suyu/src/video_core/renderer_opengl/gl_rasterizer.cpp

1752 lines
65 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <bitset>
#include <memory>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_type.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_opengl/gl_query_cache.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/renderer_opengl/maxwell_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
#include "video_core/shader_cache.h"
namespace OpenGL {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using Tegra::Engines::ShaderType;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::SurfaceTarget;
using VideoCore::Surface::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Format Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_VB, "OpenGL", "Vertex Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Shader, "OpenGL", "Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_UBO, "OpenGL", "Const Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Index, "OpenGL", "Index Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Texture, "OpenGL", "Texture Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Framebuffer, "OpenGL", "Framebuffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100));
namespace {
constexpr std::size_t NUM_CONST_BUFFERS_PER_STAGE = 18;
constexpr std::size_t NUM_CONST_BUFFERS_BYTES_PER_STAGE =
NUM_CONST_BUFFERS_PER_STAGE * Maxwell::MaxConstBufferSize;
constexpr std::size_t TOTAL_CONST_BUFFER_BYTES =
NUM_CONST_BUFFERS_BYTES_PER_STAGE * Maxwell::MaxShaderStage;
2020-06-18 08:56:31 +02:00
constexpr std::size_t NUM_SUPPORTED_VERTEX_ATTRIBUTES = 16;
constexpr std::size_t NUM_SUPPORTED_VERTEX_BINDINGS = 16;
template <typename Engine, typename Entry>
Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry& entry,
ShaderType shader_type, std::size_t index = 0) {
if constexpr (std::is_same_v<Entry, SamplerEntry>) {
if (entry.is_separated) {
const u32 buffer_1 = entry.buffer;
const u32 buffer_2 = entry.secondary_buffer;
const u32 offset_1 = entry.offset;
const u32 offset_2 = entry.secondary_offset;
const u32 handle_1 = engine.AccessConstBuffer32(shader_type, buffer_1, offset_1);
const u32 handle_2 = engine.AccessConstBuffer32(shader_type, buffer_2, offset_2);
return engine.GetTextureInfo(handle_1 | handle_2);
}
}
if (entry.is_bindless) {
const u32 handle = engine.AccessConstBuffer32(shader_type, entry.buffer, entry.offset);
return engine.GetTextureInfo(handle);
}
const auto& gpu_profile = engine.AccessGuestDriverProfile();
const u32 offset = entry.offset + static_cast<u32>(index * gpu_profile.GetTextureHandlerSize());
if constexpr (std::is_same_v<Engine, Tegra::Engines::Maxwell3D>) {
return engine.GetStageTexture(shader_type, offset);
} else {
return engine.GetTexture(offset);
}
}
std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer,
const ConstBufferEntry& entry) {
2019-07-06 04:11:58 +02:00
if (!entry.IsIndirect()) {
return entry.GetSize();
}
if (buffer.size > Maxwell::MaxConstBufferSize) {
LOG_WARNING(Render_OpenGL, "Indirect constbuffer size {} exceeds maximum {}", buffer.size,
Maxwell::MaxConstBufferSize);
return Maxwell::MaxConstBufferSize;
}
return buffer.size;
}
/// Translates hardware transform feedback indices
/// @param location Hardware location
/// @return Pair of ARB_transform_feedback3 token stream first and third arguments
/// @note Read https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_transform_feedback3.txt
std::pair<GLint, GLint> TransformFeedbackEnum(u8 location) {
const u8 index = location / 4;
if (index >= 8 && index <= 39) {
return {GL_GENERIC_ATTRIB_NV, index - 8};
}
if (index >= 48 && index <= 55) {
return {GL_TEXTURE_COORD_NV, index - 48};
}
switch (index) {
case 7:
return {GL_POSITION, 0};
case 40:
return {GL_PRIMARY_COLOR_NV, 0};
case 41:
return {GL_SECONDARY_COLOR_NV, 0};
case 42:
return {GL_BACK_PRIMARY_COLOR_NV, 0};
case 43:
return {GL_BACK_SECONDARY_COLOR_NV, 0};
}
UNIMPLEMENTED_MSG("index={}", static_cast<int>(index));
return {GL_POSITION, 0};
}
void oglEnable(GLenum cap, bool state) {
(state ? glEnable : glDisable)(cap);
}
} // Anonymous namespace
RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWindow& emu_window,
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
const Device& device, ScreenInfo& info,
ProgramManager& program_manager, StateTracker& state_tracker)
: RasterizerAccelerated{system.Memory()}, device{device}, texture_cache{system, *this, device,
state_tracker},
2020-04-16 04:59:29 +02:00
shader_cache{*this, system, emu_window, device}, query_cache{system, *this},
buffer_cache{*this, system, device, STREAM_BUFFER_SIZE},
fence_manager{system, *this, texture_cache, buffer_cache, query_cache}, system{system},
2020-07-10 05:36:38 +02:00
screen_info{info}, program_manager{program_manager}, state_tracker{state_tracker},
async_shaders{emu_window} {
2018-11-23 16:11:21 +01:00
CheckExtensions();
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
unified_uniform_buffer.Create();
glNamedBufferStorage(unified_uniform_buffer.handle, TOTAL_CONST_BUFFER_BYTES, nullptr, 0);
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
if (device.UseAssemblyShaders()) {
glCreateBuffers(static_cast<GLsizei>(staging_cbufs.size()), staging_cbufs.data());
for (const GLuint cbuf : staging_cbufs) {
glNamedBufferStorage(cbuf, static_cast<GLsizeiptr>(Maxwell::MaxConstBufferSize),
nullptr, 0);
}
}
2020-07-10 05:36:38 +02:00
if (device.UseAsynchronousShaders()) {
// Max worker threads we should allow
2020-07-10 08:13:11 +02:00
constexpr auto MAX_THREADS = 2u;
2020-07-10 05:36:38 +02:00
// Amount of threads we should reserve for other parts of yuzu
constexpr auto RESERVED_THREADS = 6u;
// Get the amount of threads we can use(this can return zero)
const auto cpu_thread_count =
std::max(RESERVED_THREADS, std::thread::hardware_concurrency());
// Deduce how many "extra" threads we have to use.
const auto max_threads_unused = cpu_thread_count - RESERVED_THREADS;
// Always allow at least 1 thread regardless of our settings
const auto max_worker_count = std::max(1u, max_threads_unused);
// Don't use more than MAX_THREADS
const auto worker_count = std::min(max_worker_count, MAX_THREADS);
async_shaders.AllocateWorkers(worker_count);
}
}
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
RasterizerOpenGL::~RasterizerOpenGL() {
if (device.UseAssemblyShaders()) {
glDeleteBuffers(static_cast<GLsizei>(staging_cbufs.size()), staging_cbufs.data());
}
}
2018-11-23 16:11:21 +01:00
void RasterizerOpenGL::CheckExtensions() {
if (!GLAD_GL_ARB_texture_filter_anisotropic && !GLAD_GL_EXT_texture_filter_anisotropic) {
LOG_WARNING(
Render_OpenGL,
"Anisotropic filter is not supported! This can cause graphical issues in some games.");
}
}
void RasterizerOpenGL::SetupVertexFormat() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::VertexFormats]) {
return;
}
flags[Dirty::VertexFormats] = false;
MICROPROFILE_SCOPE(OpenGL_VAO);
// Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL. Enables
// the first 16 vertex attributes always, as we don't know which ones are actually used until
// shader time. Note, Tegra technically supports 32, but we're capping this to 16 for now to
// avoid OpenGL errors.
// TODO(Subv): Analyze the shader to identify which attributes are actually used and don't
// assume every shader uses them all.
