mbedtls/library/rsa.c

2640 lines
79 KiB
C
Raw Normal View History

/*
* The RSA public-key cryptosystem
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
/*
* The following sources were referenced in the design of this implementation
* of the RSA algorithm:
*
* [1] A method for obtaining digital signatures and public-key cryptosystems
* R Rivest, A Shamir, and L Adleman
* http://people.csail.mit.edu/rivest/pubs.html#RSA78
*
* [2] Handbook of Applied Cryptography - 1997, Chapter 8
* Menezes, van Oorschot and Vanstone
*
* [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
* Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
* Stefan Mangard
* https://arxiv.org/abs/1702.08719v2
*
*/
#include "common.h"
#if defined(MBEDTLS_RSA_C)
2015-03-09 18:05:11 +01:00
#include "mbedtls/rsa.h"
#include "rsa_alt_helpers.h"
2015-03-09 18:05:11 +01:00
#include "mbedtls/oid.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include "constant_time_internal.h"
#include "mbedtls/constant_time.h"
#include "md_psa.h"
#include <string.h>
#if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
#include <stdlib.h>
#endif
2015-03-09 18:05:11 +01:00
#include "mbedtls/platform.h"
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
/** This function performs the unpadding part of a PKCS#1 v1.5 decryption
* operation (EME-PKCS1-v1_5 decoding).
*
* \note The return value from this function is a sensitive value
* (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen
* in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING
* is often a situation that an attacker can provoke and leaking which
* one is the result is precisely the information the attacker wants.
*
* \param input The input buffer which is the payload inside PKCS#1v1.5
* encryption padding, called the "encoded message EM"
* by the terminology.
* \param ilen The length of the payload in the \p input buffer.
* \param output The buffer for the payload, called "message M" by the
* PKCS#1 terminology. This must be a writable buffer of
* length \p output_max_len bytes.
* \param olen The address at which to store the length of
* the payload. This must not be \c NULL.
* \param output_max_len The length in bytes of the output buffer \p output.
*
* \return \c 0 on success.
* \return #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE
* The output buffer is too small for the unpadded payload.
* \return #MBEDTLS_ERR_RSA_INVALID_PADDING
* The input doesn't contain properly formatted padding.
*/
static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
size_t ilen,
unsigned char *output,
size_t output_max_len,
size_t *olen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, plaintext_max_size;
/* The following variables take sensitive values: their value must
* not leak into the observable behavior of the function other than
* the designated outputs (output, olen, return value). Otherwise
* this would open the execution of the function to
* side-channel-based variants of the Bleichenbacher padding oracle
* attack. Potential side channels include overall timing, memory
* access patterns (especially visible to an adversary who has access
* to a shared memory cache), and branches (especially visible to
* an adversary who has access to a shared code cache or to a shared
* branch predictor). */
size_t pad_count = 0;
mbedtls_ct_condition_t bad;
mbedtls_ct_condition_t pad_done;
size_t plaintext_size = 0;
mbedtls_ct_condition_t output_too_large;
plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
: output_max_len;
/* Check and get padding length in constant time and constant
* memory trace. The first byte must be 0. */
bad = mbedtls_ct_bool(input[0]);
/* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
* where PS must be at least 8 nonzero bytes. */
bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT));
/* Read the whole buffer. Set pad_done to nonzero if we find
* the 0x00 byte and remember the padding length in pad_count. */
pad_done = MBEDTLS_CT_FALSE;
for (i = 2; i < ilen; i++) {
mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0);
pad_done = mbedtls_ct_bool_or(pad_done, found);
pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1);
}
/* If pad_done is still zero, there's no data, only unfinished padding. */
bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done));
/* There must be at least 8 bytes of padding. */
bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count));
/* If the padding is valid, set plaintext_size to the number of
* remaining bytes after stripping the padding. If the padding
* is invalid, avoid leaking this fact through the size of the
* output: use the maximum message size that fits in the output
* buffer. Do it without branches to avoid leaking the padding
* validity through timing. RSA keys are small enough that all the
* size_t values involved fit in unsigned int. */
plaintext_size = mbedtls_ct_uint_if(
bad, (unsigned) plaintext_max_size,
(unsigned) (ilen - pad_count - 3));
/* Set output_too_large to 0 if the plaintext fits in the output
* buffer and to 1 otherwise. */
output_too_large = mbedtls_ct_uint_gt(plaintext_size,
plaintext_max_size);
/* Set ret without branches to avoid timing attacks. Return:
* - INVALID_PADDING if the padding is bad (bad != 0).
* - OUTPUT_TOO_LARGE if the padding is good but the decrypted
* plaintext does not fit in the output buffer.
* - 0 if the padding is correct. */
ret = mbedtls_ct_error_if(
bad,
MBEDTLS_ERR_RSA_INVALID_PADDING,
mbedtls_ct_error_if_else_0(output_too_large, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE)
);
/* If the padding is bad or the plaintext is too large, zero the
* data that we're about to copy to the output buffer.
* We need to copy the same amount of data
* from the same buffer whether the padding is good or not to
* avoid leaking the padding validity through overall timing or
* through memory or cache access patterns. */
mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11);
/* If the plaintext is too large, truncate it to the buffer size.
* Copy anyway to avoid revealing the length through timing, because
* revealing the length is as bad as revealing the padding validity
* for a Bleichenbacher attack. */
plaintext_size = mbedtls_ct_uint_if(output_too_large,
(unsigned) plaintext_max_size,
(unsigned) plaintext_size);
/* Move the plaintext to the leftmost position where it can start in
* the working buffer, i.e. make it start plaintext_max_size from
* the end of the buffer. Do this with a memory access trace that
* does not depend on the plaintext size. After this move, the
* starting location of the plaintext is no longer sensitive
* information. */
mbedtls_ct_memmove_left(input + ilen - plaintext_max_size,
plaintext_max_size,
plaintext_max_size - plaintext_size);
/* Finally copy the decrypted plaintext plus trailing zeros into the output
* buffer. If output_max_len is 0, then output may be an invalid pointer
* and the result of memcpy() would be undefined; prevent undefined
* behavior making sure to depend only on output_max_len (the size of the
* user-provided output buffer), which is independent from plaintext
* length, validity of padding, success of the decryption, and other
* secrets. */
if (output_max_len != 0) {
memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
}
/* Report the amount of data we copied to the output buffer. In case
* of errors (bad padding or output too large), the value of *olen
* when this function returns is not specified. Making it equivalent
* to the good case limits the risks of leaking the padding validity. */
*olen = plaintext_size;
return ret;
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
#if !defined(MBEDTLS_RSA_ALT)
int mbedtls_rsa_import(mbedtls_rsa_context *ctx,
const mbedtls_mpi *N,
const mbedtls_mpi *P, const mbedtls_mpi *Q,
const mbedtls_mpi *D, const mbedtls_mpi *E)
2017-08-23 15:11:24 +02:00
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2017-08-23 15:11:24 +02:00
if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) ||
(P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) ||
(Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) ||
(D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) ||
(E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
2017-08-23 15:11:24 +02:00
}
if (N != NULL) {
ctx->len = mbedtls_mpi_size(&ctx->N);
}
2017-08-23 15:11:24 +02:00
return 0;
2017-08-23 15:11:24 +02:00
}
int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx,
unsigned char const *N, size_t N_len,
unsigned char const *P, size_t P_len,
unsigned char const *Q, size_t Q_len,
unsigned char const *D, size_t D_len,
unsigned char const *E, size_t E_len)
2017-08-23 15:11:24 +02:00
{
int ret = 0;
2017-08-23 15:11:24 +02:00
if (N != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len));
ctx->len = mbedtls_mpi_size(&ctx->N);
2017-08-23 15:11:24 +02:00
}
if (P != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len));
}
2017-08-23 15:11:24 +02:00
if (Q != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len));
}
2017-08-23 15:11:24 +02:00
if (D != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len));
}
2017-08-23 15:11:24 +02:00
if (E != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len));
}
2017-08-23 15:11:24 +02:00
cleanup:
if (ret != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
}
2017-08-23 15:11:24 +02:00
return 0;
2017-08-23 15:11:24 +02:00
}
/*
* Checks whether the context fields are set in such a way
* that the RSA primitives will be able to execute without error.
