkcs1_sha256, rsa_pss_rsae_sha256, ecdsa_secp256r1_sha256,
ecdsa_secp384r1_sha384 and ecdsa_secp521r1_sha512.
Note that in absence of an application profile standard specifying otherwise
the three first ones in the list above are mandatory (see section 9.1 of the
specification).
- Supported versions: only TLS 1.3, version negotiation is not supported.
- Compatibility with existing SSL/TLS build options:
The TLS 1.3 MVP is compatible with all TLS 1.2 configuration options in the
sense that when enabling the TLS 1.3 MVP in the library there is no need to
modify the configuration for TLS 1.2. Mbed TLS SSL/TLS related features are
not supported or not applicable to the TLS 1.3 MVP:
| Mbed TLS configuration option | Support |
| ---------------------------------------- | ------- |
| MBEDTLS_SSL_ALL_ALERT_MESSAGES | no |
| MBEDTLS_SSL_ASYNC_PRIVATE | no |
| MBEDTLS_SSL_CONTEXT_SERIALIZATION | no |
| MBEDTLS_SSL_DEBUG_ALL | no |
| MBEDTLS_SSL_ENCRYPT_THEN_MAC | n/a |
| MBEDTLS_SSL_EXTENDED_MASTER_SECRET | n/a |
| MBEDTLS_SSL_KEEP_PEER_CERTIFICATE | no |
| MBEDTLS_SSL_RENEGOTIATION | n/a |
| MBEDTLS_SSL_MAX_FRAGMENT_LENGTH | no |
| | |
| MBEDTLS_SSL_SESSION_TICKETS | no |
| MBEDTLS_SSL_EXPORT_KEYS | no (1) |
| MBEDTLS_SSL_SERVER_NAME_INDICATION | no |
| MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH | no |
| | |
| MBEDTLS_ECP_RESTARTABLE | no |
| MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED | no |
| | |
| MBEDTLS_KEY_EXCHANGE_PSK_ENABLED | n/a (2) |
| MBEDTLS_KEY_EXCHANGE_DHE_PSK_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDHE_PSK_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_RSA_PSK_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_DHE_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDHE_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECDH_RSA_ENABLED | n/a |
| MBEDTLS_KEY_EXCHANGE_ECJPAKE_ENABLED | n/a |
| | |
| MBEDTLS_USE_PSA_CRYPTO | no |
(1) Some support has already been upstreamed but it is incomplete.
(2) Key exchange configuration options for TLS 1.3 will likely to be
organized around the notion of key exchange mode along the line
of the MBEDTLS_SSL_TLS13_KEY_EXCHANGE_MODE_NONE/PSK/PSK_EPHEMERAL/EPHEMERAL
runtime configuration macros.
- Quality considerations
- Standard Mbed TLS review bar
- Interoperability testing with OpenSSL and GnuTLS. Test with all the
cipher suites and signature algorithms supported by OpenSSL/GnuTLS server.
- Negative testing against OpenSSL/GnuTLS servers with which the
handshake fails due to incompatibility with the capabilities of the
MVP: TLS 1.2 or 1.1 server, server sending an HelloRetryRequest message in
response to the MVP ClientHello, server sending a CertificateRequest
message ...
Coding rules checklist for TLS 1.3
----------------------------------
The following coding rules are aimed to be a checklist for TLS 1.3 upstreaming
work to reduce review rounds and the number of comments in each round. They
come along (do NOT replace) the project coding rules
(https://tls.mbed.org/kb/development/mbedtls-coding-standards). They have been
established and discussed following the review of #4882 that was the
PR upstreaming the first part of TLS 1.3 ClientHello writing code.
TLS 1.3 specific coding rules:
- TLS 1.3 specific C modules, headers, static functions names are prefixed
with `ssl_tls13_`. The same applies to structures and types that are
internal to C modules.
- TLS 1.3 specific exported functions, structures and types are
prefixed with `mbedtls_ssl_tls13_`.
- Use TLS1_3 in TLS 1.3 specific macros.
- The names of macros and variables related to a field or structure in the
TLS 1.3 specification should contain as far as possible the field name as
it is in the specification. If the field name is "too long" and we prefer
to introduce some kind of abbreviation of it, use the same abbreviation
everywhere in the code.
Example 1: #define CLIENT_HELLO_RANDOM_LEN 32, macro for the length of the
`random` field of the ClientHello message.
Example 2 (consistent abbreviation): `mbedtls_ssl_tls13_write_sig_alg_ext()`
and `MBEDTLS_TLS_EXT_SIG_ALG`, `sig_alg` standing for
`signature_algorithms`.
- Regarding vectors that are represented by a length followed by their value
in the data exchanged between servers and clients:
- Use `<vector name>_len` for the name of a variable used to compute the
length in bytes of the vector, where <vector name> is the name of the
vector as defined in the TLS 1.3 specification.
- Use `p_<vector_name>_len` for the name of a variable intended to hold
the address of the first byte of the vector length.