2020-06-18 08:56:31 +02:00
for (std::size_t index = 0; index < NUM_SUPPORTED_VERTEX_ATTRIBUTES; ++index) {
if (!flags[Dirty::VertexFormat0 + index]) {
continue;
}
flags[Dirty::VertexFormat0 + index] = false;
const auto attrib = gpu.regs.vertex_attrib_format[index];
const auto gl_index = static_cast<GLuint>(index);
// Disable constant attributes.
if (attrib.IsConstant()) {
glDisableVertexAttribArray(gl_index);
continue;
}
glEnableVertexAttribArray(gl_index);
if (attrib.type == Maxwell::VertexAttribute::Type::SignedInt ||
attrib.type == Maxwell::VertexAttribute::Type::UnsignedInt) {
glVertexAttribIFormat(gl_index, attrib.ComponentCount(),
MaxwellToGL::VertexFormat(attrib), attrib.offset);
} else {
glVertexAttribFormat(gl_index, attrib.ComponentCount(),
MaxwellToGL::VertexFormat(attrib),
attrib.IsNormalized() ? GL_TRUE : GL_FALSE, attrib.offset);
}
glVertexAttribBinding(gl_index, attrib.buffer);
}
}
void RasterizerOpenGL::SetupVertexBuffer() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::VertexBuffers]) {
return;
}
flags[Dirty::VertexBuffers] = false;
MICROPROFILE_SCOPE(OpenGL_VB);
2020-06-18 08:56:31 +02:00
const bool use_unified_memory = device.HasVertexBufferUnifiedMemory();
// Upload all guest vertex arrays sequentially to our buffer
const auto& regs = gpu.regs;
2020-06-18 08:56:31 +02:00
for (std::size_t index = 0; index < NUM_SUPPORTED_VERTEX_BINDINGS; ++index) {
if (!flags[Dirty::VertexBuffer0 + index]) {
continue;
}
flags[Dirty::VertexBuffer0 + index] = false;
const auto& vertex_array = regs.vertex_array[index];
if (!vertex_array.IsEnabled()) {
continue;
}
const GPUVAddr start = vertex_array.StartAddress();
const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();
ASSERT(end >= start);
2020-06-18 08:56:31 +02:00
const GLuint gl_index = static_cast<GLuint>(index);
const u64 size = end - start;
if (size == 0) {
2020-06-18 08:56:31 +02:00
glBindVertexBuffer(gl_index, 0, 0, vertex_array.stride);
if (use_unified_memory) {
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, gl_index, 0, 0);
}
continue;
}
const auto info = buffer_cache.UploadMemory(start, size);
2020-06-18 08:56:31 +02:00
if (use_unified_memory) {
glBindVertexBuffer(gl_index, 0, 0, vertex_array.stride);
glBufferAddressRangeNV(GL_VERTEX_ATTRIB_ARRAY_ADDRESS_NV, gl_index,
info.address + info.offset, size);
} else {
glBindVertexBuffer(gl_index, info.handle, info.offset, vertex_array.stride);
}
}
}
void RasterizerOpenGL::SetupVertexInstances() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::VertexInstances]) {
return;
}
flags[Dirty::VertexInstances] = false;
const auto& regs = gpu.regs;
2020-06-18 08:56:31 +02:00
for (std::size_t index = 0; index < NUM_SUPPORTED_VERTEX_ATTRIBUTES; ++index) {
if (!flags[Dirty::VertexInstance0 + index]) {
continue;
}
flags[Dirty::VertexInstance0 + index] = false;
const auto gl_index = static_cast<GLuint>(index);
const bool instancing_enabled = regs.instanced_arrays.IsInstancingEnabled(gl_index);
const GLuint divisor = instancing_enabled ? regs.vertex_array[index].divisor : 0;
glVertexBindingDivisor(gl_index, divisor);
}
}
GLintptr RasterizerOpenGL::SetupIndexBuffer() {
MICROPROFILE_SCOPE(OpenGL_Index);
const auto& regs = system.GPU().Maxwell3D().regs;
const std::size_t size = CalculateIndexBufferSize();
const auto info = buffer_cache.UploadMemory(regs.index_array.IndexStart(), size);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, info.handle);
return info.offset;
}
void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
MICROPROFILE_SCOPE(OpenGL_Shader);
auto& gpu = system.GPU().Maxwell3D();
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
std::size_t num_ssbos = 0;
u32 clip_distances = 0;
for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
const auto& shader_config = gpu.regs.shader_config[index];
const auto program{static_cast<Maxwell::ShaderProgram>(index)};
// Skip stages that are not enabled
if (!gpu.regs.IsShaderConfigEnabled(index)) {
switch (program) {
case Maxwell::ShaderProgram::Geometry:
2019-12-26 20:04:41 +01:00
program_manager.UseGeometryShader(0);
break;
case Maxwell::ShaderProgram::Fragment:
2019-12-26 20:04:41 +01:00
program_manager.UseFragmentShader(0);
break;
2019-04-03 09:33:36 +02:00
default:
break;
}
continue;
}
// Currently this stages are not supported in the OpenGL backend.
// Todo(Blinkhawk): Port tesselation shaders from Vulkan to OpenGL
if (program == Maxwell::ShaderProgram::TesselationControl) {
continue;
} else if (program == Maxwell::ShaderProgram::TesselationEval) {
continue;
}
2020-07-10 05:36:38 +02:00
Shader* shader = shader_cache.GetStageProgram(program, async_shaders);
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
if (device.UseAssemblyShaders()) {
// Check for ARB limitation. We only have 16 SSBOs per context state. To workaround this
// all stages share the same bindings.
const std::size_t num_stage_ssbos = shader->GetEntries().global_memory_entries.size();
ASSERT_MSG(num_stage_ssbos == 0 || num_ssbos == 0, "SSBOs on more than one stage");
num_ssbos += num_stage_ssbos;
}
// Stage indices are 0 - 5
const std::size_t stage = index == 0 ? 0 : index - 1;
SetupDrawConstBuffers(stage, shader);
SetupDrawGlobalMemory(stage, shader);
SetupDrawTextures(stage, shader);
SetupDrawImages(stage, shader);
2020-07-10 05:36:38 +02:00
const GLuint program_handle = shader->IsBuilt() ? shader->GetHandle() : 0;
switch (program) {
case Maxwell::ShaderProgram::VertexA:
2019-01-05 05:00:06 +01:00
case Maxwell::ShaderProgram::VertexB:
2019-12-26 20:04:41 +01:00
program_manager.UseVertexShader(program_handle);
break;
2019-01-05 05:00:06 +01:00
case Maxwell::ShaderProgram::Geometry:
2019-12-26 20:04:41 +01:00
program_manager.UseGeometryShader(program_handle);
break;
2019-01-05 05:00:06 +01:00
case Maxwell::ShaderProgram::Fragment:
2019-12-26 20:04:41 +01:00
program_manager.UseFragmentShader(program_handle);
break;
default:
2019-03-09 07:33:56 +01:00
UNIMPLEMENTED_MSG("Unimplemented shader index={}, enable={}, offset=0x{:08X}", index,
shader_config.enable.Value(), shader_config.offset);
}
// Workaround for Intel drivers.
// When a clip distance is enabled but not set in the shader it crops parts of the screen
// (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the
// clip distances only when it's written by a shader stage.
clip_distances |= shader->GetEntries().clip_distances;
// When VertexA is enabled, we have dual vertex shaders
if (program == Maxwell::ShaderProgram::VertexA) {
// VertexB was combined with VertexA, so we skip the VertexB iteration
++index;
}
}
SyncClipEnabled(clip_distances);
gpu.dirty.flags[Dirty::Shaders] = false;
}
std::size_t RasterizerOpenGL::CalculateVertexArraysSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
std::size_t size = 0;
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
if (!regs.vertex_array[index].IsEnabled())
continue;
const GPUVAddr start = regs.vertex_array[index].StartAddress();
const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();
size += end - start;
ASSERT(end >= start);
}
return size;
}
std::size_t RasterizerOpenGL::CalculateIndexBufferSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
return static_cast<std::size_t>(regs.index_array.count) *
static_cast<std::size_t>(regs.index_array.FormatSizeInBytes());
}
void RasterizerOpenGL::LoadDiskResources(const std::atomic_bool& stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) {
shader_cache.LoadDiskCache(stop_loading, callback);
}
void RasterizerOpenGL::SetupDirtyFlags() {
state_tracker.Initialize();
}
void RasterizerOpenGL::ConfigureFramebuffers() {
MICROPROFILE_SCOPE(OpenGL_Framebuffer);
auto& gpu = system.GPU().Maxwell3D();
if (!gpu.dirty.flags[VideoCommon::Dirty::RenderTargets]) {
return;
}
gpu.dirty.flags[VideoCommon::Dirty::RenderTargets] = false;
texture_cache.GuardRenderTargets(true);
View depth_surface = texture_cache.GetDepthBufferSurface(true);
const auto& regs = gpu.regs;
UNIMPLEMENTED_IF(regs.rt_separate_frag_data == 0);
// Bind the framebuffer surfaces
FramebufferCacheKey key;
const auto colors_count = static_cast<std::size_t>(regs.rt_control.count);
for (std::size_t index = 0; index < colors_count; ++index) {
View color_surface{texture_cache.GetColorBufferSurface(index, true)};
if (!color_surface) {
continue;
}
// Assume that a surface will be written to if it is used as a framebuffer, even
// if the shader doesn't actually write to it.
texture_cache.MarkColorBufferInUse(index);
key.SetAttachment(index, regs.rt_control.GetMap(index));
key.colors[index] = std::move(color_surface);
}
if (depth_surface) {
2018-10-13 04:31:04 +02:00
// Assume that a surface will be written to if it is used as a framebuffer, even if
// the shader doesn't actually write to it.
