mbedtls/docs/architecture/tls13-experimental.md
Paul Elliott fe08944246 Fix spelling error
Signed-off-by: Paul Elliott <paul.elliott@arm.com>
2021-11-30 10:55:53 +00:00

18 KiB

TLS 1.3 Experimental Developments

Overview

Mbed TLS doesn't support the TLS 1.3 protocol yet, but a prototype is in development. Stable parts of this prototype that can be independently tested are being successively upstreamed under the guard of the following macro:

MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL

This macro will likely be renamed to MBEDTLS_SSL_PROTO_TLS1_3 once a minimal viable implementation of the TLS 1.3 protocol is available.

See the documentation of MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL for more information.

Status

The following lists which parts of the TLS 1.3 prototype have already been upstreamed together with their level of testing:

  • TLS 1.3 record protection mechanisms

    The record protection routines mbedtls_ssl_{encrypt|decrypt}_buf() have been extended to support the modified TLS 1.3 record protection mechanism, including modified computation of AAD, IV, and the introduction of a flexible padding.

    Those record protection routines have unit tests in test_suite_ssl alongside the tests for the other record protection routines.

    TODO: Add some test vectors from RFC 8448.

  • The HKDF key derivation function on which the TLS 1.3 key schedule is based, is already present as an independent module controlled by MBEDTLS_HKDF_C independently of the development of the TLS 1.3 prototype.

  • The TLS 1.3-specific HKDF-based key derivation functions (see RFC 8446):

    • HKDF-Expand-Label
    • Derive-Secret
    • Secret evolution
    • The traffic {Key,IV} generation from secret Those functions are implemented in library/ssl_tls13_keys.c and tested in test_suite_ssl using test vectors from RFC 8448 and https://tls13.ulfheim.net/.
  • New TLS Message Processing Stack (MPS)

    The TLS 1.3 prototype is developed alongside a rewrite of the TLS messaging layer, encompassing low-level details such as record parsing, handshake reassembly, and DTLS retransmission state machine.

    MPS has the following components:

    • Layer 1 (Datagram handling)
    • Layer 2 (Record handling)
    • Layer 3 (Message handling)
    • Layer 4 (Retransmission State Machine)
    • Reader (Abstracted pointer arithmetic and reassembly logic for incoming data)
    • Writer (Abstracted pointer arithmetic and fragmentation logic for outgoing data)

    Of those components, the following have been upstreamed as part of MBEDTLS_SSL_PROTO_TLS1_3_EXPERIMENTAL:

MVP definition

  • Overview

    • The TLS 1.3 MVP implements only the client side of the protocol.

    • The TLS 1.3 MVP supports ECDHE key establishment.

    • The TLS 1.3 MVP does not support DHE key establishment.

    • The TLS 1.3 MVP does not support pre-shared keys, including any form of session resumption. This implies that it does not support sending early data (0-RTT data).

    • The TLS 1.3 MVP supports the authentication of the server by the client but does not support authentication of the client by the server. In terms of TLS 1.3 authentication messages, this means that the TLS 1.3 MVP supports the processing of the Certificate and CertificateVerify messages but not of the CertificateRequest message.

    • The TLS 1.3 MVP does not support the handling of server HelloRetryRequest message. In practice, this means that the handshake will fail if the MVP does not provide in its ClientHello the shared secret associated to the group selected by the server for key establishement. For more information, see the comment associated to the key_share extension below.

    • If the TLS 1.3 MVP receives a HelloRetryRequest or a CertificateRequest message, it aborts the handshake with an handshake_failure closure alert and the mbedtls_ssl_handshake() returns in error with the MBEDTLS_ERR_SSL_HANDSHAKE_FAILURE error code.

  • Supported cipher suites: depends on the library configuration. Potentially all of them: TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384, TLS_CHACHA20_POLY1305_SHA256, TLS_AES_128_CCM_SHA256 and TLS_AES_128_CCM_8_SHA256.