* It does *not* make guarantees for consistency of the parameters.
*/
static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv,
int blinding_needed)
{
#if !defined(MBEDTLS_RSA_NO_CRT)
/* blinding_needed is only used for NO_CRT to decide whether
* P,Q need to be present or not. */
((void) blinding_needed);
#endif
if (ctx->len != mbedtls_mpi_size(&ctx->N) ||
ctx->len > MBEDTLS_MPI_MAX_SIZE) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/*
* 1. Modular exponentiation needs positive, odd moduli.
*/
/* Modular exponentiation wrt. N is always used for
* RSA public key operations. */
if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 ||
mbedtls_mpi_get_bit(&ctx->N, 0) == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#if !defined(MBEDTLS_RSA_NO_CRT)
/* Modular exponentiation for P and Q is only
* used for private key operations and if CRT
* is used. */
if (is_priv &&
(mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
mbedtls_mpi_get_bit(&ctx->P, 0) == 0 ||
mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 ||
mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#endif /* !MBEDTLS_RSA_NO_CRT */
/*
* 2. Exponents must be positive
*/
/* Always need E for public key operations */
if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#if defined(MBEDTLS_RSA_NO_CRT)
/* For private key operations, use D or DP & DQ
* as (unblinded) exponents. */
if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#else
if (is_priv &&
(mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 ||
mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#endif /* MBEDTLS_RSA_NO_CRT */
/* Blinding shouldn't make exponents negative either,
* so check that P, Q >= 1 if that hasn't yet been
* done as part of 1. */
#if defined(MBEDTLS_RSA_NO_CRT)
if (is_priv && blinding_needed &&
(mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#endif
/* It wouldn't lead to an error if it wasn't satisfied,
2017-10-17 10:20:57 +02:00
* but check for QP >= 1 nonetheless. */
#if !defined(MBEDTLS_RSA_NO_CRT)
if (is_priv &&
mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#endif
return 0;
}
int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)
2017-08-23 15:06:45 +02:00
{
int ret = 0;
2020-01-23 23:23:52 +01:00
int have_N, have_P, have_Q, have_D, have_E;
#if !defined(MBEDTLS_RSA_NO_CRT)
int have_DP, have_DQ, have_QP;
#endif
int n_missing, pq_missing, d_missing, is_pub, is_priv;
have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0);
have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0);
have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0);
have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0);
have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0);
2020-01-23 23:23:52 +01:00
#if !defined(MBEDTLS_RSA_NO_CRT)
have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0);
have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0);
have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0);
2020-01-23 23:23:52 +01:00
#endif
2017-08-23 15:11:24 +02:00
/*
* Check whether provided parameters are enough
* to deduce all others. The following incomplete
* parameter sets for private keys are supported:
*
* (1) P, Q missing.
* (2) D and potentially N missing.
*
*/
n_missing = have_P && have_Q && have_D && have_E;
pq_missing = have_N && !have_P && !have_Q && have_D && have_E;
d_missing = have_P && have_Q && !have_D && have_E;
is_pub = have_N && !have_P && !have_Q && !have_D && have_E;
/* These three alternatives are mutually exclusive */
is_priv = n_missing || pq_missing || d_missing;
2017-08-23 15:11:24 +02:00
if (!is_priv && !is_pub) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
2017-08-23 15:11:24 +02:00
/*
* Step 1: Deduce N if P, Q are provided.
*/
if (!have_N && have_P && have_Q) {
if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P,
&ctx->Q)) != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
}
ctx->len = mbedtls_mpi_size(&ctx->N);
}
/*
* Step 2: Deduce and verify all remaining core parameters.
2017-08-23 15:11:24 +02:00
*/
if (pq_missing) {
ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D,
&ctx->P, &ctx->Q);
if (ret != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
}
} else if (d_missing) {
if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P,
&ctx->Q,
&ctx->E,
&ctx->D)) != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
2017-08-23 15:11:24 +02:00
}
}
/*
* Step 3: Deduce all additional parameters specific
* to our current RSA implementation.
2017-08-23 15:11:24 +02:00
*/
2017-08-23 15:06:45 +02:00
#if !defined(MBEDTLS_RSA_NO_CRT)
if (is_priv && !(have_DP && have_DQ && have_QP)) {
ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
&ctx->DP, &ctx->DQ, &ctx->QP);
if (ret != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
}
2017-08-23 15:11:24 +02:00
}
#endif /* MBEDTLS_RSA_NO_CRT */
2017-08-23 15:06:45 +02:00
2017-08-23 15:11:24 +02:00
/*
* Step 3: Basic sanity checks
2017-08-23 15:11:24 +02:00
*/
return rsa_check_context(ctx, is_priv, 1);
2017-08-23 15:11:24 +02:00
}
int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx,
unsigned char *N, size_t N_len,
unsigned char *P, size_t P_len,
unsigned char *Q, size_t Q_len,
unsigned char *D, size_t D_len,
unsigned char *E, size_t E_len)
2017-08-23 15:11:24 +02:00
{
int ret = 0;
int is_priv;
2017-08-23 15:11:24 +02:00
/* Check if key is private or public */
is_priv =
mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
if (!is_priv) {
2017-08-23 15:11:24 +02:00
/* If we're trying to export private parameters for a public key,
* something must be wrong. */
if (P != NULL || Q != NULL || D != NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
2017-08-23 15:11:24 +02:00
}
if (N != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len));
}
2017-08-23 15:11:24 +02:00
if (P != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len));
}
2017-08-23 15:11:24 +02:00
if (Q != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len));
}
2017-08-23 15:11:24 +02:00
if (D != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len));
}
2017-08-23 15:11:24 +02:00
if (E != NULL) {
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len));
}
2017-08-23 15:06:45 +02:00
cleanup:
return ret;
2017-08-23 15:06:45 +02:00
}
int mbedtls_rsa_export(const mbedtls_rsa_context *ctx,
mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
mbedtls_mpi *D, mbedtls_mpi *E)
2017-08-23 15:11:24 +02:00
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
int is_priv;
2017-08-23 15:11:24 +02:00
/* Check if key is private or public */
is_priv =
mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
if (!is_priv) {
2017-08-23 15:11:24 +02:00
/* If we're trying to export private parameters for a public key,
* something must be wrong. */
if (P != NULL || Q != NULL || D != NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
2017-08-23 15:11:24 +02:00
}
/* Export all requested core parameters. */
if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) ||
(P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) ||
(Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) ||
(D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) ||
(E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) {
return ret;
2017-08-23 15:11:24 +02:00
}
return 0;
2017-08-23 15:11:24 +02:00
}
/*
* Export CRT parameters
* This must also be implemented if CRT is not used, for being able to
* write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
* can be used in this case.