2019-05-07 16:57:16 +02:00
texture_cache.MarkDepthBufferInUse();
key.zeta = std::move(depth_surface);
}
texture_cache.GuardRenderTargets(false);
2019-12-26 09:01:43 +01:00
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer_cache.GetFramebuffer(key));
}
void RasterizerOpenGL::ConfigureClearFramebuffer(bool using_color, bool using_depth_stencil) {
auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
texture_cache.GuardRenderTargets(true);
View color_surface;
if (using_color) {
// Determine if we have to preserve the contents.
// First we have to make sure all clear masks are enabled.
bool preserve_contents = !regs.clear_buffers.R || !regs.clear_buffers.G ||
!regs.clear_buffers.B || !regs.clear_buffers.A;
const std::size_t index = regs.clear_buffers.RT;
if (regs.clear_flags.scissor) {
// Then we have to confirm scissor testing clears the whole image.
const auto& scissor = regs.scissor_test[0];
preserve_contents |= scissor.min_x > 0;
preserve_contents |= scissor.min_y > 0;
preserve_contents |= scissor.max_x < regs.rt[index].width;
preserve_contents |= scissor.max_y < regs.rt[index].height;
}
color_surface = texture_cache.GetColorBufferSurface(index, preserve_contents);
texture_cache.MarkColorBufferInUse(index);
}
View depth_surface;
if (using_depth_stencil) {
bool preserve_contents = false;
if (regs.clear_flags.scissor) {
// For depth stencil clears we only have to confirm scissor test covers the whole image.
const auto& scissor = regs.scissor_test[0];
preserve_contents |= scissor.min_x > 0;
preserve_contents |= scissor.min_y > 0;
preserve_contents |= scissor.max_x < regs.zeta_width;
preserve_contents |= scissor.max_y < regs.zeta_height;
}
depth_surface = texture_cache.GetDepthBufferSurface(preserve_contents);
texture_cache.MarkDepthBufferInUse();
}
texture_cache.GuardRenderTargets(false);
FramebufferCacheKey key;
key.colors[0] = std::move(color_surface);
key.zeta = std::move(depth_surface);
state_tracker.NotifyFramebuffer();
2019-12-26 09:01:43 +01:00
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer_cache.GetFramebuffer(key));
}
void RasterizerOpenGL::Clear() {
const auto& gpu = system.GPU().Maxwell3D();
if (!gpu.ShouldExecute()) {
return;
}
const auto& regs = gpu.regs;
bool use_color{};
bool use_depth{};
bool use_stencil{};
if (regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B ||
regs.clear_buffers.A) {
use_color = true;
state_tracker.NotifyColorMask0();
glColorMaski(0, regs.clear_buffers.R != 0, regs.clear_buffers.G != 0,
regs.clear_buffers.B != 0, regs.clear_buffers.A != 0);
2019-12-26 05:19:15 +01:00
// TODO(Rodrigo): Determine if clamping is used on clears
SyncFragmentColorClampState();
SyncFramebufferSRGB();
}
if (regs.clear_buffers.Z) {
ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear Z but buffer is not enabled!");
use_depth = true;
state_tracker.NotifyDepthMask();
2019-12-26 01:52:39 +01:00
glDepthMask(GL_TRUE);
}
if (regs.clear_buffers.S) {
ASSERT_MSG(regs.zeta_enable, "Tried to clear stencil but buffer is not enabled!");
use_stencil = true;
}
if (!use_color && !use_depth && !use_stencil) {
// No color surface nor depth/stencil surface are enabled
return;
}
SyncRasterizeEnable();
SyncStencilTestState();
2018-11-21 04:40:32 +01:00
if (regs.clear_flags.scissor) {
2019-12-26 05:28:17 +01:00
SyncScissorTest();
} else {
state_tracker.NotifyScissor0();
glDisablei(GL_SCISSOR_TEST, 0);
2018-11-21 04:40:32 +01:00
}
2019-12-26 05:28:17 +01:00
UNIMPLEMENTED_IF(regs.clear_flags.viewport);
2018-11-21 04:40:32 +01:00
ConfigureClearFramebuffer(use_color, use_depth || use_stencil);
if (use_color) {
glClearBufferfv(GL_COLOR, 0, regs.clear_color);
}
if (use_depth && use_stencil) {
glClearBufferfi(GL_DEPTH_STENCIL, 0, regs.clear_depth, regs.clear_stencil);
} else if (use_depth) {
glClearBufferfv(GL_DEPTH, 0, &regs.clear_depth);
} else if (use_stencil) {
glClearBufferiv(GL_STENCIL, 0, &regs.clear_stencil);
}
++num_queued_commands;
}
void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) {
MICROPROFILE_SCOPE(OpenGL_Drawing);
auto& gpu = system.GPU().Maxwell3D();
query_cache.UpdateCounters();
SyncViewport();
SyncRasterizeEnable();
SyncPolygonModes();
SyncColorMask();
2018-11-14 02:09:01 +01:00
SyncFragmentColorClampState();
2018-11-14 04:02:54 +01:00
SyncMultiSampleState();
SyncDepthTestState();
SyncDepthClamp();
SyncStencilTestState();
SyncBlendState();
SyncLogicOpState();
SyncCullMode();
SyncPrimitiveRestart();
2019-12-26 05:28:17 +01:00
SyncScissorTest();
SyncPointState();
SyncLineState();
SyncPolygonOffset();
SyncAlphaTest();
SyncFramebufferSRGB();
buffer_cache.Acquire();
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
current_cbuf = 0;
std::size_t buffer_size = CalculateVertexArraysSize();
// Add space for index buffer
if (is_indexed) {
buffer_size = Common::AlignUp(buffer_size, 4) + CalculateIndexBufferSize();
}
// Uniform space for the 5 shader stages
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
buffer_size =
Common::AlignUp<std::size_t>(buffer_size, 4) +
(sizeof(MaxwellUniformData) + device.GetUniformBufferAlignment()) * Maxwell::MaxShaderStage;
// Add space for at least 18 constant buffers
2019-07-06 04:11:58 +02:00
buffer_size += Maxwell::MaxConstBuffers *
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
// Prepare the vertex array.
const bool invalidated = buffer_cache.Map(buffer_size);
if (invalidated) {
// When the stream buffer has been invalidated, we have to consider vertex buffers as dirty
auto& dirty = gpu.dirty.flags;
dirty[Dirty::VertexBuffers] = true;
for (int index = Dirty::VertexBuffer0; index <= Dirty::VertexBuffer31; ++index) {
dirty[index] = true;
}
}
2019-05-28 00:41:19 +02:00
// Prepare vertex array format.
SetupVertexFormat();
2019-05-28 00:41:19 +02:00
// Upload vertex and index data.
SetupVertexBuffer();
SetupVertexInstances();
2020-03-18 21:25:14 +01:00
GLintptr index_buffer_offset = 0;
if (is_indexed) {
index_buffer_offset = SetupIndexBuffer();
}
2019-05-28 00:41:19 +02:00
// Setup emulation uniform buffer.
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
if (!device.UseAssemblyShaders()) {
MaxwellUniformData ubo;
ubo.SetFromRegs(gpu);
const auto info =
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
buffer_cache.UploadHostMemory(&ubo, sizeof(ubo), device.GetUniformBufferAlignment());
glBindBufferRange(GL_UNIFORM_BUFFER, EmulationUniformBlockBinding, info.handle, info.offset,
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
static_cast<GLsizeiptr>(sizeof(ubo)));
}
2019-05-28 00:41:19 +02:00
// Setup shaders and their used resources.
texture_cache.GuardSamplers(true);
const GLenum primitive_mode = MaxwellToGL::PrimitiveTopology(gpu.regs.draw.topology);
SetupShaders(primitive_mode);
texture_cache.GuardSamplers(false);
ConfigureFramebuffers();
// Signal the buffer cache that we are not going to upload more things.
