suyu/src/video_core/renderer_opengl/gl_rasterizer.cpp

1237 lines
50 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/process.h"
#include "core/settings.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/renderer_opengl/maxwell_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
namespace OpenGL {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using PixelFormat = VideoCore::Surface::PixelFormat;
using SurfaceType = VideoCore::Surface::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Format Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_VB, "OpenGL", "Vertex Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Shader, "OpenGL", "Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_UBO, "OpenGL", "Const Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Index, "OpenGL", "Index Buffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Texture, "OpenGL", "Texture Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Framebuffer, "OpenGL", "Framebuffer Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100));
struct DrawParameters {
GLenum primitive_mode;
GLsizei count;
GLint current_instance;
bool use_indexed;
GLint vertex_first;
GLenum index_format;
GLint base_vertex;
GLintptr index_buffer_offset;
void DispatchDraw() const {
if (use_indexed) {
const auto index_buffer_ptr = reinterpret_cast<const void*>(index_buffer_offset);
if (current_instance > 0) {
glDrawElementsInstancedBaseVertexBaseInstance(primitive_mode, count, index_format,
index_buffer_ptr, 1, base_vertex,
current_instance);
} else {
glDrawElementsBaseVertex(primitive_mode, count, index_format, index_buffer_ptr,
base_vertex);
}
} else {
if (current_instance > 0) {
glDrawArraysInstancedBaseInstance(primitive_mode, vertex_first, count, 1,
current_instance);
} else {
glDrawArrays(primitive_mode, vertex_first, count);
}
}
}
};
struct FramebufferCacheKey {
bool is_single_buffer = false;
bool stencil_enable = false;
std::array<GLenum, Maxwell::NumRenderTargets> color_attachments{};
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets> colors{};
u32 colors_count = 0;
GLuint zeta = 0;
auto Tie() const {
return std::tie(is_single_buffer, stencil_enable, color_attachments, colors, colors_count,
zeta);
}
bool operator<(const FramebufferCacheKey& rhs) const {
return Tie() < rhs.Tie();
}
};
RasterizerOpenGL::RasterizerOpenGL(Core::System& system, ScreenInfo& info)
: res_cache{*this}, shader_cache{*this, system}, global_cache{*this}, system{system},
screen_info{info}, buffer_cache(*this, STREAM_BUFFER_SIZE) {
// Create sampler objects
for (std::size_t i = 0; i < texture_samplers.size(); ++i) {
texture_samplers[i].Create();
state.texture_units[i].sampler = texture_samplers[i].sampler.handle;
}
2018-10-30 04:55:53 +01:00
OpenGLState::ApplyDefaultState();
shader_program_manager = std::make_unique<GLShader::ProgramManager>();
state.draw.shader_program = 0;
state.Apply();
glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &uniform_buffer_alignment);
2019-03-09 07:33:56 +01:00
LOG_DEBUG(Render_OpenGL, "Sync fixed function OpenGL state here");
2018-11-23 16:11:21 +01:00
CheckExtensions();
}
RasterizerOpenGL::~RasterizerOpenGL() {}
2018-11-23 16:11:21 +01:00
void RasterizerOpenGL::CheckExtensions() {
if (!GLAD_GL_ARB_texture_filter_anisotropic && !GLAD_GL_EXT_texture_filter_anisotropic) {
LOG_WARNING(
Render_OpenGL,
"Anisotropic filter is not supported! This can cause graphical issues in some games.");
}
if (!GLAD_GL_ARB_buffer_storage) {
LOG_WARNING(
Render_OpenGL,
"Buffer storage control is not supported! This can cause performance degradation.");
}
}
GLuint RasterizerOpenGL::SetupVertexFormat() {
auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
if (!gpu.dirty_flags.vertex_attrib_format) {
return state.draw.vertex_array;
}
gpu.dirty_flags.vertex_attrib_format = false;
MICROPROFILE_SCOPE(OpenGL_VAO);
auto [iter, is_cache_miss] = vertex_array_cache.try_emplace(regs.vertex_attrib_format);
auto& vao_entry = iter->second;
if (is_cache_miss) {
vao_entry.Create();
const GLuint vao = vao_entry.handle;
// Eventhough we are using DSA to create this vertex array, there is a bug on Intel's blob
// that fails to properly create the vertex array if it's not bound even after creating it
// with glCreateVertexArrays
state.draw.vertex_array = vao;
state.ApplyVertexArrayState();
glVertexArrayElementBuffer(vao, buffer_cache.GetHandle());
// Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL.
// Enables the first 16 vertex attributes always, as we don't know which ones are actually
// used until shader time. Note, Tegra technically supports 32, but we're capping this to 16
// for now to avoid OpenGL errors.