*/
int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx,
mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)
2017-08-23 15:11:24 +02:00
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
int is_priv;
2017-08-23 15:11:24 +02:00
/* Check if key is private or public */
is_priv =
mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
2017-08-23 15:11:24 +02:00
if (!is_priv) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
2017-08-23 15:11:24 +02:00
#if !defined(MBEDTLS_RSA_NO_CRT)
2017-08-23 15:11:24 +02:00
/* Export all requested blinding parameters. */
if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) ||
(DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) ||
(QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
2017-08-23 15:11:24 +02:00
}
#else
if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
DP, DQ, QP)) != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
}
#endif
2017-08-23 15:11:24 +02:00
return 0;
2017-08-23 15:11:24 +02:00
}
2017-08-23 15:06:45 +02:00
/*
* Initialize an RSA context
*/
void mbedtls_rsa_init(mbedtls_rsa_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_rsa_context));
ctx->padding = MBEDTLS_RSA_PKCS_V15;
ctx->hash_id = MBEDTLS_MD_NONE;
2013-09-29 14:58:17 +02:00
#if defined(MBEDTLS_THREADING_C)
/* Set ctx->ver to nonzero to indicate that the mutex has been
* initialized and will need to be freed. */
ctx->ver = 1;
mbedtls_mutex_init(&ctx->mutex);
2013-09-29 14:58:17 +02:00
#endif
}
2014-03-10 21:55:35 +01:00
/*
* Set padding for an existing RSA context
*/
int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding,
mbedtls_md_type_t hash_id)
2014-03-10 21:55:35 +01:00
{
switch (padding) {
#if defined(MBEDTLS_PKCS1_V15)
case MBEDTLS_RSA_PKCS_V15:
break;
#endif
#if defined(MBEDTLS_PKCS1_V21)
case MBEDTLS_RSA_PKCS_V21:
break;
#endif
default:
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
#if defined(MBEDTLS_PKCS1_V21)
if ((padding == MBEDTLS_RSA_PKCS_V21) &&
(hash_id != MBEDTLS_MD_NONE)) {
/* Just make sure this hash is supported in this build. */
if (mbedtls_md_info_from_type(hash_id) == NULL) {
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
}
#endif /* MBEDTLS_PKCS1_V21 */
2014-03-10 21:55:35 +01:00
ctx->padding = padding;
ctx->hash_id = hash_id;
return 0;
2014-03-10 21:55:35 +01:00
}
2017-08-23 15:11:24 +02:00
/*
* Get padding mode of initialized RSA context
2017-08-23 15:11:24 +02:00
*/
int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx)
{
return ctx->padding;
}
2017-08-23 15:11:24 +02:00
/*
* Get hash identifier of mbedtls_md_type_t type
*/
int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx)
{
return ctx->hash_id;
}
/*
* Get length in bytes of RSA modulus
*/
size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx)
2017-08-23 15:11:24 +02:00
{
return ctx->len;
2017-08-23 15:11:24 +02:00
}
#if defined(MBEDTLS_GENPRIME)
/*
* Generate an RSA keypair
*
* This generation method follows the RSA key pair generation procedure of
* FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
*/
int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
unsigned int nbits, int exponent)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_mpi H, G, L;
int prime_quality = 0;
/*
* If the modulus is 1024 bit long or shorter, then the security strength of
* the RSA algorithm is less than or equal to 80 bits and therefore an error
* rate of 2^-80 is sufficient.
*/
if (nbits > 1024) {
prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
}
mbedtls_mpi_init(&H);
mbedtls_mpi_init(&G);
mbedtls_mpi_init(&L);
if (exponent < 3 || nbits % 2 != 0) {
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) {
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
/*
* find primes P and Q with Q < P so that:
* 1. |P-Q| > 2^( nbits / 2 - 100 )
* 2. GCD( E, (P-1)*(Q-1) ) == 1
* 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent));
do {
MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1,
prime_quality, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1,
prime_quality, f_rng, p_rng));
/* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q));
if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) {
continue;
}
/* not required by any standards, but some users rely on the fact that P > Q */
if (H.s < 0) {
mbedtls_mpi_swap(&ctx->P, &ctx->Q);
}
/* Temporarily replace P,Q by P-1, Q-1 */
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
/* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
continue;
}
/* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) { // (FIPS 186-4 §B.3.1 criterion 3(a))
continue;
}
break;
} while (1);
/* Restore P,Q */
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P, &ctx->P, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q, &ctx->Q, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
ctx->len = mbedtls_mpi_size(&ctx->N);
#if !defined(MBEDTLS_RSA_NO_CRT)
/*
* DP = D mod (P - 1)
* DQ = D mod (Q - 1)
* QP = Q^-1 mod P
*/
MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
&ctx->DP, &ctx->DQ, &ctx->QP));
#endif /* MBEDTLS_RSA_NO_CRT */
/* Double-check */
MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx));
cleanup:
mbedtls_mpi_free(&H);
mbedtls_mpi_free(&G);
mbedtls_mpi_free(&L);
if (ret != 0) {
mbedtls_rsa_free(ctx);
if ((-ret & ~0x7f) == 0) {
ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret);
}
return ret;
}
return 0;
}
#endif /* MBEDTLS_GENPRIME */
/*
* Check a public RSA key
*/
int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)
{
if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
if (mbedtls_mpi_bitlen(&ctx->N) < 128) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
2017-10-02 14:16:10 +02:00
}
if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 ||
mbedtls_mpi_bitlen(&ctx->E) < 2 ||
mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
2017-10-02 14:16:10 +02:00
}
return 0;
}
/*
* Check for the consistency of all fields in an RSA private key context
*/
int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)
{
if (mbedtls_rsa_check_pubkey(ctx) != 0 ||
rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q,
&ctx->D, &ctx->E, NULL, NULL) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
#if !defined(MBEDTLS_RSA_NO_CRT)
else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D,
&ctx->DP, &ctx->DQ, &ctx->QP) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
#endif
return 0;
}
2014-11-06 14:02:51 +01:00
/*
* Check if contexts holding a public and private key match
*/
int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub,
const mbedtls_rsa_context *prv)
2014-11-06 14:02:51 +01:00
{
if (mbedtls_rsa_check_pubkey(pub) != 0 ||
mbedtls_rsa_check_privkey(prv) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
2014-11-06 14:02:51 +01:00
}
if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 ||
mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) {
return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
2014-11-06 14:02:51 +01:00
}
return 0;
2014-11-06 14:02:51 +01:00
}
/*
* Do an RSA public key operation
*/
int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
const unsigned char *input,
unsigned char *output)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t olen;
mbedtls_mpi T;
if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
mbedtls_mpi_init(&T);
#if defined(MBEDTLS_THREADING_C)
if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
return ret;
}
#endif
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
olen = ctx->len;
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &ctx->E, &ctx->N, &ctx->RN));
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
cleanup:
#if defined(MBEDTLS_THREADING_C)
if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
}
#endif
mbedtls_mpi_free(&T);
if (ret != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret);
}
return 0;
}
/*
* Generate or update blinding values, see section 10 of:
* KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
* DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
* Berlin Heidelberg, 1996. p. 104-113.
*/
static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
int ret, count = 0;
mbedtls_mpi R;
mbedtls_mpi_init(&R);
if (ctx->Vf.p != NULL) {
/* We already have blinding values, just update them by squaring */
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));
goto cleanup;
}
/* Unblinding value: Vf = random number, invertible mod N */
do {
if (count++ > 10) {
ret = MBEDTLS_ERR_RSA_RNG_FAILED;
goto cleanup;
}
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
/* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
/* At this point, Vi is invertible mod N if and only if both Vf and R
* are invertible mod N. If one of them isn't, we don't need to know
* which one, we just loop and choose new values for both of them.
* (Each iteration succeeds with overwhelming probability.) */
ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
goto cleanup;
}
} while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
/* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
/* Blinding value: Vi = Vf^(-e) mod N
* (Vi already contains Vf^-1 at this point) */
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));
cleanup:
mbedtls_mpi_free(&R);
return ret;
}
/*
* Exponent blinding supposed to prevent side-channel attacks using multiple
* traces of measurements to recover the RSA key. The more collisions are there,
* the more bits of the key can be recovered. See [3].
*
* Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
* observations on average.
*
* For example with 28 byte blinding to achieve 2 collisions the adversary has
* to make 2^112 observations on average.
*
* (With the currently (as of 2017 April) known best algorithms breaking 2048
* bit RSA requires approximately as much time as trying out 2^112 random keys.