2020-03-18 21:25:14 +01:00
buffer_cache.Unmap();
program_manager.BindGraphicsPipeline();
if (texture_cache.TextureBarrier()) {
glTextureBarrier();
}
BeginTransformFeedback(primitive_mode);
const GLuint base_instance = static_cast<GLuint>(gpu.regs.vb_base_instance);
const GLsizei num_instances =
static_cast<GLsizei>(is_instanced ? gpu.mme_draw.instance_count : 1);
if (is_indexed) {
const GLint base_vertex = static_cast<GLint>(gpu.regs.vb_element_base);
const GLsizei num_vertices = static_cast<GLsizei>(gpu.regs.index_array.count);
const GLvoid* offset = reinterpret_cast<const GLvoid*>(index_buffer_offset);
const GLenum format = MaxwellToGL::IndexFormat(gpu.regs.index_array.format);
if (num_instances == 1 && base_instance == 0 && base_vertex == 0) {
glDrawElements(primitive_mode, num_vertices, format, offset);
} else if (num_instances == 1 && base_instance == 0) {
glDrawElementsBaseVertex(primitive_mode, num_vertices, format, offset, base_vertex);
} else if (base_vertex == 0 && base_instance == 0) {
glDrawElementsInstanced(primitive_mode, num_vertices, format, offset, num_instances);
} else if (base_vertex == 0) {
glDrawElementsInstancedBaseInstance(primitive_mode, num_vertices, format, offset,
num_instances, base_instance);
} else if (base_instance == 0) {
glDrawElementsInstancedBaseVertex(primitive_mode, num_vertices, format, offset,
num_instances, base_vertex);
} else {
glDrawElementsInstancedBaseVertexBaseInstance(primitive_mode, num_vertices, format,
offset, num_instances, base_vertex,
base_instance);
}
} else {
const GLint base_vertex = static_cast<GLint>(gpu.regs.vertex_buffer.first);
const GLsizei num_vertices = static_cast<GLsizei>(gpu.regs.vertex_buffer.count);
if (num_instances == 1 && base_instance == 0) {
glDrawArrays(primitive_mode, base_vertex, num_vertices);
} else if (base_instance == 0) {
glDrawArraysInstanced(primitive_mode, base_vertex, num_vertices, num_instances);
} else {
glDrawArraysInstancedBaseInstance(primitive_mode, base_vertex, num_vertices,
num_instances, base_instance);
}
}
EndTransformFeedback();
++num_queued_commands;
system.GPU().TickWork();
}
void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
buffer_cache.Acquire();
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
current_cbuf = 0;
auto kernel = shader_cache.GetComputeKernel(code_addr);
SetupComputeTextures(kernel);
SetupComputeImages(kernel);
const std::size_t buffer_size =
Tegra::Engines::KeplerCompute::NumConstBuffers *
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
buffer_cache.Map(buffer_size);
SetupComputeConstBuffers(kernel);
SetupComputeGlobalMemory(kernel);
buffer_cache.Unmap();
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
program_manager.BindCompute(kernel->GetHandle());
glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z);
++num_queued_commands;
}
void RasterizerOpenGL::ResetCounter(VideoCore::QueryType type) {
query_cache.ResetCounter(type);
}
void RasterizerOpenGL::Query(GPUVAddr gpu_addr, VideoCore::QueryType type,
std::optional<u64> timestamp) {
query_cache.Query(gpu_addr, type, timestamp);
}
void RasterizerOpenGL::FlushAll() {}
void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) {
2018-10-13 04:31:04 +02:00
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2020-04-08 19:34:59 +02:00
if (addr == 0 || size == 0) {
return;
}
texture_cache.FlushRegion(addr, size);
buffer_cache.FlushRegion(addr, size);
query_cache.FlushRegion(addr, size);
2018-10-13 04:31:04 +02:00
}
bool RasterizerOpenGL::MustFlushRegion(VAddr addr, u64 size) {
if (!Settings::IsGPULevelHigh()) {
return buffer_cache.MustFlushRegion(addr, size);
}
return texture_cache.MustFlushRegion(addr, size) || buffer_cache.MustFlushRegion(addr, size);
}
void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2020-04-08 19:34:59 +02:00
if (addr == 0 || size == 0) {
return;
}
texture_cache.InvalidateRegion(addr, size);
shader_cache.InvalidateRegion(addr, size);
buffer_cache.InvalidateRegion(addr, size);
query_cache.InvalidateRegion(addr, size);
}
void RasterizerOpenGL::OnCPUWrite(VAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
2020-04-16 18:29:53 +02:00
if (addr == 0 || size == 0) {
return;
}
texture_cache.OnCPUWrite(addr, size);
shader_cache.OnCPUWrite(addr, size);
buffer_cache.OnCPUWrite(addr, size);
}
void RasterizerOpenGL::SyncGuestHost() {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
texture_cache.SyncGuestHost();
buffer_cache.SyncGuestHost();
shader_cache.SyncGuestHost();
}
void RasterizerOpenGL::SignalSemaphore(GPUVAddr addr, u32 value) {
auto& gpu{system.GPU()};
if (!gpu.IsAsync()) {
auto& memory_manager{gpu.MemoryManager()};
memory_manager.Write<u32>(addr, value);
return;
}
fence_manager.SignalSemaphore(addr, value);
}
void RasterizerOpenGL::SignalSyncPoint(u32 value) {
auto& gpu{system.GPU()};
if (!gpu.IsAsync()) {
gpu.IncrementSyncPoint(value);
return;
}
fence_manager.SignalSyncPoint(value);
2020-02-17 23:10:23 +01:00
}
void RasterizerOpenGL::ReleaseFences() {
auto& gpu{system.GPU()};
if (!gpu.IsAsync()) {
return;
}
2020-02-18 01:19:26 +01:00
fence_manager.WaitPendingFences();
2020-02-17 23:10:23 +01:00
}
void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
if (Settings::IsGPULevelExtreme()) {
FlushRegion(addr, size);
}
InvalidateRegion(addr, size);
}
void RasterizerOpenGL::WaitForIdle() {
// Place a barrier on everything that is not framebuffer related.
// This is related to another flag that is not currently implemented.
glMemoryBarrier(GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT | GL_ELEMENT_ARRAY_BARRIER_BIT |
GL_UNIFORM_BARRIER_BIT | GL_TEXTURE_FETCH_BARRIER_BIT |
GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_COMMAND_BARRIER_BIT |
GL_PIXEL_BUFFER_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT |
GL_BUFFER_UPDATE_BARRIER_BIT | GL_TRANSFORM_FEEDBACK_BARRIER_BIT |
GL_SHADER_STORAGE_BARRIER_BIT | GL_QUERY_BUFFER_BARRIER_BIT);
}
void RasterizerOpenGL::FlushCommands() {
// Only flush when we have commands queued to OpenGL.
if (num_queued_commands == 0) {
return;
}
num_queued_commands = 0;
glFlush();
}
void RasterizerOpenGL::TickFrame() {
// Ticking a frame means that buffers will be swapped, calling glFlush implicitly.