// TODO(Subv): Analyze the shader to identify which attributes are actually used and don't
// assume every shader uses them all.
for (u32 index = 0; index < 16; ++index) {
const auto& attrib = regs.vertex_attrib_format[index];
// Ignore invalid attributes.
if (!attrib.IsValid())
continue;
const auto& buffer = regs.vertex_array[attrib.buffer];
2019-03-09 07:33:56 +01:00
LOG_TRACE(Render_OpenGL,
"vertex attrib {}, count={}, size={}, type={}, offset={}, normalize={}",
index, attrib.ComponentCount(), attrib.SizeString(), attrib.TypeString(),
attrib.offset.Value(), attrib.IsNormalized());
ASSERT(buffer.IsEnabled());
glEnableVertexArrayAttrib(vao, index);
if (attrib.type == Tegra::Engines::Maxwell3D::Regs::VertexAttribute::Type::SignedInt ||
attrib.type ==
Tegra::Engines::Maxwell3D::Regs::VertexAttribute::Type::UnsignedInt) {
glVertexArrayAttribIFormat(vao, index, attrib.ComponentCount(),
MaxwellToGL::VertexType(attrib), attrib.offset);
} else {
glVertexArrayAttribFormat(
vao, index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib),
attrib.IsNormalized() ? GL_TRUE : GL_FALSE, attrib.offset);
}
glVertexArrayAttribBinding(vao, index, attrib.buffer);
}
}
// Rebinding the VAO invalidates the vertex buffer bindings.
gpu.dirty_flags.vertex_array.set();
state.draw.vertex_array = vao_entry.handle;
return vao_entry.handle;
}
void RasterizerOpenGL::SetupVertexBuffer(GLuint vao) {
auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
if (gpu.dirty_flags.vertex_array.none())
return;
MICROPROFILE_SCOPE(OpenGL_VB);
// Upload all guest vertex arrays sequentially to our buffer
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
if (!gpu.dirty_flags.vertex_array[index])
continue;
const auto& vertex_array = regs.vertex_array[index];
if (!vertex_array.IsEnabled())
continue;
const GPUVAddr start = vertex_array.StartAddress();
const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();
ASSERT(end > start);
const u64 size = end - start + 1;
const GLintptr vertex_buffer_offset = buffer_cache.UploadMemory(start, size);
// Bind the vertex array to the buffer at the current offset.
glVertexArrayVertexBuffer(vao, index, buffer_cache.GetHandle(), vertex_buffer_offset,
vertex_array.stride);
if (regs.instanced_arrays.IsInstancingEnabled(index) && vertex_array.divisor != 0) {
// Enable vertex buffer instancing with the specified divisor.
glVertexArrayBindingDivisor(vao, index, vertex_array.divisor);
} else {
// Disable the vertex buffer instancing.
glVertexArrayBindingDivisor(vao, index, 0);
}
}
gpu.dirty_flags.vertex_array.reset();
}
DrawParameters RasterizerOpenGL::SetupDraw() {
const auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
const bool is_indexed = accelerate_draw == AccelDraw::Indexed;
DrawParameters params{};
params.current_instance = gpu.state.current_instance;
if (regs.draw.topology == Maxwell::PrimitiveTopology::Quads) {
MICROPROFILE_SCOPE(OpenGL_PrimitiveAssembly);
params.use_indexed = true;
params.primitive_mode = GL_TRIANGLES;
if (is_indexed) {
params.index_format = MaxwellToGL::IndexFormat(regs.index_array.format);
params.count = (regs.index_array.count / 4) * 6;
params.index_buffer_offset = primitive_assembler.MakeQuadIndexed(
regs.index_array.IndexStart(), regs.index_array.FormatSizeInBytes(),
regs.index_array.count);
params.base_vertex = static_cast<GLint>(regs.vb_element_base);
} else {
// MakeQuadArray always generates u32 indexes
params.index_format = GL_UNSIGNED_INT;
params.count = (regs.vertex_buffer.count / 4) * 6;
params.index_buffer_offset =
primitive_assembler.MakeQuadArray(regs.vertex_buffer.first, params.count);
}
return params;
}
params.use_indexed = is_indexed;
params.primitive_mode = MaxwellToGL::PrimitiveTopology(regs.draw.topology);
if (is_indexed) {
MICROPROFILE_SCOPE(OpenGL_Index);
params.index_format = MaxwellToGL::IndexFormat(regs.index_array.format);
params.count = regs.index_array.count;
params.index_buffer_offset =
buffer_cache.UploadMemory(regs.index_array.IndexStart(), CalculateIndexBufferSize());
params.base_vertex = static_cast<GLint>(regs.vb_element_base);
} else {
params.count = regs.vertex_buffer.count;
