suyu/src/video_core/renderer_opengl/gl_rasterizer.cpp

370 lines
12 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/vector_math.h"
#include "core/core.h"
#include "core/hle/kernel/process.h"
#include "core/settings.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
using PixelFormat = SurfaceParams::PixelFormat;
using SurfaceType = SurfaceParams::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Array Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_VS, "OpenGL", "Vertex Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_FS, "OpenGL", "Fragment Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
enum class UniformBindings : GLuint { Common, VS, FS };
static void SetShaderUniformBlockBinding(GLuint shader, const char* name, UniformBindings binding,
size_t expected_size) {
GLuint ub_index = glGetUniformBlockIndex(shader, name);
if (ub_index != GL_INVALID_INDEX) {
GLint ub_size = 0;
glGetActiveUniformBlockiv(shader, ub_index, GL_UNIFORM_BLOCK_DATA_SIZE, &ub_size);
ASSERT_MSG(ub_size == expected_size,
"Uniform block size did not match! Got %d, expected %zu",
static_cast<int>(ub_size), expected_size);
glUniformBlockBinding(shader, ub_index, static_cast<GLuint>(binding));
}
}
static void SetShaderUniformBlockBindings(GLuint shader) {
SetShaderUniformBlockBinding(shader, "shader_data", UniformBindings::Common,
sizeof(RasterizerOpenGL::UniformData));
SetShaderUniformBlockBinding(shader, "vs_config", UniformBindings::VS,
sizeof(RasterizerOpenGL::VSUniformData));
SetShaderUniformBlockBinding(shader, "fs_config", UniformBindings::FS,
sizeof(RasterizerOpenGL::FSUniformData));
}
RasterizerOpenGL::RasterizerOpenGL() {
shader_dirty = true;
has_ARB_buffer_storage = false;
has_ARB_direct_state_access = false;
has_ARB_separate_shader_objects = false;
has_ARB_vertex_attrib_binding = false;
GLint ext_num;
glGetIntegerv(GL_NUM_EXTENSIONS, &ext_num);
for (GLint i = 0; i < ext_num; i++) {
std::string extension{reinterpret_cast<const char*>(glGetStringi(GL_EXTENSIONS, i))};
if (extension == "GL_ARB_buffer_storage") {
has_ARB_buffer_storage = true;
} else if (extension == "GL_ARB_direct_state_access") {
has_ARB_direct_state_access = true;
} else if (extension == "GL_ARB_separate_shader_objects") {
has_ARB_separate_shader_objects = true;
} else if (extension == "GL_ARB_vertex_attrib_binding") {
has_ARB_vertex_attrib_binding = true;
}
}
// Clipping plane 0 is always enabled for PICA fixed clip plane z <= 0
state.clip_distance[0] = true;
// Generate VBO, VAO and UBO
vertex_buffer = OGLStreamBuffer::MakeBuffer(GLAD_GL_ARB_buffer_storage, GL_ARRAY_BUFFER);
vertex_buffer->Create(VERTEX_BUFFER_SIZE, VERTEX_BUFFER_SIZE / 2);
sw_vao.Create();
uniform_buffer.Create();
state.draw.vertex_array = sw_vao.handle;
state.draw.vertex_buffer = vertex_buffer->GetHandle();
state.draw.uniform_buffer = uniform_buffer.handle;
state.Apply();
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), nullptr, GL_STATIC_DRAW);
glBindBufferBase(GL_UNIFORM_BUFFER, 0, uniform_buffer.handle);
uniform_block_data.dirty = true;
// Create render framebuffer
framebuffer.Create();
if (has_ARB_separate_shader_objects) {
hw_vao.Create();
hw_vao_enabled_attributes.fill(false);
stream_buffer = OGLStreamBuffer::MakeBuffer(has_ARB_buffer_storage, GL_ARRAY_BUFFER);
stream_buffer->Create(STREAM_BUFFER_SIZE, STREAM_BUFFER_SIZE / 2);
state.draw.vertex_buffer = stream_buffer->GetHandle();
pipeline.Create();
state.draw.program_pipeline = pipeline.handle;
state.draw.shader_program = 0;
state.draw.vertex_array = hw_vao.handle;
state.Apply();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, stream_buffer->GetHandle());
vs_uniform_buffer.Create();
glBindBuffer(GL_UNIFORM_BUFFER, vs_uniform_buffer.handle);
glBufferData(GL_UNIFORM_BUFFER, sizeof(VSUniformData), nullptr, GL_STREAM_COPY);
glBindBufferBase(GL_UNIFORM_BUFFER, 1, vs_uniform_buffer.handle);
} else {
ASSERT_MSG(false, "Unimplemented");
}
accelerate_draw = AccelDraw::Disabled;
glEnable(GL_BLEND);
LOG_WARNING(HW_GPU, "Sync fixed function OpenGL state here when ready");
}
RasterizerOpenGL::~RasterizerOpenGL() {
if (stream_buffer != nullptr) {
state.draw.vertex_buffer = stream_buffer->GetHandle();
state.Apply();
stream_buffer->Release();
}
}
static constexpr std::array<GLenum, 4> vs_attrib_types{
GL_BYTE, // VertexAttributeFormat::BYTE
GL_UNSIGNED_BYTE, // VertexAttributeFormat::UBYTE
GL_SHORT, // VertexAttributeFormat::SHORT
GL_FLOAT // VertexAttributeFormat::FLOAT
};
void RasterizerOpenGL::AnalyzeVertexArray(bool is_indexed) {
const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
const auto& vertex_attributes = regs.vertex_attrib_format;
if (is_indexed) {
UNREACHABLE();
}
const u32 vertex_num = regs.vertex_buffer.count;
vs_input_size = 0;
u32 max_offset{};
for (const auto& attrib : vertex_attributes) {
if (max_offset >= attrib.offset) {
continue;
}
max_offset = attrib.offset;
vs_input_size = max_offset + attrib.SizeInBytes();
}
vs_input_size *= vertex_num;