num_queued_commands = 0;
buffer_cache.TickFrame();
}
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
texture_cache.DoFermiCopy(src, dst, copy_config);
return true;
}
bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
if (!framebuffer_addr) {
return {};
}
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
const auto surface{texture_cache.TryFindFramebufferSurface(framebuffer_addr)};
if (!surface) {
return {};
}
// Verify that the cached surface is the same size and format as the requested framebuffer
const auto& params{surface->GetSurfaceParams()};
const auto& pixel_format{
VideoCore::Surface::PixelFormatFromGPUPixelFormat(config.pixel_format)};
2019-05-07 16:57:16 +02:00
ASSERT_MSG(params.width == config.width, "Framebuffer width is different");
ASSERT_MSG(params.height == config.height, "Framebuffer height is different");
2019-03-09 07:33:56 +01:00
2019-05-07 16:57:16 +02:00
if (params.pixel_format != pixel_format) {
LOG_DEBUG(Render_OpenGL, "Framebuffer pixel_format is different");
2019-03-09 07:33:56 +01:00
}
screen_info.display_texture = surface->GetTexture();
screen_info.display_srgb = surface->GetSurfaceParams().srgb_conversion;
return true;
}
void RasterizerOpenGL::SetupDrawConstBuffers(std::size_t stage_index, Shader* shader) {
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
static constexpr std::array PARAMETER_LUT = {
GL_VERTEX_PROGRAM_PARAMETER_BUFFER_NV, GL_TESS_CONTROL_PROGRAM_PARAMETER_BUFFER_NV,
GL_TESS_EVALUATION_PROGRAM_PARAMETER_BUFFER_NV, GL_GEOMETRY_PROGRAM_PARAMETER_BUFFER_NV,
GL_FRAGMENT_PROGRAM_PARAMETER_BUFFER_NV};
MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& stages = system.GPU().Maxwell3D().state.shader_stages;
const auto& shader_stage = stages[stage_index];
const auto& entries = shader->GetEntries();
const bool use_unified = entries.use_unified_uniforms;
const std::size_t base_unified_offset = stage_index * NUM_CONST_BUFFERS_BYTES_PER_STAGE;
const auto base_bindings = device.GetBaseBindings(stage_index);
u32 binding = device.UseAssemblyShaders() ? 0 : base_bindings.uniform_buffer;
for (const auto& entry : entries.const_buffers) {
const u32 index = entry.GetIndex();
const auto& buffer = shader_stage.const_buffers[index];
SetupConstBuffer(PARAMETER_LUT[stage_index], binding, buffer, entry, use_unified,
base_unified_offset + index * Maxwell::MaxConstBufferSize);
++binding;
}
if (use_unified) {
const u32 index = static_cast<u32>(base_bindings.shader_storage_buffer +
entries.global_memory_entries.size());
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, index, unified_uniform_buffer.handle,
base_unified_offset, NUM_CONST_BUFFERS_BYTES_PER_STAGE);
}
}
void RasterizerOpenGL::SetupComputeConstBuffers(Shader* kernel) {
MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
const auto& entries = kernel->GetEntries();
const bool use_unified = entries.use_unified_uniforms;
u32 binding = 0;
for (const auto& entry : entries.const_buffers) {
const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
Tegra::Engines::ConstBufferInfo buffer;
buffer.address = config.Address();
buffer.size = config.size;
buffer.enabled = mask[entry.GetIndex()];
SetupConstBuffer(GL_COMPUTE_PROGRAM_PARAMETER_BUFFER_NV, binding, buffer, entry,
use_unified, entry.GetIndex() * Maxwell::MaxConstBufferSize);
++binding;
}
if (use_unified) {
const GLuint index = static_cast<GLuint>(entries.global_memory_entries.size());
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, index, unified_uniform_buffer.handle, 0,
NUM_CONST_BUFFERS_BYTES_PER_STAGE);
}
}
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
void RasterizerOpenGL::SetupConstBuffer(GLenum stage, u32 binding,
const Tegra::Engines::ConstBufferInfo& buffer,
const ConstBufferEntry& entry, bool use_unified,
std::size_t unified_offset) {
if (!buffer.enabled) {
// Set values to zero to unbind buffers
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
if (device.UseAssemblyShaders()) {
glBindBufferRangeNV(stage, entry.GetIndex(), 0, 0, 0);
} else {
glBindBufferRange(GL_UNIFORM_BUFFER, binding, 0, 0, sizeof(float));
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
}
return;
}
// Align the actual size so it ends up being a multiple of vec4 to meet the OpenGL std140
// UBO alignment requirements.
2019-07-06 04:11:58 +02:00
const std::size_t size = Common::AlignUp(GetConstBufferSize(buffer, entry), sizeof(GLvec4));
const bool fast_upload = !use_unified && device.HasFastBufferSubData();
const std::size_t alignment = use_unified ? 4 : device.GetUniformBufferAlignment();
const GPUVAddr gpu_addr = buffer.address;
auto info = buffer_cache.UploadMemory(gpu_addr, size, alignment, false, fast_upload);
if (device.UseAssemblyShaders()) {
UNIMPLEMENTED_IF(use_unified);
if (info.offset != 0) {
const GLuint staging_cbuf = staging_cbufs[current_cbuf++];
glCopyNamedBufferSubData(info.handle, staging_cbuf, info.offset, 0, size);
info.handle = staging_cbuf;
info.offset = 0;
}
glBindBufferRangeNV(stage, binding, info.handle, info.offset, size);
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
return;
}
if (use_unified) {
glCopyNamedBufferSubData(info.handle, unified_uniform_buffer.handle, info.offset,
unified_offset, size);
} else {
glBindBufferRange(GL_UNIFORM_BUFFER, binding, info.handle, info.offset, size);
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
}
}
void RasterizerOpenGL::SetupDrawGlobalMemory(std::size_t stage_index, Shader* shader) {
auto& gpu{system.GPU()};
auto& memory_manager{gpu.MemoryManager()};
const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]};
renderer_opengl: Add assembly program code paths Add code required to use OpenGL assembly programs based on NV_gpu_program5. Decompilation for ARB programs is intended to be added in a follow up commit. This does **not** include ARB decompilation and it's not in an usable state. The intention behind assembly programs is to reduce shader stutter significantly on drivers supporting NV_gpu_program5 (and other required extensions). Currently only Nvidia's proprietary driver supports these extensions. Add a UI option hidden for now to avoid people enabling this option accidentally. This code path has some limitations that OpenGL compatibility doesn't have: - NV_shader_storage_buffer_object is limited to 16 entries for a single OpenGL context state (I don't know if this is an intended limitation, an specification issue or I am missing something). Currently causes issues on The Legend of Zelda: Link's Awakening. - NV_parameter_buffer_object can't bind buffers using an offset different to zero. The used workaround is to copy to a temporary buffer (this doesn't happen often so it's not an issue). On the other hand, it has the following advantages: - Shaders build a lot faster. - We have control over how floating point rounding is done over individual instructions (SPIR-V on Vulkan can't do this). - Operations on shared memory can be unsigned and signed. - Transform feedbacks are dynamic state (not yet implemented). - Parameter buffers (uniform buffers) are per stage, matching NVN and hardware's behavior. - The API to bind and create assembly programs makes sense, unlike ARB_separate_shader_objects.