* Thus in this sense with 28 byte blinding the security is not reduced by
* side-channel attacks like the one in [3])
*
* This countermeasure does not help if the key recovery is possible with a
* single trace.
*/
#define RSA_EXPONENT_BLINDING 28
/*
* Do an RSA private key operation
*/
int mbedtls_rsa_private(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
const unsigned char *input,
unsigned char *output)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t olen;
/* Temporary holding the result */
mbedtls_mpi T;
/* Temporaries holding P-1, Q-1 and the
* exponent blinding factor, respectively. */
mbedtls_mpi P1, Q1, R;
#if !defined(MBEDTLS_RSA_NO_CRT)
/* Temporaries holding the results mod p resp. mod q. */
mbedtls_mpi TP, TQ;
/* Temporaries holding the blinded exponents for
* the mod p resp. mod q computation (if used). */
mbedtls_mpi DP_blind, DQ_blind;
/* Pointers to actual exponents to be used - either the unblinded
* or the blinded ones, depending on the presence of a PRNG. */
mbedtls_mpi *DP = &ctx->DP;
mbedtls_mpi *DQ = &ctx->DQ;
#else
/* Temporary holding the blinded exponent (if used). */
mbedtls_mpi D_blind;
/* Pointer to actual exponent to be used - either the unblinded
* or the blinded one, depending on the presence of a PRNG. */
mbedtls_mpi *D = &ctx->D;
#endif /* MBEDTLS_RSA_NO_CRT */
/* Temporaries holding the initial input and the double
* checked result; should be the same in the end. */
mbedtls_mpi I, C;
if (f_rng == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (rsa_check_context(ctx, 1 /* private key checks */,
1 /* blinding on */) != 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
#if defined(MBEDTLS_THREADING_C)
if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
return ret;
}
#endif
/* MPI Initialization */
mbedtls_mpi_init(&T);
mbedtls_mpi_init(&P1);
mbedtls_mpi_init(&Q1);
mbedtls_mpi_init(&R);
#if defined(MBEDTLS_RSA_NO_CRT)
mbedtls_mpi_init(&D_blind);
#else
mbedtls_mpi_init(&DP_blind);
mbedtls_mpi_init(&DQ_blind);
#endif
#if !defined(MBEDTLS_RSA_NO_CRT)
mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ);
#endif
mbedtls_mpi_init(&I);
mbedtls_mpi_init(&C);
/* End of MPI initialization */
MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&I, &T));
/*
* Blinding
* T = T * Vi mod N
*/
MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
/*
* Exponent blinding
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1));
#if defined(MBEDTLS_RSA_NO_CRT)
/*
* D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D));
D = &D_blind;
#else
/*
* DP_blind = ( P - 1 ) * R + DP
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind,
&ctx->DP));
DP = &DP_blind;
/*
* DQ_blind = ( Q - 1 ) * R + DQ
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind,
&ctx->DQ));
DQ = &DQ_blind;
#endif /* MBEDTLS_RSA_NO_CRT */
2013-08-30 11:00:25 +02:00
#if defined(MBEDTLS_RSA_NO_CRT)
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, D, &ctx->N, &ctx->RN));
2014-11-06 18:15:12 +01:00
#else
/*
* Faster decryption using the CRT
*
* TP = input ^ dP mod P
* TQ = input ^ dQ mod Q
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, DP, &ctx->P, &ctx->RP));
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, DQ, &ctx->Q, &ctx->RQ));
/*
* T = (TP - TQ) * (Q^-1 mod P) mod P
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));
/*
* T = TQ + T * Q
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
#endif /* MBEDTLS_RSA_NO_CRT */
2013-08-30 11:00:25 +02:00
/*
* Unblind
* T = T * Vf mod N
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vf));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
2017-10-03 08:49:52 +02:00
/* Verify the result to prevent glitching attacks. */
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&C, &T, &ctx->E,
&ctx->N, &ctx->RN));
if (mbedtls_mpi_cmp_mpi(&C, &I) != 0) {
ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
goto cleanup;
}
olen = ctx->len;
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
cleanup:
#if defined(MBEDTLS_THREADING_C)
if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
}
#endif
mbedtls_mpi_free(&P1);
mbedtls_mpi_free(&Q1);
mbedtls_mpi_free(&R);
#if defined(MBEDTLS_RSA_NO_CRT)
mbedtls_mpi_free(&D_blind);
#else
mbedtls_mpi_free(&DP_blind);
mbedtls_mpi_free(&DQ_blind);
#endif
mbedtls_mpi_free(&T);
#if !defined(MBEDTLS_RSA_NO_CRT)
mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ);
#endif
mbedtls_mpi_free(&C);
mbedtls_mpi_free(&I);
if (ret != 0 && ret >= -0x007f) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret);
}
return ret;
}
#if defined(MBEDTLS_PKCS1_V21)
/**
* Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
*
2011-11-10 14:33:51 +01:00
* \param dst buffer to mask
* \param dlen length of destination buffer
* \param src source of the mask generation
* \param slen length of the source buffer
* \param md_alg message digest to use
*/
static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src,
size_t slen, mbedtls_md_type_t md_alg)
{
unsigned char counter[4];
unsigned char *p;
unsigned int hlen;
size_t i, use_len;
unsigned char mask[MBEDTLS_MD_MAX_SIZE];
2017-07-20 15:26:37 +02:00
int ret = 0;
const mbedtls_md_info_t *md_info;
mbedtls_md_context_t md_ctx;
mbedtls_md_init(&md_ctx);
md_info = mbedtls_md_info_from_type(md_alg);
if (md_info == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
mbedtls_md_init(&md_ctx);
if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
goto exit;
}
hlen = mbedtls_md_get_size(md_info);
memset(mask, 0, sizeof(mask));
memset(counter, 0, 4);
/* Generate and apply dbMask */
p = dst;
while (dlen > 0) {
use_len = hlen;
if (dlen < hlen) {
use_len = dlen;
}
if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) {
goto exit;
}
for (i = 0; i < use_len; ++i) {
*p++ ^= mask[i];
}
counter[3]++;
dlen -= use_len;
}
exit:
mbedtls_platform_zeroize(mask, sizeof(mask));
mbedtls_md_free(&md_ctx);
return ret;
}
/**
* Generate Hash(M') as in RFC 8017 page 43 points 5 and 6.
*
* \param hash the input hash
* \param hlen length of the input hash
* \param salt the input salt
* \param slen length of the input salt
* \param out the output buffer - must be large enough for \p md_alg
* \param md_alg message digest to use
*/
static int hash_mprime(const unsigned char *hash, size_t hlen,
const unsigned char *salt, size_t slen,
unsigned char *out, mbedtls_md_type_t md_alg)
{
const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
mbedtls_md_context_t md_ctx;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg);
if (md_info == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
mbedtls_md_init(&md_ctx);
if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) {
goto exit;
}
if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) {
goto exit;
}
if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) {
goto exit;
}
exit:
mbedtls_md_free(&md_ctx);
return ret;
}
/**
* Compute a hash.