params.vertex_first = regs.vertex_buffer.first;
}
return params;
}
void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
MICROPROFILE_SCOPE(OpenGL_Shader);
auto& gpu = system.GPU().Maxwell3D();
2019-01-05 05:00:06 +01:00
BaseBindings base_bindings;
std::array<bool, Maxwell::NumClipDistances> clip_distances{};
// Prepare packed bindings
bind_ubo_pushbuffer.Setup(base_bindings.cbuf);
bind_ssbo_pushbuffer.Setup(base_bindings.gmem);
for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
const auto& shader_config = gpu.regs.shader_config[index];
const Maxwell::ShaderProgram program{static_cast<Maxwell::ShaderProgram>(index)};
// Skip stages that are not enabled
if (!gpu.regs.IsShaderConfigEnabled(index)) {
switch (program) {
case Maxwell::ShaderProgram::Geometry:
shader_program_manager->UseTrivialGeometryShader();
break;
}
continue;
}
const std::size_t stage{index == 0 ? 0 : index - 1}; // Stage indices are 0 - 5
GLShader::MaxwellUniformData ubo{};
ubo.SetFromRegs(gpu, stage);
const GLintptr offset = buffer_cache.UploadHostMemory(
&ubo, sizeof(ubo), static_cast<std::size_t>(uniform_buffer_alignment));
2019-01-05 05:00:06 +01:00
// Bind the emulation info buffer
bind_ubo_pushbuffer.Push(buffer_cache.GetHandle(), offset,
static_cast<GLsizeiptr>(sizeof(ubo)));
Shader shader{shader_cache.GetStageProgram(program)};
2019-01-05 05:00:06 +01:00
const auto [program_handle, next_bindings] =
shader->GetProgramHandle(primitive_mode, base_bindings);
switch (program) {
case Maxwell::ShaderProgram::VertexA:
2019-01-05 05:00:06 +01:00
case Maxwell::ShaderProgram::VertexB:
shader_program_manager->UseProgrammableVertexShader(program_handle);
break;
2019-01-05 05:00:06 +01:00
case Maxwell::ShaderProgram::Geometry:
shader_program_manager->UseProgrammableGeometryShader(program_handle);
break;
2019-01-05 05:00:06 +01:00
case Maxwell::ShaderProgram::Fragment:
shader_program_manager->UseProgrammableFragmentShader(program_handle);
break;
default:
2019-03-09 07:33:56 +01:00
UNIMPLEMENTED_MSG("Unimplemented shader index={}, enable={}, offset=0x{:08X}", index,
shader_config.enable.Value(), shader_config.offset);
}
2019-01-05 05:00:06 +01:00
const auto stage_enum = static_cast<Maxwell::ShaderStage>(stage);
SetupConstBuffers(stage_enum, shader, program_handle, base_bindings);
SetupGlobalRegions(stage_enum, shader, program_handle, base_bindings);
SetupTextures(stage_enum, shader, program_handle, base_bindings);
// Workaround for Intel drivers.
// When a clip distance is enabled but not set in the shader it crops parts of the screen
// (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the
// clip distances only when it's written by a shader stage.
for (std::size_t i = 0; i < Maxwell::NumClipDistances; ++i) {
clip_distances[i] = clip_distances[i] || shader->GetShaderEntries().clip_distances[i];
}
// When VertexA is enabled, we have dual vertex shaders
if (program == Maxwell::ShaderProgram::VertexA) {
// VertexB was combined with VertexA, so we skip the VertexB iteration
index++;
}
2019-01-05 05:00:06 +01:00
base_bindings = next_bindings;
}
bind_ubo_pushbuffer.Bind();
bind_ssbo_pushbuffer.Bind();
SyncClipEnabled(clip_distances);
gpu.dirty_flags.shaders = false;
}
void RasterizerOpenGL::SetupCachedFramebuffer(const FramebufferCacheKey& fbkey,
OpenGLState& current_state) {
const auto [entry, is_cache_miss] = framebuffer_cache.try_emplace(fbkey);
auto& framebuffer = entry->second;
if (is_cache_miss)
framebuffer.Create();
current_state.draw.draw_framebuffer = framebuffer.handle;
current_state.ApplyFramebufferState();
if (!is_cache_miss)
return;
if (fbkey.is_single_buffer) {
if (fbkey.color_attachments[0] != GL_NONE) {
glFramebufferTexture(GL_DRAW_FRAMEBUFFER, fbkey.color_attachments[0], fbkey.colors[0],
0);
}
glDrawBuffer(fbkey.color_attachments[0]);
} else {
for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
if (fbkey.colors[index]) {
glFramebufferTexture(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0 + static_cast<GLenum>(index),
fbkey.colors[index], 0);
}
}
glDrawBuffers(fbkey.colors_count, fbkey.color_attachments.data());
}