2020-05-18 03:32:49 +02:00
u32 binding =
device.UseAssemblyShaders() ? 0 : device.GetBaseBindings(stage_index).shader_storage_buffer;
for (const auto& entry : shader->GetEntries().global_memory_entries) {
const GPUVAddr addr{cbufs.const_buffers[entry.cbuf_index].address + entry.cbuf_offset};
const GPUVAddr gpu_addr{memory_manager.Read<u64>(addr)};
const u32 size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(binding++, entry, gpu_addr, size);
}
}
void RasterizerOpenGL::SetupComputeGlobalMemory(Shader* kernel) {
auto& gpu{system.GPU()};
auto& memory_manager{gpu.MemoryManager()};
const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config};
u32 binding = 0;
for (const auto& entry : kernel->GetEntries().global_memory_entries) {
const auto addr{cbufs[entry.cbuf_index].Address() + entry.cbuf_offset};
const auto gpu_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(binding++, entry, gpu_addr, size);
}
}
void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry,
GPUVAddr gpu_addr, std::size_t size) {
const auto alignment{device.GetShaderStorageBufferAlignment()};
const auto info = buffer_cache.UploadMemory(gpu_addr, size, alignment, entry.is_written);
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding, info.handle, info.offset,
static_cast<GLsizeiptr>(size));
}
void RasterizerOpenGL::SetupDrawTextures(std::size_t stage_index, Shader* shader) {
MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& maxwell3d = system.GPU().Maxwell3D();
u32 binding = device.GetBaseBindings(stage_index).sampler;
for (const auto& entry : shader->GetEntries().samplers) {
const auto shader_type = static_cast<ShaderType>(stage_index);
for (std::size_t i = 0; i < entry.size; ++i) {
const auto texture = GetTextureInfo(maxwell3d, entry, shader_type, i);
SetupTexture(binding++, texture, entry);
}
}
}
void RasterizerOpenGL::SetupComputeTextures(Shader* kernel) {
MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& compute = system.GPU().KeplerCompute();
u32 binding = 0;
for (const auto& entry : kernel->GetEntries().samplers) {
for (std::size_t i = 0; i < entry.size; ++i) {
const auto texture = GetTextureInfo(compute, entry, ShaderType::Compute, i);
SetupTexture(binding++, texture, entry);
}
}
}
void RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture,
const SamplerEntry& entry) {
const auto view = texture_cache.GetTextureSurface(texture.tic, entry);
2019-07-12 01:09:53 +02:00
if (!view) {
// Can occur when texture addr is null or its memory is unmapped/invalid
glBindSampler(binding, 0);
glBindTextureUnit(binding, 0);
return;
2019-07-12 01:09:53 +02:00
}
const GLuint handle = view->GetTexture(texture.tic.x_source, texture.tic.y_source,
texture.tic.z_source, texture.tic.w_source);
glBindTextureUnit(binding, handle);
if (!view->GetSurfaceParams().IsBuffer()) {
glBindSampler(binding, sampler_cache.GetSampler(texture.tsc));
2019-07-12 01:09:53 +02:00
}
}
void RasterizerOpenGL::SetupDrawImages(std::size_t stage_index, Shader* shader) {
const auto& maxwell3d = system.GPU().Maxwell3D();
u32 binding = device.GetBaseBindings(stage_index).image;
for (const auto& entry : shader->GetEntries().images) {
const auto shader_type = static_cast<Tegra::Engines::ShaderType>(stage_index);
const auto tic = GetTextureInfo(maxwell3d, entry, shader_type).tic;
SetupImage(binding++, tic, entry);
}
}
void RasterizerOpenGL::SetupComputeImages(Shader* shader) {
const auto& compute = system.GPU().KeplerCompute();
u32 binding = 0;
for (const auto& entry : shader->GetEntries().images) {
const auto tic = GetTextureInfo(compute, entry, Tegra::Engines::ShaderType::Compute).tic;
SetupImage(binding++, tic, entry);
2019-07-12 07:17:18 +02:00
}
}
void RasterizerOpenGL::SetupImage(u32 binding, const Tegra::Texture::TICEntry& tic,
const ImageEntry& entry) {
2019-07-12 07:17:18 +02:00
const auto view = texture_cache.GetImageSurface(tic, entry);
if (!view) {
2019-12-26 08:17:02 +01:00
glBindImageTexture(binding, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R8);
2019-07-12 07:17:18 +02:00
return;
}
if (entry.is_written) {
view->MarkAsModified(texture_cache.Tick());
}
const GLuint handle = view->GetTexture(tic.x_source, tic.y_source, tic.z_source, tic.w_source);
glBindImageTexture(binding, handle, 0, GL_TRUE, 0, GL_READ_WRITE, view->GetFormat());
}
void RasterizerOpenGL::SyncViewport() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
const auto& regs = gpu.regs;
const bool dirty_viewport = flags[Dirty::Viewports];
const bool dirty_clip_control = flags[Dirty::ClipControl];
if (dirty_clip_control || flags[Dirty::FrontFace]) {
flags[Dirty::FrontFace] = false;
GLenum mode = MaxwellToGL::FrontFace(regs.front_face);
if (regs.screen_y_control.triangle_rast_flip != 0 &&
regs.viewport_transform[0].scale_y < 0.0f) {
switch (mode) {
case GL_CW:
mode = GL_CCW;
break;
case GL_CCW:
mode = GL_CW;
break;
}
}
glFrontFace(mode);
}
if (dirty_viewport || flags[Dirty::ClipControl]) {
flags[Dirty::ClipControl] = false;
bool flip_y = false;
if (regs.viewport_transform[0].scale_y < 0.0) {
flip_y = !flip_y;
}
if (regs.screen_y_control.y_negate != 0) {
flip_y = !flip_y;
}
glClipControl(flip_y ? GL_UPPER_LEFT : GL_LOWER_LEFT,
regs.depth_mode == Maxwell::DepthMode::ZeroToOne ? GL_ZERO_TO_ONE
: GL_NEGATIVE_ONE_TO_ONE);
}
if (dirty_viewport) {
flags[Dirty::Viewports] = false;
const bool force = flags[Dirty::ViewportTransform];
flags[Dirty::ViewportTransform] = false;
for (std::size_t i = 0; i < Maxwell::NumViewports; ++i) {
if (!force && !flags[Dirty::Viewport0 + i]) {
continue;
}
flags[Dirty::Viewport0 + i] = false;
const auto& src = regs.viewport_transform[i];
const Common::Rectangle<f32> rect{src.GetRect()};
glViewportIndexedf(static_cast<GLuint>(i), rect.left, rect.bottom, rect.GetWidth(),
rect.GetHeight());
const GLdouble reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne;
const GLdouble near_depth = src.translate_z - src.scale_z * reduce_z;
const GLdouble far_depth = src.translate_z + src.scale_z;
glDepthRangeIndexed(static_cast<GLuint>(i), near_depth, far_depth);
if (!GLAD_GL_NV_viewport_swizzle) {
continue;
}
glViewportSwizzleNV(static_cast<GLuint>(i), MaxwellToGL::ViewportSwizzle(src.swizzle.x),
MaxwellToGL::ViewportSwizzle(src.swizzle.y),
MaxwellToGL::ViewportSwizzle(src.swizzle.z),
MaxwellToGL::ViewportSwizzle(src.swizzle.w));
}
}
}
2019-12-26 01:57:10 +01:00
void RasterizerOpenGL::SyncDepthClamp() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::DepthClampEnabled]) {
return;
}
flags[Dirty::DepthClampEnabled] = false;
oglEnable(GL_DEPTH_CLAMP, gpu.regs.view_volume_clip_control.depth_clamp_disabled == 0);
2019-12-26 01:57:10 +01:00
}
void RasterizerOpenGL::SyncClipEnabled(u32 clip_mask) {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::ClipDistances] && !flags[Dirty::Shaders]) {
return;
}
flags[Dirty::ClipDistances] = false;
clip_mask &= gpu.regs.clip_distance_enabled;
if (clip_mask == last_clip_distance_mask) {
return;
}
last_clip_distance_mask = clip_mask;
for (std::size_t i = 0; i < Maxwell::Regs::NumClipDistances; ++i) {
oglEnable(static_cast<GLenum>(GL_CLIP_DISTANCE0 + i), (clip_mask >> i) & 1);
}
}
void RasterizerOpenGL::SyncClipCoef() {
UNIMPLEMENTED();
}
void RasterizerOpenGL::SyncCullMode() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
const auto& regs = gpu.regs;
if (flags[Dirty::CullTest]) {
flags[Dirty::CullTest] = false;
if (regs.cull_test_enabled) {
glEnable(GL_CULL_FACE);
glCullFace(MaxwellToGL::CullFace(regs.cull_face));
} else {
glDisable(GL_CULL_FACE);
}
}
}
void RasterizerOpenGL::SyncPrimitiveRestart() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::PrimitiveRestart]) {
return;
}
flags[Dirty::PrimitiveRestart] = false;
if (gpu.regs.primitive_restart.enabled) {
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(gpu.regs.primitive_restart.index);
} else {
glDisable(GL_PRIMITIVE_RESTART);
}
}
void RasterizerOpenGL::SyncDepthTestState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
const auto& regs = gpu.regs;
if (flags[Dirty::DepthMask]) {
flags[Dirty::DepthMask] = false;