*
* \param md_alg algorithm to use
* \param input input message to hash
* \param ilen input length
* \param output the output buffer - must be large enough for \p md_alg
*/
static int compute_hash(mbedtls_md_type_t md_alg,
const unsigned char *input, size_t ilen,
unsigned char *output)
{
const mbedtls_md_info_t *md_info;
md_info = mbedtls_md_info_from_type(md_alg);
if (md_info == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
return mbedtls_md(md_info, input, ilen, output);
}
#endif /* MBEDTLS_PKCS1_V21 */
#if defined(MBEDTLS_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
*/
int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
const unsigned char *label, size_t label_len,
size_t ilen,
const unsigned char *input,
unsigned char *output)
{
size_t olen;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
unsigned char *p = output;
unsigned int hlen;
if (f_rng == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
if (hlen == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
olen = ctx->len;
/* first comparison checks for overflow */
if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
memset(output, 0, olen);
*p++ = 0;
/* Generate a random octet string seed */
if ((ret = f_rng(p_rng, p, hlen)) != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
}
p += hlen;
/* Construct DB */
ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p);
if (ret != 0) {
return ret;
}
p += hlen;
p += olen - 2 * hlen - 2 - ilen;
*p++ = 1;
if (ilen != 0) {
memcpy(p, input, ilen);
}
/* maskedDB: Apply dbMask to DB */
if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen,
(mbedtls_md_type_t) ctx->hash_id)) != 0) {
return ret;
}
/* maskedSeed: Apply seedMask to seed */
if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1,
(mbedtls_md_type_t) ctx->hash_id)) != 0) {
return ret;
}
return mbedtls_rsa_public(ctx, output, output);
}
#endif /* MBEDTLS_PKCS1_V21 */
#if defined(MBEDTLS_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
*/
int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng, size_t ilen,
const unsigned char *input,
unsigned char *output)
{
size_t nb_pad, olen;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
unsigned char *p = output;
olen = ctx->len;
/* first comparison checks for overflow */
if (ilen + 11 < ilen || olen < ilen + 11) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
nb_pad = olen - 3 - ilen;
*p++ = 0;
if (f_rng == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
*p++ = MBEDTLS_RSA_CRYPT;
while (nb_pad-- > 0) {
int rng_dl = 100;
do {
ret = f_rng(p_rng, p, 1);
} while (*p == 0 && --rng_dl && ret == 0);
/* Check if RNG failed to generate data */
if (rng_dl == 0 || ret != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
}
p++;
}
*p++ = 0;
if (ilen != 0) {
memcpy(p, input, ilen);
}
return mbedtls_rsa_public(ctx, output, output);
}
#endif /* MBEDTLS_PKCS1_V15 */
/*
* Add the message padding, then do an RSA operation
*/
int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
size_t ilen,
const unsigned char *input,
unsigned char *output)
{
switch (ctx->padding) {
#if defined(MBEDTLS_PKCS1_V15)
case MBEDTLS_RSA_PKCS_V15:
return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng,
ilen, input, output);
#endif
#if defined(MBEDTLS_PKCS1_V21)
case MBEDTLS_RSA_PKCS_V21:
return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0,
ilen, input, output);
#endif
default:
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
}
#if defined(MBEDTLS_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
*/
int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
const unsigned char *label, size_t label_len,
size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t ilen, i, pad_len;
unsigned char *p;
mbedtls_ct_condition_t bad, in_padding;
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
unsigned int hlen;
2013-11-28 15:57:52 +01:00
/*
* Parameters sanity checks
*/
if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
ilen = ctx->len;
if (ilen < 16 || ilen > sizeof(buf)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
if (hlen == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
2013-11-28 15:57:52 +01:00
// checking for integer underflow
if (2 * hlen + 2 > ilen) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
2013-11-28 15:57:52 +01:00
/*
* RSA operation
*/
ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
if (ret != 0) {
goto cleanup;
}
2013-11-28 15:57:52 +01:00
/*
* Unmask data and generate lHash
2013-11-28 15:57:52 +01:00
*/
/* seed: Apply seedMask to maskedSeed */
if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
(mbedtls_md_type_t) ctx->hash_id)) != 0 ||
/* DB: Apply dbMask to maskedDB */
(ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
(mbedtls_md_type_t) ctx->hash_id)) != 0) {
goto cleanup;
}
/* Generate lHash */
ret = compute_hash((mbedtls_md_type_t) ctx->hash_id,
label, label_len, lhash);
if (ret != 0) {
goto cleanup;
}
2013-11-28 15:57:52 +01:00
/*
* Check contents, in "constant-time"
2013-11-28 15:57:52 +01:00
*/
p = buf;
bad = mbedtls_ct_bool(*p++); /* First byte must be 0 */
2013-11-28 15:57:52 +01:00
p += hlen; /* Skip seed */
/* Check lHash */
bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool(mbedtls_ct_memcmp(lhash, p, hlen)));
p += hlen;
/* Get zero-padding len, but always read till end of buffer
* (minus one, for the 01 byte) */
pad_len = 0;
in_padding = MBEDTLS_CT_TRUE;
for (i = 0; i < ilen - 2 * hlen - 2; i++) {
in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_uint_eq(p[i], 0));
pad_len += mbedtls_ct_uint_if_else_0(in_padding, 1);
}
p += pad_len;
bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(*p++, 0x01));
/*
* The only information "leaked" is whether the padding was correct or not
* (eg, no data is copied if it was not correct). This meets the
* recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
* the different error conditions.
*/
if (bad != MBEDTLS_CT_FALSE) {
ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
goto cleanup;
}
if (ilen - ((size_t) (p - buf)) > output_max_len) {
ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
goto cleanup;
}
*olen = ilen - ((size_t) (p - buf));
if (*olen != 0) {
memcpy(output, p, *olen);
}
ret = 0;
cleanup:
mbedtls_platform_zeroize(buf, sizeof(buf));
mbedtls_platform_zeroize(lhash, sizeof(lhash));
return ret;
}
#endif /* MBEDTLS_PKCS1_V21 */
#if defined(MBEDTLS_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
*/
int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t ilen;
unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
ilen = ctx->len;
if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (ilen < 16 || ilen > sizeof(buf)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
if (ret != 0) {
goto cleanup;
}
ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen,
output, output_max_len, olen);
cleanup:
mbedtls_platform_zeroize(buf, sizeof(buf));
return ret;
}
#endif /* MBEDTLS_PKCS1_V15 */
/*
* Do an RSA operation, then remove the message padding
*/
int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
switch (ctx->padding) {
#if defined(MBEDTLS_PKCS1_V15)
case MBEDTLS_RSA_PKCS_V15:
return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen,
input, output, output_max_len);
#endif
#if defined(MBEDTLS_PKCS1_V21)
case MBEDTLS_RSA_PKCS_V21:
return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0,
olen, input, output,
output_max_len);
#endif
default:
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
}
#if defined(MBEDTLS_PKCS1_V21)
static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
int saltlen,
unsigned char *sig)
{
size_t olen;
unsigned char *p = sig;
unsigned char *salt = NULL;
rsa: pss: Enable use of big hashes with small keys It should be valid to RSASSA-PSS sign a SHA-512 hash with a 1024-bit or 1032-bit RSA key, but with the salt size being always equal to the hash size, this isn't possible: the key is too small. To enable use of hashes that are relatively large compared to the key size, allow reducing the salt size to no less than the hash size minus 2 bytes. We don't allow salt sizes smaller than the hash size minus 2 bytes because that too significantly changes the security guarantees the library provides compared to the previous implementation which always used a salt size equal to the hash size. The new calculated salt size remains compliant with FIPS 186-4. We also need to update the "hash too large" test, since we now reduce the salt size when certain key sizes are used. We used to not support 1024-bit keys with SHA-512, but now we support this by reducing the salt size to 62. Update the "hash too large" test to use a 1016-bit RSA key with SHA-512, which still has too large of a hash because we will not reduce the salt size further than 2 bytes shorter than the hash size. The RSA private key used for the test was generated using "openssl genrsa 1016" using OpenSSL 1.1.1-pre8. $ openssl genrsa 1016 Generating RSA private key, 1016 bit long modulus (2 primes) ..............++++++ ....++++++ e is 65537 (0x010001) -----BEGIN RSA PRIVATE KEY----- MIICVwIBAAKBgACu54dKTbLxUQBEQF2ynxTfDze7z2H8vMmUo9McqvhYp0zI8qQK yanOeqmgaA9iz52NS4JxFFM/2/hvFvyd/ly/hX2GE1UZpGEf/FnLdHOGFhmnjj7D FHFegEz/gtbzLp9X3fOQVjYpiDvTT0Do20EyCbFRzul9gXpdZcfaVHNLAgMBAAEC gYAAiWht2ksmnP01B2nF8tGV1RQghhUL90Hd4D/AWFJdX1C4O1qc07jRBd1KLDH0 fH19WocLCImeSZooGCZn+jveTuaEH14w6I0EfnpKDcpWVAoIP6I8eSdAttrnTyTn Y7VgPrcobyq4WkCVCD/jLUbn97CneF7EHNspXGMTvorMeQJADjy2hF5SginhnPsk YR5oWawc6n01mStuLnloI8Uq/6A0AOQoMPkGl/CESZw+NYfe/BnnSeckM917cMKL DIKAtwJADEj55Frjj9tKUUO+N9eaEM1PH5eC7yakhIpESccs/XEsaDUIGHNjhctK mrbbWu+OlsVRA5z8yJFYIa7gae1mDQJABjtQ8JOQreTDGkFbZR84MbgCWClCIq89 5R3DFZUiAw4OdS1o4ja+Shc+8DFxkWDNm6+C63g/Amy5sVuWHX2p9QI/a69Cxmns TxHoXm1w9Azublk7N7DgB26yqxlTfWJo+ysOFmLEk47g0ekoCwLPxkwXlYIEoad2 JqPh418DwYExAkACcqrd9+rfxtrbCbTXHEizW7aHR+fVOr9lpXXDEZTlDJ57sRkS SpjXbAmylqQuKLqH8h/72RbiP36kEm5ptmw2 -----END RSA PRIVATE KEY-----
2018-09-07 20:12:36 +02:00
size_t slen, min_slen, hlen, offset = 0;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t msb;
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (f_rng == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
olen = ctx->len;
if (md_alg != MBEDTLS_MD_NONE) {
/* Gather length of hash to sign */
size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
if (exp_hashlen == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (hashlen != exp_hashlen) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
}
hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
if (hlen == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) {
/* Calculate the largest possible salt length, up to the hash size.