if (fbkey.zeta) {
GLenum zeta_attachment =
fbkey.stencil_enable ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT;
glFramebufferTexture(GL_DRAW_FRAMEBUFFER, zeta_attachment, fbkey.zeta, 0);
}
}
std::size_t RasterizerOpenGL::CalculateVertexArraysSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
std::size_t size = 0;
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
if (!regs.vertex_array[index].IsEnabled())
continue;
const GPUVAddr start = regs.vertex_array[index].StartAddress();
const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();
ASSERT(end > start);
size += end - start + 1;
}
return size;
}
std::size_t RasterizerOpenGL::CalculateIndexBufferSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
return static_cast<std::size_t>(regs.index_array.count) *
static_cast<std::size_t>(regs.index_array.FormatSizeInBytes());
}
bool RasterizerOpenGL::AccelerateDrawBatch(bool is_indexed) {
accelerate_draw = is_indexed ? AccelDraw::Indexed : AccelDraw::Arrays;
DrawArrays();
return true;
}
template <typename Map, typename Interval>
static constexpr auto RangeFromInterval(Map& map, const Interval& interval) {
return boost::make_iterator_range(map.equal_range(interval));
}
void RasterizerOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {
const u64 page_start{addr >> Memory::PAGE_BITS};
const u64 page_end{(addr + size + Memory::PAGE_SIZE - 1) >> Memory::PAGE_BITS};
// Interval maps will erase segments if count reaches 0, so if delta is negative we have to
// subtract after iterating
const auto pages_interval = CachedPageMap::interval_type::right_open(page_start, page_end);
if (delta > 0)
cached_pages.add({pages_interval, delta});
for (const auto& pair : RangeFromInterval(cached_pages, pages_interval)) {
const auto interval = pair.first & pages_interval;
const int count = pair.second;
const VAddr interval_start_addr = boost::icl::first(interval) << Memory::PAGE_BITS;
const VAddr interval_end_addr = boost::icl::last_next(interval) << Memory::PAGE_BITS;
const u64 interval_size = interval_end_addr - interval_start_addr;
if (delta > 0 && count == delta)
Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, true);
else if (delta < 0 && count == -delta)
Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, false);
else
ASSERT(count >= 0);
}
if (delta < 0)
cached_pages.add({pages_interval, delta});
}
void RasterizerOpenGL::LoadDiskResources(const std::atomic_bool& stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) {
shader_cache.LoadDiskCache(stop_loading, callback);
}
std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
OpenGLState& current_state, bool using_color_fb, bool using_depth_fb, bool preserve_contents,
std::optional<std::size_t> single_color_target) {
MICROPROFILE_SCOPE(OpenGL_Framebuffer);
auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
const FramebufferConfigState fb_config_state{using_color_fb, using_depth_fb, preserve_contents,
single_color_target};
if (fb_config_state == current_framebuffer_config_state &&
gpu.dirty_flags.color_buffer.none() && !gpu.dirty_flags.zeta_buffer) {
// Only skip if the previous ConfigureFramebuffers call was from the same kind (multiple or
// single color targets). This is done because the guest registers may not change but the
// host framebuffer may contain different attachments
return current_depth_stencil_usage;
}
current_framebuffer_config_state = fb_config_state;
Surface depth_surface;
if (using_depth_fb) {
depth_surface = res_cache.GetDepthBufferSurface(preserve_contents);
}
UNIMPLEMENTED_IF(regs.rt_separate_frag_data == 0);
// Bind the framebuffer surfaces
current_state.framebuffer_srgb.enabled = regs.framebuffer_srgb != 0;
FramebufferCacheKey fbkey;
if (using_color_fb) {
if (single_color_target) {
// Used when just a single color attachment is enabled, e.g. for clearing a color buffer
Surface color_surface =
res_cache.GetColorBufferSurface(*single_color_target, preserve_contents);
2018-10-13 04:31:04 +02:00
if (color_surface) {
// Assume that a surface will be written to if it is used as a framebuffer, even if
// the shader doesn't actually write to it.