glDepthMask(regs.depth_write_enabled ? GL_TRUE : GL_FALSE);
}
if (flags[Dirty::DepthTest]) {
flags[Dirty::DepthTest] = false;
if (regs.depth_test_enable) {
glEnable(GL_DEPTH_TEST);
glDepthFunc(MaxwellToGL::ComparisonOp(regs.depth_test_func));
} else {
glDisable(GL_DEPTH_TEST);
}
}
}
void RasterizerOpenGL::SyncStencilTestState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::StencilTest]) {
return;
}
flags[Dirty::StencilTest] = false;
const auto& regs = gpu.regs;
oglEnable(GL_STENCIL_TEST, regs.stencil_enable);
2019-12-26 07:34:29 +01:00
glStencilFuncSeparate(GL_FRONT, MaxwellToGL::ComparisonOp(regs.stencil_front_func_func),
regs.stencil_front_func_ref, regs.stencil_front_func_mask);
glStencilOpSeparate(GL_FRONT, MaxwellToGL::StencilOp(regs.stencil_front_op_fail),
MaxwellToGL::StencilOp(regs.stencil_front_op_zfail),
MaxwellToGL::StencilOp(regs.stencil_front_op_zpass));
glStencilMaskSeparate(GL_FRONT, regs.stencil_front_mask);
if (regs.stencil_two_side_enable) {
2019-12-26 07:34:29 +01:00
glStencilFuncSeparate(GL_BACK, MaxwellToGL::ComparisonOp(regs.stencil_back_func_func),
regs.stencil_back_func_ref, regs.stencil_back_func_mask);
glStencilOpSeparate(GL_BACK, MaxwellToGL::StencilOp(regs.stencil_back_op_fail),
MaxwellToGL::StencilOp(regs.stencil_back_op_zfail),
MaxwellToGL::StencilOp(regs.stencil_back_op_zpass));
glStencilMaskSeparate(GL_BACK, regs.stencil_back_mask);
} else {
2019-12-26 07:34:29 +01:00
glStencilFuncSeparate(GL_BACK, GL_ALWAYS, 0, 0xFFFFFFFF);
glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_KEEP);
glStencilMaskSeparate(GL_BACK, 0xFFFFFFFF);
}
}
void RasterizerOpenGL::SyncRasterizeEnable() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::RasterizeEnable]) {
return;
}
flags[Dirty::RasterizeEnable] = false;
oglEnable(GL_RASTERIZER_DISCARD, gpu.regs.rasterize_enable == 0);
}
void RasterizerOpenGL::SyncPolygonModes() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::PolygonModes]) {
return;
}
flags[Dirty::PolygonModes] = false;
if (gpu.regs.fill_rectangle) {
if (!GLAD_GL_NV_fill_rectangle) {
LOG_ERROR(Render_OpenGL, "GL_NV_fill_rectangle used and not supported");
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
return;
}
flags[Dirty::PolygonModeFront] = true;
flags[Dirty::PolygonModeBack] = true;
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL_RECTANGLE_NV);
return;
}
if (gpu.regs.polygon_mode_front == gpu.regs.polygon_mode_back) {
flags[Dirty::PolygonModeFront] = false;
flags[Dirty::PolygonModeBack] = false;
glPolygonMode(GL_FRONT_AND_BACK, MaxwellToGL::PolygonMode(gpu.regs.polygon_mode_front));
return;
}
if (flags[Dirty::PolygonModeFront]) {
flags[Dirty::PolygonModeFront] = false;
glPolygonMode(GL_FRONT, MaxwellToGL::PolygonMode(gpu.regs.polygon_mode_front));
}
if (flags[Dirty::PolygonModeBack]) {
flags[Dirty::PolygonModeBack] = false;
glPolygonMode(GL_BACK, MaxwellToGL::PolygonMode(gpu.regs.polygon_mode_back));
}
}
void RasterizerOpenGL::SyncColorMask() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::ColorMasks]) {
return;
}
flags[Dirty::ColorMasks] = false;
const bool force = flags[Dirty::ColorMaskCommon];
flags[Dirty::ColorMaskCommon] = false;
const auto& regs = gpu.regs;
2019-12-26 05:19:15 +01:00
if (regs.color_mask_common) {
if (!force && !flags[Dirty::ColorMask0]) {
return;
}
flags[Dirty::ColorMask0] = false;
2019-12-26 05:19:15 +01:00
auto& mask = regs.color_mask[0];
glColorMask(mask.R != 0, mask.B != 0, mask.G != 0, mask.A != 0);
return;
}
// Path without color_mask_common set
for (std::size_t i = 0; i < Maxwell::NumRenderTargets; ++i) {
if (!force && !flags[Dirty::ColorMask0 + i]) {
continue;
2019-12-26 05:19:15 +01:00
}
flags[Dirty::ColorMask0 + i] = false;
const auto& mask = regs.color_mask[i];
glColorMaski(static_cast<GLuint>(i), mask.R != 0, mask.G != 0, mask.B != 0, mask.A != 0);
}
}
2018-11-14 04:02:54 +01:00
void RasterizerOpenGL::SyncMultiSampleState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::MultisampleControl]) {
return;
}
flags[Dirty::MultisampleControl] = false;
const auto& regs = system.GPU().Maxwell3D().regs;
2019-12-26 05:04:36 +01:00
oglEnable(GL_SAMPLE_ALPHA_TO_COVERAGE, regs.multisample_control.alpha_to_coverage);
oglEnable(GL_SAMPLE_ALPHA_TO_ONE, regs.multisample_control.alpha_to_one);
2018-11-14 04:02:54 +01:00
}
2018-11-14 02:09:01 +01:00
void RasterizerOpenGL::SyncFragmentColorClampState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::FragmentClampColor]) {
return;
}
flags[Dirty::FragmentClampColor] = false;
glClampColor(GL_CLAMP_FRAGMENT_COLOR, gpu.regs.frag_color_clamp ? GL_TRUE : GL_FALSE);
2018-11-14 02:09:01 +01:00
}
void RasterizerOpenGL::SyncBlendState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
const auto& regs = gpu.regs;
if (flags[Dirty::BlendColor]) {
flags[Dirty::BlendColor] = false;
glBlendColor(regs.blend_color.r, regs.blend_color.g, regs.blend_color.b,
regs.blend_color.a);
}
// TODO(Rodrigo): Revisit blending, there are several registers we are not reading
if (!flags[Dirty::BlendStates]) {
return;
}
flags[Dirty::BlendStates] = false;
2019-12-26 07:51:50 +01:00
if (!regs.independent_blend_enable) {
if (!regs.blend.enable[0]) {
glDisable(GL_BLEND);
2019-12-26 07:51:50 +01:00
return;
}
glEnable(GL_BLEND);
glBlendFuncSeparate(MaxwellToGL::BlendFunc(regs.blend.factor_source_rgb),
MaxwellToGL::BlendFunc(regs.blend.factor_dest_rgb),
MaxwellToGL::BlendFunc(regs.blend.factor_source_a),
MaxwellToGL::BlendFunc(regs.blend.factor_dest_a));
glBlendEquationSeparate(MaxwellToGL::BlendEquation(regs.blend.equation_rgb),
MaxwellToGL::BlendEquation(regs.blend.equation_a));
return;
}
const bool force = flags[Dirty::BlendIndependentEnabled];
flags[Dirty::BlendIndependentEnabled] = false;
2019-12-26 07:51:50 +01:00
for (std::size_t i = 0; i < Maxwell::NumRenderTargets; ++i) {
if (!force && !flags[Dirty::BlendState0 + i]) {
continue;
}
flags[Dirty::BlendState0 + i] = false;
2019-12-26 07:51:50 +01:00
if (!regs.blend.enable[i]) {
glDisablei(GL_BLEND, static_cast<GLuint>(i));
continue;
2019-12-26 07:51:50 +01:00
}
glEnablei(GL_BLEND, static_cast<GLuint>(i));
2019-12-26 07:51:50 +01:00
const auto& src = regs.independent_blend[i];
glBlendFuncSeparatei(static_cast<GLuint>(i), MaxwellToGL::BlendFunc(src.factor_source_rgb),
MaxwellToGL::BlendFunc(src.factor_dest_rgb),
MaxwellToGL::BlendFunc(src.factor_source_a),
MaxwellToGL::BlendFunc(src.factor_dest_a));
glBlendEquationSeparatei(static_cast<GLuint>(i),
MaxwellToGL::BlendEquation(src.equation_rgb),
MaxwellToGL::BlendEquation(src.equation_a));
}
}
void RasterizerOpenGL::SyncLogicOpState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::LogicOp]) {
return;
}
flags[Dirty::LogicOp] = false;
const auto& regs = gpu.regs;
2019-12-26 00:21:53 +01:00
if (regs.logic_op.enable) {
glEnable(GL_COLOR_LOGIC_OP);
2019-12-26 00:21:53 +01:00
glLogicOp(MaxwellToGL::LogicOp(regs.logic_op.operation));
} else {
glDisable(GL_COLOR_LOGIC_OP);
2019-12-26 00:21:53 +01:00
}
}
2019-12-26 05:28:17 +01:00
void RasterizerOpenGL::SyncScissorTest() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::Scissors]) {
return;
}
flags[Dirty::Scissors] = false;
const auto& regs = gpu.regs;
2019-12-26 05:28:17 +01:00
for (std::size_t index = 0; index < Maxwell::NumViewports; ++index) {
if (!flags[Dirty::Scissor0 + index]) {
continue;
}
flags[Dirty::Scissor0 + index] = false;
2019-12-26 05:28:17 +01:00
const auto& src = regs.scissor_test[index];
if (src.enable) {
glEnablei(GL_SCISSOR_TEST, static_cast<GLuint>(index));
glScissorIndexed(static_cast<GLuint>(index), src.min_x, src.min_y,
src.max_x - src.min_x, src.max_y - src.min_y);
} else {
glDisablei(GL_SCISSOR_TEST, static_cast<GLuint>(index));
2018-11-14 00:13:16 +01:00
}
2018-10-09 02:49:36 +02:00
}
}
void RasterizerOpenGL::SyncPointState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::PointSize]) {
return;
}
flags[Dirty::PointSize] = false;
oglEnable(GL_POINT_SPRITE, gpu.regs.point_sprite_enable);
if (gpu.regs.vp_point_size.enable) {
// By definition of GL_POINT_SIZE, it only matters if GL_PROGRAM_POINT_SIZE is disabled.