  • Supported ClientHello extensions:

    Extension MVP Prototype (1)
    server_name YES YES
    max_fragment_length no YES
    status_request no no
    supported_groups YES YES
    signature_algorithms YES YES
    use_srtp no no
    heartbeat no no
    apln no YES
    signed_certificate_timestamp no no
    client_certificate_type no no
    server_certificate_type no no
    padding no no
    key_share YES (2) YES
    pre_shared_key no YES
    psk_key_exchange_modes no YES
    early_data no YES
    cookie no YES
    supported_versions YES (3) YES
    certificate_authorities no no
    post_handshake_auth no no
    signature_algorithms_cert no no

    (1) This is just for comparison.

    (2) The MVP sends only one shared secret corresponding to the configured preferred group. This could, however end up with connection failure if the server does not support our preferred curve, as we have yet to implement HelloRetryRequest. The preferred group is the group of the first curve in the list of allowed curves as defined by the configuration. The list of mandatory-to-implement groups (in absence of an application profile standard specifying otherwise) as defined in section 9.1 of the specification gives the preferred order as follows: secp256r1, x25519, secp384r1 and finally secp521r1. If we could therefore fix the use of secp256r1, then we would be guaranteed that the server supported it, however our current curve preference order puts x25519 before secp256r1 and changing this for only TLS1.3 would be potentially difficult (we have no desire to change TLS1.2 behaviour). The likelihood of finding a server that doesn't support x25519 is quite low and indeed the end user could themselves change the order of preference of curves using the mbedtls_ssl_conf_curves() API if they wished to do so, so we are leaving the current preference order intact.

    (3) The MVP proposes only TLS 1.3 and does not support version negotiation. Out-of-protocol fallback is supported though if the Mbed TLS library has been built to support both TLS 1.3 and TLS 1.2: just set the maximum of the minor version of the SSL configuration to MBEDTLS_SSL_MINOR_VERSION_3 (mbedtls_ssl_conf_min_version() API) and re-initiate a server handshake.

  • Supported groups: depends on the library configuration. Potentially all ECDHE groups but x448: secp256r1, x25519, secp384r1 and secp521r1.

    Finite field groups (DHE) are not supported.

  • Supported signature algorithms (both for certificates and CertificateVerify): depends on the library configuration. Potentially: rsa_pkcs1_sha256, rsa_pss_rsae_sha256, ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384 and ecdsa_secp521r1_sha512.

    Note that in absence of an application profile standard specifying otherwise the three first ones in the list above are mandatory (see section 9.1 of the specification).

  • Supported versions: only TLS 1.3, version negotiation is not supported.

  • Compatibility with existing SSL/TLS build options:

    The TLS 1.3 MVP is compatible with all TLS 1.2 configuration options in the sense that when enabling the TLS 1.3 MVP in the library there is no need to modify the configuration for TLS 1.2. Mbed TLS SSL/TLS related features are not supported or not applicable to the TLS 1.3 MVP:

    Mbed TLS configuration option Support
    MBEDTLS_SSL_ALL_ALERT_MESSAGES no
    MBEDTLS_SSL_ASYNC_PRIVATE no
    MBEDTLS_SSL_CONTEXT_SERIALIZATION no
    MBEDTLS_SSL_DEBUG_ALL no
    MBEDTLS_SSL_ENCRYPT_THEN_MAC n/a
    MBEDTLS_SSL_EXTENDED_MASTER_SECRET n/a
    MBEDTLS_SSL_KEEP_PEER_CERTIFICATE no
    MBEDTLS_SSL_RENEGOTIATION n/a
    MBEDTLS_SSL_MAX_FRAGMENT_LENGTH no
    MBEDTLS_SSL_SESSION_TICKETS no
    MBEDTLS_SSL_EXPORT_KEYS no (1)
    MBEDTLS_SSL_SERVER_NAME_INDICATION no
    MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH no
    MBEDTLS_ECP_RESTARTABLE no
    MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED no
    MBEDTLS_KEY_EXCHANGE_PSK_ENABLED n/a (2)
    MBEDTLS_KEY_EXCHANGE_DHE_PSK_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_ECDHE_PSK_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_RSA_PSK_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_RSA_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_DHE_RSA_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_ECDHE_RSA_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_ECDH_RSA_ENABLED n/a
    MBEDTLS_KEY_EXCHANGE_ECJPAKE_ENABLED n/a
    MBEDTLS_USE_PSA_CRYPTO no