color_surface->MarkAsModified(true, res_cache);
// Workaround for and issue in nvidia drivers
// https://devtalk.nvidia.com/default/topic/776591/opengl/gl_framebuffer_srgb-functions-incorrectly/
state.framebuffer_srgb.enabled |= color_surface->GetSurfaceParams().srgb_conversion;
2018-10-13 04:31:04 +02:00
}
fbkey.is_single_buffer = true;
fbkey.color_attachments[0] =
GL_COLOR_ATTACHMENT0 + static_cast<GLenum>(*single_color_target);
fbkey.colors[0] = color_surface != nullptr ? color_surface->Texture().handle : 0;
} else {
// Multiple color attachments are enabled
for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
Surface color_surface = res_cache.GetColorBufferSurface(index, preserve_contents);
2018-10-13 04:31:04 +02:00
if (color_surface) {
// Assume that a surface will be written to if it is used as a framebuffer, even
// if the shader doesn't actually write to it.
color_surface->MarkAsModified(true, res_cache);
// Enable sRGB only for supported formats
// Workaround for and issue in nvidia drivers
// https://devtalk.nvidia.com/default/topic/776591/opengl/gl_framebuffer_srgb-functions-incorrectly/
state.framebuffer_srgb.enabled |=
color_surface->GetSurfaceParams().srgb_conversion;
2018-10-13 04:31:04 +02:00
}
fbkey.color_attachments[index] =
GL_COLOR_ATTACHMENT0 + regs.rt_control.GetMap(index);
fbkey.colors[index] =
color_surface != nullptr ? color_surface->Texture().handle : 0;
}
fbkey.is_single_buffer = false;
fbkey.colors_count = regs.rt_control.count;
}
} else {
// No color attachments are enabled - leave them as zero
fbkey.is_single_buffer = true;
}
if (depth_surface) {
2018-10-13 04:31:04 +02:00
// Assume that a surface will be written to if it is used as a framebuffer, even if
// the shader doesn't actually write to it.
depth_surface->MarkAsModified(true, res_cache);
2018-10-13 04:31:04 +02:00
fbkey.zeta = depth_surface->Texture().handle;
fbkey.stencil_enable = regs.stencil_enable &&
depth_surface->GetSurfaceParams().type == SurfaceType::DepthStencil;
}
SetupCachedFramebuffer(fbkey, current_state);
SyncViewport(current_state);
return current_depth_stencil_usage = {static_cast<bool>(depth_surface), fbkey.stencil_enable};
}
void RasterizerOpenGL::Clear() {
const auto prev_state{state};
SCOPE_EXIT({ prev_state.Apply(); });
const auto& regs = system.GPU().Maxwell3D().regs;
bool use_color{};
bool use_depth{};
bool use_stencil{};
OpenGLState clear_state;
if (regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B ||
regs.clear_buffers.A) {
use_color = true;
}
if (use_color) {
clear_state.color_mask[0].red_enabled = regs.clear_buffers.R ? GL_TRUE : GL_FALSE;
clear_state.color_mask[0].green_enabled = regs.clear_buffers.G ? GL_TRUE : GL_FALSE;
clear_state.color_mask[0].blue_enabled = regs.clear_buffers.B ? GL_TRUE : GL_FALSE;
clear_state.color_mask[0].alpha_enabled = regs.clear_buffers.A ? GL_TRUE : GL_FALSE;
}
if (regs.clear_buffers.Z) {
ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear Z but buffer is not enabled!");
use_depth = true;
// Always enable the depth write when clearing the depth buffer. The depth write mask is
// ignored when clearing the buffer in the Switch, but OpenGL obeys it so we set it to
// true.
clear_state.depth.test_enabled = true;
clear_state.depth.test_func = GL_ALWAYS;
}
if (regs.clear_buffers.S) {
ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear stencil but buffer is not enabled!");
use_stencil = true;
clear_state.stencil.test_enabled = true;
2018-11-21 04:40:32 +01:00
if (regs.clear_flags.stencil) {
// Stencil affects the clear so fill it with the used masks
clear_state.stencil.front.test_func = GL_ALWAYS;