}
void RasterizerOpenGL::SetupVertexArray(u8* array_ptr, GLintptr buffer_offset) {
MICROPROFILE_SCOPE(OpenGL_VAO);
UNIMPLEMENTED();
}
void RasterizerOpenGL::SetupVertexShader(VSUniformData* ub_ptr, GLintptr buffer_offset) {
MICROPROFILE_SCOPE(OpenGL_VS);
UNIMPLEMENTED();
}
void RasterizerOpenGL::SetupFragmentShader(FSUniformData* ub_ptr, GLintptr buffer_offset) {
MICROPROFILE_SCOPE(OpenGL_FS);
ASSERT_MSG(false, "Unimplemented");
}
bool RasterizerOpenGL::AccelerateDrawBatch(bool is_indexed) {
if (!has_ARB_separate_shader_objects) {
ASSERT_MSG(false, "Unimplemented");
return false;
}
accelerate_draw = is_indexed ? AccelDraw::Indexed : AccelDraw::Arrays;
DrawTriangles();
return true;
}
void RasterizerOpenGL::DrawTriangles() {
MICROPROFILE_SCOPE(OpenGL_Drawing);
UNIMPLEMENTED();
}
void RasterizerOpenGL::NotifyMaxwellRegisterChanged(u32 id) {}
void RasterizerOpenGL::FlushAll() {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushAll();
}
void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size);
}
void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.InvalidateRegion(addr, size, nullptr);
}
void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size);
res_cache.InvalidateRegion(addr, size, nullptr);
}
bool RasterizerOpenGL::AccelerateDisplayTransfer(const void* config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
ASSERT_MSG(false, "Unimplemented");
return true;
}
bool RasterizerOpenGL::AccelerateTextureCopy(const void* config) {
ASSERT_MSG(false, "Unimplemented");
return true;
}
bool RasterizerOpenGL::AccelerateFill(const void* config) {
ASSERT_MSG(false, "Unimplemented");
return true;
}
bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& framebuffer,
VAddr framebuffer_addr, u32 pixel_stride,
ScreenInfo& screen_info) {
if (framebuffer_addr == 0) {
return false;
}
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
SurfaceParams src_params;
src_params.addr = framebuffer_addr;
src_params.width = std::min(framebuffer.width, pixel_stride);
src_params.height = framebuffer.height;
src_params.stride = pixel_stride;
src_params.is_tiled = false;
src_params.pixel_format =
SurfaceParams::PixelFormatFromGPUPixelFormat(framebuffer.pixel_format);
src_params.UpdateParams();
MathUtil::Rectangle<u32> src_rect;
Surface src_surface;
std::tie(src_surface, src_rect) =
res_cache.GetSurfaceSubRect(src_params, ScaleMatch::Ignore, true);
if (src_surface == nullptr) {
return false;
}
u32 scaled_width = src_surface->GetScaledWidth();
u32 scaled_height = src_surface->GetScaledHeight();
screen_info.display_texcoords = MathUtil::Rectangle<float>(
(float)src_rect.bottom / (float)scaled_height, (float)src_rect.left / (float)scaled_width,
(float)src_rect.top / (float)scaled_height, (float)src_rect.right / (float)scaled_width);
screen_info.display_texture = src_surface->texture.handle;
return true;
}
void RasterizerOpenGL::SetShader() {
// TODO(bunnei): The below sets up a static test shader for passing untransformed vertices to
// OpenGL for rendering. This should be removed/replaced when we start emulating Maxwell
// shaders.
static constexpr char vertex_shader[] = R"(
#version 150 core
in vec2 vert_position;
in vec2 vert_tex_coord;
out vec2 frag_tex_coord;
void main() {
// Multiply input position by the rotscale part of the matrix and then manually translate by
// the last column. This is equivalent to using a full 3x3 matrix and expanding the vector
// to `vec3(vert_position.xy, 1.0)`
gl_Position = vec4(mat2(mat3x2(0.0015625f, 0.0, 0.0, -0.0027778, -1.0, 1.0)) * vert_position + mat3x2(0.0015625f, 0.0, 0.0, -0.0027778, -1.0, 1.0)[2], 0.0, 1.0);
frag_tex_coord = vert_tex_coord;
}
)";
static constexpr char fragment_shader[] = R"(
#version 150 core
in vec2 frag_tex_coord;
out vec4 color;
uniform sampler2D color_texture;
void main() {
color = vec4(1.0, 0.0, 1.0, 0.0);
}
)";
if (current_shader) {
return;
}
LOG_ERROR(HW_GPU, "Emulated shaders are not supported! Using a passthrough shader.");
current_shader = &test_shader;
if (has_ARB_separate_shader_objects) {
test_shader.shader.Create(vertex_shader, nullptr, fragment_shader, {}, true);
glActiveShaderProgram(pipeline.handle, test_shader.shader.handle);
} else {
ASSERT_MSG(false, "Unimplemented");
}
state.draw.shader_program = test_shader.shader.handle;
state.Apply();
if (has_ARB_separate_shader_objects) {
state.draw.shader_program = 0;
state.Apply();
}
}
void RasterizerOpenGL::SyncClipEnabled() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncClipCoef() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncCullMode() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncDepthScale() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncDepthOffset() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncBlendEnabled() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncBlendFuncs() {
ASSERT_MSG(false, "Unimplemented");
}
void RasterizerOpenGL::SyncBlendColor() {
ASSERT_MSG(false, "Unimplemented");
}