* Normally this is the hash length, which is the maximum salt length
* according to FIPS 185-4 §5.5 (e) and common practice. If there is not
* enough room, use the maximum salt length that fits. The constraint is
* that the hash length plus the salt length plus 2 bytes must be at most
* the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
* (PKCS#1 v2.2) §9.1.1 step 3. */
min_slen = hlen - 2;
if (olen < hlen + min_slen + 2) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
} else if (olen >= hlen + hlen + 2) {
slen = hlen;
} else {
slen = olen - hlen - 2;
}
} else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
} else {
slen = (size_t) saltlen;
}
memset(sig, 0, olen);
/* Note: EMSA-PSS encoding is over the length of N - 1 bits */
msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
rsa: pss: Enable use of big hashes with small keys It should be valid to RSASSA-PSS sign a SHA-512 hash with a 1024-bit or 1032-bit RSA key, but with the salt size being always equal to the hash size, this isn't possible: the key is too small. To enable use of hashes that are relatively large compared to the key size, allow reducing the salt size to no less than the hash size minus 2 bytes. We don't allow salt sizes smaller than the hash size minus 2 bytes because that too significantly changes the security guarantees the library provides compared to the previous implementation which always used a salt size equal to the hash size. The new calculated salt size remains compliant with FIPS 186-4. We also need to update the "hash too large" test, since we now reduce the salt size when certain key sizes are used. We used to not support 1024-bit keys with SHA-512, but now we support this by reducing the salt size to 62. Update the "hash too large" test to use a 1016-bit RSA key with SHA-512, which still has too large of a hash because we will not reduce the salt size further than 2 bytes shorter than the hash size. The RSA private key used for the test was generated using "openssl genrsa 1016" using OpenSSL 1.1.1-pre8. $ openssl genrsa 1016 Generating RSA private key, 1016 bit long modulus (2 primes) ..............++++++ ....++++++ e is 65537 (0x010001) -----BEGIN RSA PRIVATE KEY----- MIICVwIBAAKBgACu54dKTbLxUQBEQF2ynxTfDze7z2H8vMmUo9McqvhYp0zI8qQK yanOeqmgaA9iz52NS4JxFFM/2/hvFvyd/ly/hX2GE1UZpGEf/FnLdHOGFhmnjj7D FHFegEz/gtbzLp9X3fOQVjYpiDvTT0Do20EyCbFRzul9gXpdZcfaVHNLAgMBAAEC gYAAiWht2ksmnP01B2nF8tGV1RQghhUL90Hd4D/AWFJdX1C4O1qc07jRBd1KLDH0 fH19WocLCImeSZooGCZn+jveTuaEH14w6I0EfnpKDcpWVAoIP6I8eSdAttrnTyTn Y7VgPrcobyq4WkCVCD/jLUbn97CneF7EHNspXGMTvorMeQJADjy2hF5SginhnPsk YR5oWawc6n01mStuLnloI8Uq/6A0AOQoMPkGl/CESZw+NYfe/BnnSeckM917cMKL DIKAtwJADEj55Frjj9tKUUO+N9eaEM1PH5eC7yakhIpESccs/XEsaDUIGHNjhctK mrbbWu+OlsVRA5z8yJFYIa7gae1mDQJABjtQ8JOQreTDGkFbZR84MbgCWClCIq89 5R3DFZUiAw4OdS1o4ja+Shc+8DFxkWDNm6+C63g/Amy5sVuWHX2p9QI/a69Cxmns TxHoXm1w9Azublk7N7DgB26yqxlTfWJo+ysOFmLEk47g0ekoCwLPxkwXlYIEoad2 JqPh418DwYExAkACcqrd9+rfxtrbCbTXHEizW7aHR+fVOr9lpXXDEZTlDJ57sRkS SpjXbAmylqQuKLqH8h/72RbiP36kEm5ptmw2 -----END RSA PRIVATE KEY-----
2018-09-07 20:12:36 +02:00
p += olen - hlen - slen - 2;
*p++ = 0x01;
/* Generate salt of length slen in place in the encoded message */
salt = p;
if ((ret = f_rng(p_rng, salt, slen)) != 0) {
return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
}
p += slen;
/* Generate H = Hash( M' ) */
ret = hash_mprime(hash, hashlen, salt, slen, p, (mbedtls_md_type_t) ctx->hash_id);
if (ret != 0) {
return ret;
}
/* Compensate for boundary condition when applying mask */
if (msb % 8 == 0) {
offset = 1;
}
/* maskedDB: Apply dbMask to DB */
ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen,
(mbedtls_md_type_t) ctx->hash_id);
if (ret != 0) {
return ret;
}
msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
sig[0] &= 0xFF >> (olen * 8 - msb);
p += hlen;
*p++ = 0xBC;
return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig);
}
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
* the option to pass in the salt length.
*/
int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
int saltlen,
unsigned char *sig)
{
return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
hashlen, hash, saltlen, sig);
}
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
*/
int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig)
{
return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
}
#endif /* MBEDTLS_PKCS1_V21 */
#if defined(MBEDTLS_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
*/
/* Construct a PKCS v1.5 encoding of a hashed message
*
* This is used both for signature generation and verification.
*
* Parameters:
* - md_alg: Identifies the hash algorithm used to generate the given hash;
2017-09-27 18:09:00 +02:00
* MBEDTLS_MD_NONE if raw data is signed.
* - hashlen: Length of hash. Must match md_alg if that's not NONE.
2017-09-27 18:09:00 +02:00
* - hash: Buffer containing the hashed message or the raw data.
* - dst_len: Length of the encoded message.
* - dst: Buffer to hold the encoded message.
*
* Assumptions:
* - hash has size hashlen.
2017-09-27 18:09:00 +02:00
* - dst points to a buffer of size at least dst_len.