clear_state.stencil.front.test_mask = regs.stencil_front_func_mask;
clear_state.stencil.front.action_stencil_fail = GL_KEEP;
clear_state.stencil.front.action_depth_fail = GL_KEEP;
clear_state.stencil.front.action_depth_pass = GL_KEEP;
clear_state.stencil.front.write_mask = regs.stencil_front_mask;
if (regs.stencil_two_side_enable) {
clear_state.stencil.back.test_func = GL_ALWAYS;
clear_state.stencil.back.test_mask = regs.stencil_back_func_mask;
clear_state.stencil.back.action_stencil_fail = GL_KEEP;
clear_state.stencil.back.action_depth_fail = GL_KEEP;
clear_state.stencil.back.action_depth_pass = GL_KEEP;
clear_state.stencil.back.write_mask = regs.stencil_back_mask;
} else {
clear_state.stencil.back.test_func = GL_ALWAYS;
clear_state.stencil.back.test_mask = 0xFFFFFFFF;
clear_state.stencil.back.write_mask = 0xFFFFFFFF;
clear_state.stencil.back.action_stencil_fail = GL_KEEP;
clear_state.stencil.back.action_depth_fail = GL_KEEP;
clear_state.stencil.back.action_depth_pass = GL_KEEP;
}
}
}
if (!use_color && !use_depth && !use_stencil) {
// No color surface nor depth/stencil surface are enabled
return;
}
const auto [clear_depth, clear_stencil] = ConfigureFramebuffers(
clear_state, use_color, use_depth || use_stencil, false, regs.clear_buffers.RT.Value());
2018-11-21 04:40:32 +01:00
if (regs.clear_flags.scissor) {
SyncScissorTest(clear_state);
}
if (regs.clear_flags.viewport) {
clear_state.EmulateViewportWithScissor();
}
clear_state.Apply();
if (use_color) {
glClearBufferfv(GL_COLOR, regs.clear_buffers.RT, regs.clear_color);
}
if (clear_depth && clear_stencil) {
glClearBufferfi(GL_DEPTH_STENCIL, 0, regs.clear_depth, regs.clear_stencil);
} else if (clear_depth) {
glClearBufferfv(GL_DEPTH, 0, &regs.clear_depth);
} else if (clear_stencil) {
glClearBufferiv(GL_STENCIL, 0, &regs.clear_stencil);
}
}
void RasterizerOpenGL::DrawArrays() {
if (accelerate_draw == AccelDraw::Disabled)
return;
MICROPROFILE_SCOPE(OpenGL_Drawing);
auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
ConfigureFramebuffers(state);
SyncColorMask();
2018-11-14 02:09:01 +01:00
SyncFragmentColorClampState();
2018-11-14 04:02:54 +01:00
SyncMultiSampleState();
SyncDepthTestState();
SyncStencilTestState();
SyncBlendState();
SyncLogicOpState();
SyncCullMode();
SyncPrimitiveRestart();
2018-11-21 04:40:32 +01:00
SyncScissorTest(state);
2018-10-10 15:45:22 +02:00
// Alpha Testing is synced on shaders.
SyncTransformFeedback();
SyncPointState();
CheckAlphaTests();
SyncPolygonOffset();
// TODO(bunnei): Sync framebuffer_scale uniform here
// TODO(bunnei): Sync scissorbox uniform(s) here
// Draw the vertex batch
const bool is_indexed = accelerate_draw == AccelDraw::Indexed;
std::size_t buffer_size = CalculateVertexArraysSize();
// Add space for index buffer (keeping in mind non-core primitives)
switch (regs.draw.topology) {
case Maxwell::PrimitiveTopology::Quads:
buffer_size = Common::AlignUp<std::size_t>(buffer_size, 4) +
primitive_assembler.CalculateQuadSize(regs.vertex_buffer.count);
break;
default:
if (is_indexed) {
buffer_size = Common::AlignUp<std::size_t>(buffer_size, 4) + CalculateIndexBufferSize();
}
break;
}
// Uniform space for the 5 shader stages
buffer_size =
Common::AlignUp<std::size_t>(buffer_size, 4) +
(sizeof(GLShader::MaxwellUniformData) + uniform_buffer_alignment) * Maxwell::MaxShaderStage;
// Add space for at least 18 constant buffers
buffer_size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + uniform_buffer_alignment);
const bool invalidate = buffer_cache.Map(buffer_size);
if (invalidate) {
// As all cached buffers are invalidated, we need to recheck their state.