    (1) Some support has already been upstreamed but it is incomplete. (2) Key exchange configuration options for TLS 1.3 will likely to be organized around the notion of key exchange mode along the line of the MBEDTLS_SSL_TLS13_KEY_EXCHANGE_MODE_NONE/PSK/PSK_EPHEMERAL/EPHEMERAL runtime configuration macros.

  • Quality considerations

    • Standard Mbed TLS review bar
    • Interoperability testing with OpenSSL and GnuTLS. Test with all the cipher suites and signature algorithms supported by OpenSSL/GnuTLS server.
    • Negative testing against OpenSSL/GnuTLS servers with which the handshake fails due to incompatibility with the capabilities of the MVP: TLS 1.2 or 1.1 server, server sending an HelloRetryRequest message in response to the MVP ClientHello, server sending a CertificateRequest message ...

Coding rules checklist for TLS 1.3

The following coding rules are aimed to be a checklist for TLS 1.3 upstreaming work to reduce review rounds and the number of comments in each round. They come along (do NOT replace) the project coding rules (https://tls.mbed.org/kb/development/mbedtls-coding-standards). They have been established and discussed following the review of #4882 that was the PR upstreaming the first part of TLS 1.3 ClientHello writing code.

TLS 1.3 specific coding rules:

  • TLS 1.3 specific C modules, headers, static functions names are prefixed with ssl_tls13_. The same applies to structures and types that are internal to C modules.

  • TLS 1.3 specific exported functions, structures and types are prefixed with mbedtls_ssl_tls13_.

  • Use TLS1_3 in TLS 1.3 specific macros.

  • The names of macros and variables related to a field or structure in the TLS 1.3 specification should contain as far as possible the field name as it is in the specification. If the field name is "too long" and we prefer to introduce some kind of abbreviation of it, use the same abbreviation everywhere in the code.

    Example 1: #define CLIENT_HELLO_RANDOM_LEN 32, macro for the length of the random field of the ClientHello message.

    Example 2 (consistent abbreviation): mbedtls_ssl_tls13_write_sig_alg_ext() and MBEDTLS_TLS_EXT_SIG_ALG, sig_alg standing for signature_algorithms.

  • Regarding vectors that are represented by a length followed by their value in the data exchanged between servers and clients:

    • Use <vector name>_len for the name of a variable used to compute the length in bytes of the vector, where is the name of the vector as defined in the TLS 1.3 specification.

    • Use p_<vector_name>_len for the name of a variable intended to hold the address of the first byte of the vector length.

    • Use <vector_name> for the name of a variable intended to hold the address of the first byte of the vector value.

    • Use <vector_name>_end for the name of a variable intended to hold the address of the first byte past the vector value.

    Those idioms should lower the risk of mis-using one of the address in place of another one which could potentially lead to some nasty issues.

    Example: cipher_suites vector of ClientHello in ssl_tls13_write_client_hello_cipher_suites()

    size_t cipher_suites_len;
    unsigned char *p_cipher_suites_len;
    unsigned char *cipher_suites;
    
  • Where applicable, use:

    • the macros to extract a byte from a multi-byte integer MBEDTLS_BYTE_{0-8}.
    • the macros to write in memory in big-endian order a multi-byte integer MBEDTLS_PUT_UINT{8|16|32|64}_BE.
    • the macros to read from memory a multi-byte integer in big-endian order MBEDTLS_GET_UINT{8|16|32|64}_BE.
    • the macro to check for space when writing into an output buffer MBEDTLS_SSL_CHK_BUF_PTR.
    • the macro to check for data when reading from an input buffer MBEDTLS_SSL_CHK_BUF_READ_PTR.