glEnable(GL_PROGRAM_POINT_SIZE);
return;
}
// Limit the point size to 1 since nouveau sometimes sets a point size of 0 (and that's invalid
// in OpenGL).
glPointSize(std::max(1.0f, gpu.regs.point_size));
glDisable(GL_PROGRAM_POINT_SIZE);
}
void RasterizerOpenGL::SyncLineState() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::LineWidth]) {
return;
}
flags[Dirty::LineWidth] = false;
const auto& regs = gpu.regs;
oglEnable(GL_LINE_SMOOTH, regs.line_smooth_enable);
glLineWidth(regs.line_smooth_enable ? regs.line_width_smooth : regs.line_width_aliased);
}
void RasterizerOpenGL::SyncPolygonOffset() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::PolygonOffset]) {
return;
}
flags[Dirty::PolygonOffset] = false;
const auto& regs = gpu.regs;
oglEnable(GL_POLYGON_OFFSET_FILL, regs.polygon_offset_fill_enable);
oglEnable(GL_POLYGON_OFFSET_LINE, regs.polygon_offset_line_enable);
oglEnable(GL_POLYGON_OFFSET_POINT, regs.polygon_offset_point_enable);
if (regs.polygon_offset_fill_enable || regs.polygon_offset_line_enable ||
regs.polygon_offset_point_enable) {
// Hardware divides polygon offset units by two
glPolygonOffsetClamp(regs.polygon_offset_factor, regs.polygon_offset_units / 2.0f,
regs.polygon_offset_clamp);
}
}
void RasterizerOpenGL::SyncAlphaTest() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::AlphaTest]) {
return;
}
flags[Dirty::AlphaTest] = false;
const auto& regs = gpu.regs;
if (regs.alpha_test_enabled && regs.rt_control.count > 1) {
LOG_WARNING(Render_OpenGL, "Alpha testing with more than one render target is not tested");
}
2019-12-26 00:03:40 +01:00
if (regs.alpha_test_enabled) {
glEnable(GL_ALPHA_TEST);
2019-12-26 00:03:40 +01:00
glAlphaFunc(MaxwellToGL::ComparisonOp(regs.alpha_test_func), regs.alpha_test_ref);
} else {
glDisable(GL_ALPHA_TEST);
}
}
void RasterizerOpenGL::SyncFramebufferSRGB() {
auto& gpu = system.GPU().Maxwell3D();
auto& flags = gpu.dirty.flags;
if (!flags[Dirty::FramebufferSRGB]) {
return;
}
flags[Dirty::FramebufferSRGB] = false;
oglEnable(GL_FRAMEBUFFER_SRGB, gpu.regs.framebuffer_srgb);
}
void RasterizerOpenGL::SyncTransformFeedback() {
// TODO(Rodrigo): Inject SKIP_COMPONENTS*_NV when required. An unimplemented message will signal
// when this is required.
const auto& regs = system.GPU().Maxwell3D().regs;
static constexpr std::size_t STRIDE = 3;
std::array<GLint, 128 * STRIDE * Maxwell::NumTransformFeedbackBuffers> attribs;
std::array<GLint, Maxwell::NumTransformFeedbackBuffers> streams;
GLint* cursor = attribs.data();
GLint* current_stream = streams.data();
for (std::size_t feedback = 0; feedback < Maxwell::NumTransformFeedbackBuffers; ++feedback) {
const auto& layout = regs.tfb_layouts[feedback];
UNIMPLEMENTED_IF_MSG(layout.stride != layout.varying_count * 4, "Stride padding");
if (layout.varying_count == 0) {
continue;
}
*current_stream = static_cast<GLint>(feedback);
if (current_stream != streams.data()) {
// When stepping one stream, push the expected token
cursor[0] = GL_NEXT_BUFFER_NV;
cursor[1] = 0;
cursor[2] = 0;
cursor += STRIDE;
}
++current_stream;
const auto& locations = regs.tfb_varying_locs[feedback];
std::optional<u8> current_index;
for (u32 offset = 0; offset < layout.varying_count; ++offset) {
const u8 location = locations[offset];
const u8 index = location / 4;
if (current_index == index) {
// Increase number of components of the previous attachment
++cursor[-2];
continue;
}
current_index = index;
std::tie(cursor[0], cursor[2]) = TransformFeedbackEnum(location);
cursor[1] = 1;
cursor += STRIDE;
}
}
const GLsizei num_attribs = static_cast<GLsizei>((cursor - attribs.data()) / STRIDE);
const GLsizei num_strides = static_cast<GLsizei>(current_stream - streams.data());
glTransformFeedbackStreamAttribsNV(num_attribs, attribs.data(), num_strides, streams.data(),
GL_INTERLEAVED_ATTRIBS);
}
void RasterizerOpenGL::BeginTransformFeedback(GLenum primitive_mode) {
const auto& regs = system.GPU().Maxwell3D().regs;
if (regs.tfb_enabled == 0) {
return;
}
if (device.UseAssemblyShaders()) {
SyncTransformFeedback();
}
UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry));
for (std::size_t index = 0; index < Maxwell::NumTransformFeedbackBuffers; ++index) {
const auto& binding = regs.tfb_bindings[index];
if (!binding.buffer_enable) {
if (enabled_transform_feedback_buffers[index]) {
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, static_cast<GLuint>(index), 0, 0,
0);
}
enabled_transform_feedback_buffers[index] = false;
continue;
}
enabled_transform_feedback_buffers[index] = true;
auto& tfb_buffer = transform_feedback_buffers[index];
tfb_buffer.Create();
const GLuint handle = tfb_buffer.handle;
const std::size_t size = binding.buffer_size;
glNamedBufferData(handle, static_cast<GLsizeiptr>(size), nullptr, GL_STREAM_COPY);
glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, static_cast<GLuint>(index), handle, 0,
static_cast<GLsizeiptr>(size));
}
// We may have to call BeginTransformFeedbackNV here since they seem to call different
// implementations on Nvidia's driver (the pointer is different) but we are using
// ARB_transform_feedback3 features with NV_transform_feedback interactions and the ARB
// extension doesn't define BeginTransformFeedback (without NV) interactions. It just works.
glBeginTransformFeedback(GL_POINTS);
}
void RasterizerOpenGL::EndTransformFeedback() {
const auto& regs = system.GPU().Maxwell3D().regs;
if (regs.tfb_enabled == 0) {
return;
}
glEndTransformFeedback();
for (std::size_t index = 0; index < Maxwell::NumTransformFeedbackBuffers; ++index) {
const auto& binding = regs.tfb_bindings[index];
if (!binding.buffer_enable) {
continue;
}
UNIMPLEMENTED_IF(binding.buffer_offset != 0);
const GLuint handle = transform_feedback_buffers[index].handle;
const GPUVAddr gpu_addr = binding.Address();
const std::size_t size = binding.buffer_size;
const auto info = buffer_cache.UploadMemory(gpu_addr, size, 4, true);
glCopyNamedBufferSubData(handle, info.handle, 0, info.offset,
static_cast<GLsizeiptr>(size));
}
}
} // namespace OpenGL