gpu.dirty_flags.vertex_array.set();
}
const GLuint vao = SetupVertexFormat();
SetupVertexBuffer(vao);
DrawParameters params = SetupDraw();
SetupShaders(params.primitive_mode);
buffer_cache.Unmap();
shader_program_manager->ApplyTo(state);
state.Apply();
res_cache.SignalPreDrawCall();
params.DispatchDraw();
res_cache.SignalPostDrawCall();
accelerate_draw = AccelDraw::Disabled;
}
void RasterizerOpenGL::FlushAll() {}
void RasterizerOpenGL::FlushRegion(CacheAddr addr, u64 size) {
2018-10-13 04:31:04 +02:00
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
if (!addr || !size) {
return;
}
2019-02-09 06:06:35 +01:00
res_cache.FlushRegion(addr, size);
2018-10-13 04:31:04 +02:00
}
void RasterizerOpenGL::InvalidateRegion(CacheAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
if (!addr || !size) {
return;
}
res_cache.InvalidateRegion(addr, size);
shader_cache.InvalidateRegion(addr, size);
global_cache.InvalidateRegion(addr, size);
buffer_cache.InvalidateRegion(addr, size);
}
void RasterizerOpenGL::FlushAndInvalidateRegion(CacheAddr addr, u64 size) {
2018-10-13 04:31:04 +02:00
FlushRegion(addr, size);
InvalidateRegion(addr, size);
}
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
MICROPROFILE_SCOPE(OpenGL_Blits);
res_cache.FermiCopySurface(src, dst, src_rect, dst_rect);
return true;
}
bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
if (!framebuffer_addr) {
return {};
}
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
const auto& surface{res_cache.TryFindFramebufferSurface(Memory::GetPointer(framebuffer_addr))};
if (!surface) {
return {};
}
// Verify that the cached surface is the same size and format as the requested framebuffer
const auto& params{surface->GetSurfaceParams()};
const auto& pixel_format{
VideoCore::Surface::PixelFormatFromGPUPixelFormat(config.pixel_format)};
ASSERT_MSG(params.width == config.width, "Framebuffer width is different");
ASSERT_MSG(params.height == config.height, "Framebuffer height is different");
2019-03-09 07:33:56 +01:00
if (params.pixel_format != pixel_format) {
LOG_WARNING(Render_OpenGL, "Framebuffer pixel_format is different");
}
screen_info.display_texture = surface->Texture().handle;
return true;
}
void RasterizerOpenGL::SamplerInfo::Create() {
sampler.Create();
mag_filter = Tegra::Texture::TextureFilter::Linear;
min_filter = Tegra::Texture::TextureFilter::Linear;
wrap_u = Tegra::Texture::WrapMode::Wrap;
wrap_v = Tegra::Texture::WrapMode::Wrap;
wrap_p = Tegra::Texture::WrapMode::Wrap;
use_depth_compare = false;
depth_compare_func = Tegra::Texture::DepthCompareFunc::Never;
// OpenGL's default is GL_LINEAR_MIPMAP_LINEAR
glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glSamplerParameteri(sampler.handle, GL_TEXTURE_COMPARE_FUNC, GL_NEVER);
// Other attributes have correct defaults
}
void RasterizerOpenGL::SamplerInfo::SyncWithConfig(const Tegra::Texture::TSCEntry& config) {
const GLuint sampler_id = sampler.handle;
if (mag_filter != config.mag_filter) {
mag_filter = config.mag_filter;
2018-10-25 01:25:28 +02:00
glSamplerParameteri(
sampler_id, GL_TEXTURE_MAG_FILTER,
2018-10-25 01:25:28 +02:00
MaxwellToGL::TextureFilterMode(mag_filter, Tegra::Texture::TextureMipmapFilter::None));
}
if (min_filter != config.min_filter || mipmap_filter != config.mipmap_filter) {
min_filter = config.min_filter;
mipmap_filter = config.mipmap_filter;
glSamplerParameteri(sampler_id, GL_TEXTURE_MIN_FILTER,
MaxwellToGL::TextureFilterMode(min_filter, mipmap_filter));
}
if (wrap_u != config.wrap_u) {
wrap_u = config.wrap_u;
glSamplerParameteri(sampler_id, GL_TEXTURE_WRAP_S, MaxwellToGL::WrapMode(wrap_u));
}
if (wrap_v != config.wrap_v) {
wrap_v = config.wrap_v;
glSamplerParameteri(sampler_id, GL_TEXTURE_WRAP_T, MaxwellToGL::WrapMode(wrap_v));
}
if (wrap_p != config.wrap_p) {
wrap_p = config.wrap_p;
glSamplerParameteri(sampler_id, GL_TEXTURE_WRAP_R, MaxwellToGL::WrapMode(wrap_p));
}
if (const bool enabled = config.depth_compare_enabled == 1; use_depth_compare != enabled) {
use_depth_compare = enabled;
glSamplerParameteri(sampler_id, GL_TEXTURE_COMPARE_MODE,
use_depth_compare ? GL_COMPARE_REF_TO_TEXTURE : GL_NONE);
}
if (depth_compare_func != config.depth_compare_func) {
depth_compare_func = config.depth_compare_func;
glSamplerParameteri(sampler_id, GL_TEXTURE_COMPARE_FUNC,
MaxwellToGL::DepthCompareFunc(depth_compare_func));
}
if (const auto new_border_color = config.GetBorderColor(); border_color != new_border_color) {
border_color = new_border_color;