*
*/
static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
size_t dst_len,
unsigned char *dst)
{
size_t oid_size = 0;
2017-09-27 18:09:00 +02:00
size_t nb_pad = dst_len;
unsigned char *p = dst;
const char *oid = NULL;
/* Are we signing hashed or raw data? */
if (md_alg != MBEDTLS_MD_NONE) {
unsigned char md_size = mbedtls_md_get_size_from_type(md_alg);
if (md_size == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (hashlen != md_size) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/* Double-check that 8 + hashlen + oid_size can be used as a
* 1-byte ASN.1 length encoding and that there's no overflow. */
if (8 + hashlen + oid_size >= 0x80 ||
10 + hashlen < hashlen ||
10 + hashlen + oid_size < 10 + hashlen) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/*
* Static bounds check:
* - Need 10 bytes for five tag-length pairs.
* (Insist on 1-byte length encodings to protect against variants of
* Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
* - Need hashlen bytes for hash
* - Need oid_size bytes for hash alg OID.
*/
if (nb_pad < 10 + hashlen + oid_size) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
nb_pad -= 10 + hashlen + oid_size;
} else {
if (nb_pad < hashlen) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
nb_pad -= hashlen;
}
/* Need space for signature header and padding delimiter (3 bytes),
* and 8 bytes for the minimal padding */
if (nb_pad < 3 + 8) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
nb_pad -= 3;
/* Now nb_pad is the amount of memory to be filled
* with padding, and at least 8 bytes long. */
/* Write signature header and padding */
*p++ = 0;
*p++ = MBEDTLS_RSA_SIGN;
memset(p, 0xFF, nb_pad);
p += nb_pad;
*p++ = 0;
/* Are we signing raw data? */
if (md_alg == MBEDTLS_MD_NONE) {
memcpy(p, hash, hashlen);
return 0;
}
/* Signing hashed data, add corresponding ASN.1 structure
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest }
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
* Digest ::= OCTET STRING
*
* Schematic:
* TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ]
* TAG-NULL + LEN [ NULL ] ]
* TAG-OCTET + LEN [ HASH ] ]
*/
*p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
*p++ = (unsigned char) (0x08 + oid_size + hashlen);
*p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
*p++ = (unsigned char) (0x04 + oid_size);
*p++ = MBEDTLS_ASN1_OID;
*p++ = (unsigned char) oid_size;
memcpy(p, oid, oid_size);
p += oid_size;
*p++ = MBEDTLS_ASN1_NULL;
*p++ = 0x00;
*p++ = MBEDTLS_ASN1_OCTET_STRING;
*p++ = (unsigned char) hashlen;
memcpy(p, hash, hashlen);
p += hashlen;
/* Just a sanity-check, should be automatic
* after the initial bounds check. */
if (p != dst + dst_len) {
mbedtls_platform_zeroize(dst, dst_len);
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
return 0;
}
/*
* Do an RSA operation to sign the message digest
*/
int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
unsigned char *sig_try = NULL, *verif = NULL;
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/*
* Prepare PKCS1-v1.5 encoding (padding and hash identifier)
*/
if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash,
ctx->len, sig)) != 0) {
return ret;
}
/* Private key operation
*
* In order to prevent Lenstra's attack, make the signature in a
* temporary buffer and check it before returning it.
*/
sig_try = mbedtls_calloc(1, ctx->len);
if (sig_try == NULL) {
return MBEDTLS_ERR_MPI_ALLOC_FAILED;
}
verif = mbedtls_calloc(1, ctx->len);
if (verif == NULL) {
mbedtls_free(sig_try);
return MBEDTLS_ERR_MPI_ALLOC_FAILED;
}
MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try));
MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif));
if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) {
ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
goto cleanup;
}
memcpy(sig, sig_try, ctx->len);
cleanup:
mbedtls_zeroize_and_free(sig_try, ctx->len);
mbedtls_zeroize_and_free(verif, ctx->len);
if (ret != 0) {
memset(sig, '!', ctx->len);
}
return ret;
}
#endif /* MBEDTLS_PKCS1_V15 */
/*
* Do an RSA operation to sign the message digest
*/
int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig)
{
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
switch (ctx->padding) {
#if defined(MBEDTLS_PKCS1_V15)
case MBEDTLS_RSA_PKCS_V15:
return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng,
md_alg, hashlen, hash, sig);
#endif
#if defined(MBEDTLS_PKCS1_V21)
case MBEDTLS_RSA_PKCS_V21:
return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
hashlen, hash, sig);
#endif
default:
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
}
#if defined(MBEDTLS_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
mbedtls_md_type_t mgf1_hash_id,
int expected_salt_len,
const unsigned char *sig)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t siglen;
unsigned char *p;
unsigned char *hash_start;
unsigned char result[MBEDTLS_MD_MAX_SIZE];
unsigned int hlen;
size_t observed_salt_len, msb;
unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 };
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
siglen = ctx->len;
if (siglen < 16 || siglen > sizeof(buf)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
ret = mbedtls_rsa_public(ctx, sig, buf);
if (ret != 0) {
return ret;
}
p = buf;
if (buf[siglen - 1] != 0xBC) {
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
if (md_alg != MBEDTLS_MD_NONE) {
/* Gather length of hash to sign */
size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
if (exp_hashlen == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
if (hashlen != exp_hashlen) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
}
hlen = mbedtls_md_get_size_from_type(mgf1_hash_id);
if (hlen == 0) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/*
* Note: EMSA-PSS verification is over the length of N - 1 bits
*/
msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
if (buf[0] >> (8 - siglen * 8 + msb)) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
/* Compensate for boundary condition when applying mask */
if (msb % 8 == 0) {
p++;
siglen -= 1;
}
if (siglen < hlen + 2) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
hash_start = p + siglen - hlen - 1;
ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id);
if (ret != 0) {
return ret;
}
buf[0] &= 0xFF >> (siglen * 8 - msb);
while (p < hash_start - 1 && *p == 0) {
p++;
}
if (*p++ != 0x01) {
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
observed_salt_len = (size_t) (hash_start - p);
if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
observed_salt_len != (size_t) expected_salt_len) {
return MBEDTLS_ERR_RSA_INVALID_PADDING;
2014-06-03 11:44:06 +02:00
}
/*
* Generate H = Hash( M' )
*/
ret = hash_mprime(hash, hashlen, p, observed_salt_len,
result, mgf1_hash_id);
if (ret != 0) {
return ret;
}
if (memcmp(hash_start, result, hlen) != 0) {
return MBEDTLS_ERR_RSA_VERIFY_FAILED;
}
return 0;
}
2014-06-03 11:44:06 +02:00
/*
* Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig)
2014-06-03 11:44:06 +02:00
{
mbedtls_md_type_t mgf1_hash_id;
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE)
? (mbedtls_md_type_t) ctx->hash_id
2014-06-03 11:44:06 +02:00
: md_alg;
return mbedtls_rsa_rsassa_pss_verify_ext(ctx,
md_alg, hashlen, hash,
mgf1_hash_id,
MBEDTLS_RSA_SALT_LEN_ANY,
sig);
2014-06-03 11:44:06 +02:00
}
#endif /* MBEDTLS_PKCS1_V21 */
#if defined(MBEDTLS_PKCS1_V15)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
*/
int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig)
{
int ret = 0;
size_t sig_len;
unsigned char *encoded = NULL, *encoded_expected = NULL;
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
sig_len = ctx->len;
/*
* Prepare expected PKCS1 v1.5 encoding of hash.
*/
if ((encoded = mbedtls_calloc(1, sig_len)) == NULL ||
(encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) {
ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
goto cleanup;
}
if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len,
encoded_expected)) != 0) {
goto cleanup;
}
/*
* Apply RSA primitive to get what should be PKCS1 encoded hash.