    These macros were introduced after the prototype was written thus are likely not to be used in prototype where we now would use them in development.

    The three first types, MBEDTLS_BYTE_{0-8}, MBEDTLS_PUT_UINT{8|16|32|64}_BE and MBEDTLS_GET_UINT{8|16|32|64}_BE improve the readability of the code and reduce the risk of writing or reading bytes in the wrong order.

    The two last types, MBEDTLS_SSL_CHK_BUF_PTR and MBEDTLS_SSL_CHK_BUF_READ_PTR, improve the readability of the code and reduce the risk of error in the non-completely-trivial arithmetic to check that we do not write or read past the end of a data buffer. The usage of those macros combined with the following rule mitigate the risk to read/write past the end of a data buffer.

    Examples:

    hs_hdr[1] = MBEDTLS_BYTE_2( total_hs_len );
    MBEDTLS_PUT_UINT16_BE( MBEDTLS_TLS_EXT_SUPPORTED_VERSIONS, p, 0 );
    MBEDTLS_SSL_CHK_BUF_PTR( p, end, 7 );
    
  • To mitigate what happened here (https://github.com/ARMmbed/mbedtls/pull/4882#discussion_r701704527) from happening again, use always a local variable named p for the reading pointer in functions parsing TLS 1.3 data, and for the writing pointer in functions writing data into an output buffer and only that variable. The name p has been chosen as it was already widely used in TLS code.

  • When an TLS 1.3 structure is written or read by a function or as part of a function, provide as documentation the definition of the structure as it is in the TLS 1.3 specification.

General coding rules:

  • We prefer grouping "related statement lines" by not adding blank lines between them.

    Example 1:

    ret = ssl_tls13_write_client_hello_cipher_suites( ssl, buf, end, &output_len );
    if( ret != 0 )
        return( ret );
    buf += output_len;
    

    Example 2:

    MBEDTLS_SSL_CHK_BUF_PTR( cipher_suites_iter, end, 2 );
    MBEDTLS_PUT_UINT16_BE( cipher_suite, cipher_suites_iter, 0 );
    cipher_suites_iter += 2;
    
  • Use macros for constants that are used in different functions, different places in the code. When a constant is used only locally in a function (like the length in bytes of the vector lengths in functions reading and writing TLS handshake message) there is no need to define a macro for it.

    Example: #define CLIENT_HELLO_RANDOM_LEN 32

  • When declaring a pointer the dereferencing operator should be prepended to the pointer name not appended to the pointer type:

    Example: mbedtls_ssl_context *ssl;

  • Maximum line length is 80 characters.

    Exceptions:

    • string literals can extend beyond 80 characters as we do not want to split them to ease their search in the code base.

    • A line can be more than 80 characters by a few characters if just looking at the 80 first characters is enough to fully understand the line. For example it is generally fine if some closure characters like ";" or ")" are beyond the 80 characters limit.

    If a line becomes too long due to a refactoring (for example renaming a function to a longer name, or indenting a block more), avoid rewrapping lines in the same commit: it makes the review harder. Make one commit with the longer lines and another commit with just the rewrapping.

  • When in successive lines, functions and macros parameters should be aligned vertically.

    Example:

    int mbedtls_ssl_tls13_start_handshake_msg( mbedtls_ssl_context *ssl,
                                               unsigned hs_type,
                                               unsigned char **buf,
                                               size_t *buf_len );
    
  • When a function's parameters span several lines, group related parameters together if possible.

    For example, prefer:

    mbedtls_ssl_tls13_start_handshake_msg( ssl, hs_type,
                                           buf, buf_len );
    

    over

    mbedtls_ssl_tls13_start_handshake_msg( ssl, hs_type, buf,
                                           buf_len );
    

    even if it fits.