- Use `<vector_name>` for the name of a variable intended to hold the
address of the first byte of the vector value.
- Use `<vector_name>_end` for the name of a variable intended to hold
the address of the first byte past the vector value.
Those idioms should lower the risk of mis-using one of the address in place
of another one which could potentially lead to some nasty issues.
Example: `cipher_suites` vector of ClientHello in
`ssl_tls13_write_client_hello_cipher_suites()`
```
size_t cipher_suites_len;
unsigned char *p_cipher_suites_len;
unsigned char *cipher_suites;
```
- Where applicable, use:
- the macros to extract a byte from a multi-byte integer MBEDTLS_BYTE_{0-8}.
- the macros to write in memory in big-endian order a multi-byte integer
MBEDTLS_PUT_UINT{8|16|32|64}_BE.
- the macros to read from memory a multi-byte integer in big-endian order
MBEDTLS_GET_UINT{8|16|32|64}_BE.
- the macro to check for space when writing into an output buffer
`MBEDTLS_SSL_CHK_BUF_PTR`.
- the macro to check for data when reading from an input buffer
`MBEDTLS_SSL_CHK_BUF_READ_PTR`.
These macros were introduced after the prototype was written thus are
likely not to be used in prototype where we now would use them in
development.
The three first types, MBEDTLS_BYTE_{0-8}, MBEDTLS_PUT_UINT{8|16|32|64}_BE
and MBEDTLS_GET_UINT{8|16|32|64}_BE improve the readability of the code and
reduce the risk of writing or reading bytes in the wrong order.
The two last types, `MBEDTLS_SSL_CHK_BUF_PTR` and
`MBEDTLS_SSL_CHK_BUF_READ_PTR`, improve the readability of the code and
reduce the risk of error in the non-completely-trivial arithmetic to
check that we do not write or read past the end of a data buffer. The
usage of those macros combined with the following rule mitigate the risk
to read/write past the end of a data buffer.
Examples:
```
hs_hdr[1] = MBEDTLS_BYTE_2( total_hs_len );
MBEDTLS_PUT_UINT16_BE( MBEDTLS_TLS_EXT_SUPPORTED_VERSIONS, p, 0 );
MBEDTLS_SSL_CHK_BUF_PTR( p, end, 7 );
```
- To mitigate what happened here
(https://github.com/ARMmbed/mbedtls/pull/4882#discussion_r701704527) from
happening again, use always a local variable named `p` for the reading
pointer in functions parsing TLS 1.3 data, and for the writing pointer in
functions writing data into an output buffer and only that variable. The
name `p` has been chosen as it was already widely used in TLS code.
- When an TLS 1.3 structure is written or read by a function or as part of
a function, provide as documentation the definition of the structure as
it is in the TLS 1.3 specification.
General coding rules:
- We prefer grouping "related statement lines" by not adding blank lines
between them.
Example 1:
```
ret = ssl_tls13_write_client_hello_cipher_suites( ssl, buf, end, &output_len );
if( ret != 0 )
return( ret );
buf += output_len;
```
Example 2:
```
MBEDTLS_SSL_CHK_BUF_PTR( cipher_suites_iter, end, 2 );
MBEDTLS_PUT_UINT16_BE( cipher_suite, cipher_suites_iter, 0 );
cipher_suites_iter += 2;
```
- Use macros for constants that are used in different functions, different
places in the code. When a constant is used only locally in a function
(like the length in bytes of the vector lengths in functions reading and
writing TLS handshake message) there is no need to define a macro for it.
Example: `#define CLIENT_HELLO_RANDOM_LEN 32`
- When declaring a pointer the dereferencing operator should be prepended to
the pointer name not appended to the pointer type:
Example: `mbedtls_ssl_context *ssl;`
- Maximum line length is 80 characters.
Exceptions:
- string literals can extend beyond 80 characters as we do not want to
split them to ease their search in the code base.
- A line can be more than 80 characters by a few characters if just looking
at the 80 first characters is enough to fully understand the line. For
example it is generally fine if some closure characters like ";" or ")"
are beyond the 80 characters limit.
If a line becomes too long due to a refactoring (for example renaming a
function to a longer name, or indenting a block more), avoid rewrapping
lines in the same commit: it makes the review harder. Make one commit with
the longer lines and another commit with just the rewrapping.
- When in successive lines, functions and macros parameters should be aligned
vertically.
Example:
```
int mbedtls_ssl_tls13_start_handshake_msg( mbedtls_ssl_context *ssl,
unsigned hs_type,
unsigned char **buf,
size_t *buf_len );
```
- When a function's parameters span several lines, group related parameters
together if possible.
For example, prefer:
```
mbedtls_ssl_tls13_start_handshake_msg( ssl, hs_type,
buf, buf_len );
```
over
```
mbedtls_ssl_tls13_start_handshake_msg( ssl, hs_type, buf,
buf_len );
```
even if it fits.