*/
ret = mbedtls_rsa_public(ctx, sig, encoded);
if (ret != 0) {
goto cleanup;
}
/*
* Compare
*/
if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected,
sig_len)) != 0) {
ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
goto cleanup;
}
cleanup:
if (encoded != NULL) {
mbedtls_zeroize_and_free(encoded, sig_len);
}
if (encoded_expected != NULL) {
mbedtls_zeroize_and_free(encoded_expected, sig_len);
}
return ret;
}
#endif /* MBEDTLS_PKCS1_V15 */
/*
* Do an RSA operation and check the message digest
*/
int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx,
mbedtls_md_type_t md_alg,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig)
{
if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
}
switch (ctx->padding) {
#if defined(MBEDTLS_PKCS1_V15)
case MBEDTLS_RSA_PKCS_V15:
return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg,
hashlen, hash, sig);
#endif
#if defined(MBEDTLS_PKCS1_V21)
case MBEDTLS_RSA_PKCS_V21:
return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg,
hashlen, hash, sig);
#endif
default:
return MBEDTLS_ERR_RSA_INVALID_PADDING;
}
}
2013-08-14 13:39:57 +02:00
/*
* Copy the components of an RSA key
*/
int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src)
2013-08-14 13:39:57 +02:00
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2013-08-14 13:39:57 +02:00
dst->len = src->len;
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E));
2013-08-14 13:39:57 +02:00
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q));
#if !defined(MBEDTLS_RSA_NO_CRT)
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ));
#endif
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN));
2013-08-14 13:39:57 +02:00
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi));
MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf));
2013-08-14 13:39:57 +02:00
dst->padding = src->padding;
2014-03-25 15:58:35 +01:00
dst->hash_id = src->hash_id;
2013-08-14 13:39:57 +02:00
cleanup:
if (ret != 0) {
mbedtls_rsa_free(dst);
}
2013-08-14 13:39:57 +02:00
return ret;
2013-08-14 13:39:57 +02:00
}
/*
* Free the components of an RSA key
*/
void mbedtls_rsa_free(mbedtls_rsa_context *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_mpi_free(&ctx->Vi);
mbedtls_mpi_free(&ctx->Vf);
mbedtls_mpi_free(&ctx->RN);
mbedtls_mpi_free(&ctx->D);
mbedtls_mpi_free(&ctx->Q);
mbedtls_mpi_free(&ctx->P);
mbedtls_mpi_free(&ctx->E);
mbedtls_mpi_free(&ctx->N);
#if !defined(MBEDTLS_RSA_NO_CRT)
mbedtls_mpi_free(&ctx->RQ);
mbedtls_mpi_free(&ctx->RP);
mbedtls_mpi_free(&ctx->QP);
mbedtls_mpi_free(&ctx->DQ);
mbedtls_mpi_free(&ctx->DP);
#endif /* MBEDTLS_RSA_NO_CRT */
#if defined(MBEDTLS_THREADING_C)
/* Free the mutex, but only if it hasn't been freed already. */
if (ctx->ver != 0) {
mbedtls_mutex_free(&ctx->mutex);
ctx->ver = 0;
}
2013-09-29 14:58:17 +02:00
#endif
}
#endif /* !MBEDTLS_RSA_ALT */
#if defined(MBEDTLS_SELF_TEST)
/*
* Example RSA-1024 keypair, for test purposes
*/
#define KEY_LEN 128
#define RSA_N "9292758453063D803DD603D5E777D788" \
"8ED1D5BF35786190FA2F23EBC0848AEA" \
"DDA92CA6C3D80B32C4D109BE0F36D6AE" \
"7130B9CED7ACDF54CFC7555AC14EEBAB" \
"93A89813FBF3C4F8066D2D800F7C38A8" \
"1AE31942917403FF4946B0A83D3D3E05" \
"EE57C6F5F5606FB5D4BC6CD34EE0801A" \
"5E94BB77B07507233A0BC7BAC8F90F79"
#define RSA_E "10001"
#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
"66CA472BC44D253102F8B4A9D3BFA750" \
"91386C0077937FE33FA3252D28855837" \
"AE1B484A8A9A45F7EE8C0C634F99E8CD" \
"DF79C5CE07EE72C7F123142198164234" \
"CABB724CF78B8173B9F880FC86322407" \
"AF1FEDFDDE2BEB674CA15F3E81A1521E" \
"071513A1E85B5DFA031F21ECAE91A34D"
#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
"2C01CAD19EA484A87EA4377637E75500" \
"FCB2005C5C7DD6EC4AC023CDA285D796" \
"C3D9E75E1EFC42488BB4F1D13AC30A57"
#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
"E211C2B9E5DB1ED0BF61D0D9899620F4" \
"910E4168387E3C30AA1E00C339A79508" \
"8452DD96A9A5EA5D9DCA68DA636032AF"
#define PT_LEN 24
#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
"\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
#if defined(MBEDTLS_PKCS1_V15)
static int myrand(void *rng_state, unsigned char *output, size_t len)
{
#if !defined(__OpenBSD__) && !defined(__NetBSD__)
size_t i;
if (rng_state != NULL) {
rng_state = NULL;
}
for (i = 0; i < len; ++i) {
output[i] = rand();
}
#else
if (rng_state != NULL) {
rng_state = NULL;
}
arc4random_buf(output, len);
#endif /* !OpenBSD && !NetBSD */
return 0;
}
#endif /* MBEDTLS_PKCS1_V15 */
/*
* Checkup routine
*/
int mbedtls_rsa_self_test(int verbose)
{
int ret = 0;
#if defined(MBEDTLS_PKCS1_V15)
size_t len;
mbedtls_rsa_context rsa;
unsigned char rsa_plaintext[PT_LEN];
unsigned char rsa_decrypted[PT_LEN];
unsigned char rsa_ciphertext[KEY_LEN];
#if defined(MBEDTLS_MD_CAN_SHA1)
unsigned char sha1sum[20];
#endif
mbedtls_mpi K;
mbedtls_mpi_init(&K);
mbedtls_rsa_init(&rsa);
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N));
MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL));
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P));
MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL));
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q));
MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL));
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D));
MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL));
MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E));
MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K));
MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa));
if (verbose != 0) {
mbedtls_printf(" RSA key validation: ");
}
if (mbedtls_rsa_check_pubkey(&rsa) != 0 ||
mbedtls_rsa_check_privkey(&rsa) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
ret = 1;
goto cleanup;
}
if (verbose != 0) {
mbedtls_printf("passed\n PKCS#1 encryption : ");
}
memcpy(rsa_plaintext, RSA_PT, PT_LEN);
if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL,
PT_LEN, rsa_plaintext,
rsa_ciphertext) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
ret = 1;
goto cleanup;
}
if (verbose != 0) {
mbedtls_printf("passed\n PKCS#1 decryption : ");
}
if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL,
&len, rsa_ciphertext, rsa_decrypted,
sizeof(rsa_decrypted)) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
ret = 1;
goto cleanup;
}
if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
ret = 1;
goto cleanup;
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
2015-08-07 10:46:54 +02:00
#if defined(MBEDTLS_MD_CAN_SHA1)
if (verbose != 0) {
mbedtls_printf(" PKCS#1 data sign : ");
}
if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1),
rsa_plaintext, PT_LEN, sha1sum) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
return 1;
}
if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL,
MBEDTLS_MD_SHA1, 20,
sha1sum, rsa_ciphertext) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
ret = 1;
goto cleanup;
}
if (verbose != 0) {
mbedtls_printf("passed\n PKCS#1 sig. verify: ");
}
if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20,
sha1sum, rsa_ciphertext) != 0) {
if (verbose != 0) {
mbedtls_printf("failed\n");
}
ret = 1;
goto cleanup;
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
#endif /* MBEDTLS_MD_CAN_SHA1 */
if (verbose != 0) {
mbedtls_printf("\n");
}
2015-08-07 10:46:54 +02:00
cleanup:
mbedtls_mpi_free(&K);
mbedtls_rsa_free(&rsa);
#else /* MBEDTLS_PKCS1_V15 */
((void) verbose);
#endif /* MBEDTLS_PKCS1_V15 */
return ret;
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_RSA_C */