glSamplerParameterfv(sampler_id, GL_TEXTURE_BORDER_COLOR, border_color.data());
}
if (const float anisotropic = config.GetMaxAnisotropy(); max_anisotropic != anisotropic) {
max_anisotropic = anisotropic;
if (GLAD_GL_ARB_texture_filter_anisotropic) {
glSamplerParameterf(sampler_id, GL_TEXTURE_MAX_ANISOTROPY, max_anisotropic);
} else if (GLAD_GL_EXT_texture_filter_anisotropic) {
glSamplerParameterf(sampler_id, GL_TEXTURE_MAX_ANISOTROPY_EXT, max_anisotropic);
}
}
if (const float min = config.GetMinLod(); min_lod != min) {
min_lod = min;
glSamplerParameterf(sampler_id, GL_TEXTURE_MIN_LOD, min_lod);
}
if (const float max = config.GetMaxLod(); max_lod != max) {
max_lod = max;
glSamplerParameterf(sampler_id, GL_TEXTURE_MAX_LOD, max_lod);
}
if (const float bias = config.GetLodBias(); lod_bias != bias) {
lod_bias = bias;
glSamplerParameterf(sampler_id, GL_TEXTURE_LOD_BIAS, lod_bias);
}
}
2019-01-05 05:00:06 +01:00
void RasterizerOpenGL::SetupConstBuffers(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage,
const Shader& shader, GLuint program_handle,
BaseBindings base_bindings) {
MICROPROFILE_SCOPE(OpenGL_UBO);
const auto& gpu = system.GPU();
const auto& maxwell3d = gpu.Maxwell3D();
const auto& shader_stage = maxwell3d.state.shader_stages[static_cast<std::size_t>(stage)];
const auto& entries = shader->GetShaderEntries().const_buffers;
// Upload only the enabled buffers from the 16 constbuffers of each shader stage
for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
const auto& used_buffer = entries[bindpoint];
const auto& buffer = shader_stage.const_buffers[used_buffer.GetIndex()];
if (!buffer.enabled) {
// Set values to zero to unbind buffers
bind_ubo_pushbuffer.Push(0, 0, 0);
continue;
}
std::size_t size = 0;
if (used_buffer.IsIndirect()) {
// Buffer is accessed indirectly, so upload the entire thing
size = buffer.size;
if (size > MaxConstbufferSize) {
2019-03-09 07:33:56 +01:00
LOG_WARNING(Render_OpenGL, "Indirect constbuffer size {} exceeds maximum {}", size,
MaxConstbufferSize);
size = MaxConstbufferSize;
}
} else {
// Buffer is accessed directly, upload just what we use
size = used_buffer.GetSize();
}
// Align the actual size so it ends up being a multiple of vec4 to meet the OpenGL std140
// UBO alignment requirements.
size = Common::AlignUp(size, sizeof(GLvec4));
ASSERT_MSG(size <= MaxConstbufferSize, "Constbuffer too big");
2019-01-05 05:00:06 +01:00
const GLintptr const_buffer_offset = buffer_cache.UploadMemory(
buffer.address, size, static_cast<std::size_t>(uniform_buffer_alignment));
bind_ubo_pushbuffer.Push(buffer_cache.GetHandle(), const_buffer_offset, size);
}
}
2019-01-05 05:00:06 +01:00
void RasterizerOpenGL::SetupGlobalRegions(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage,
const Shader& shader, GLenum primitive_mode,
BaseBindings base_bindings) {
const auto& entries = shader->GetShaderEntries().global_memory_entries;
for (std::size_t bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
const auto& entry{entries[bindpoint]};
const auto& region{global_cache.GetGlobalRegion(entry, stage)};
bind_ssbo_pushbuffer.Push(region->GetBufferHandle(), 0,
static_cast<GLsizeiptr>(region->GetSizeInBytes()));
}
}
2019-01-05 05:00:06 +01:00
void RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, const Shader& shader,
GLuint program_handle, BaseBindings base_bindings) {
MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& gpu = system.GPU();
const auto& maxwell3d = gpu.Maxwell3D();
const auto& entries = shader->GetShaderEntries().samplers;
2019-01-05 05:00:06 +01:00
ASSERT_MSG(base_bindings.sampler + entries.size() <= std::size(state.texture_units),
"Exceeded the number of active textures.");
for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
const auto& entry = entries[bindpoint];
const auto texture = maxwell3d.GetStageTexture(stage, entry.GetOffset());
2019-01-05 05:00:06 +01:00
const u32 current_bindpoint = base_bindings.sampler + bindpoint;
texture_samplers[current_bindpoint].SyncWithConfig(texture.tsc);
2019-01-05 05:00:06 +01:00
if (Surface surface = res_cache.GetTextureSurface(texture, entry); surface) {
state.texture_units[current_bindpoint].texture =
surface->Texture(entry.IsArray()).handle;
surface->UpdateSwizzle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source,
texture.tic.w_source);
} else {
// Can occur when texture addr is null or its memory is unmapped/invalid
state.texture_units[current_bindpoint].texture = 0;
}
}
}
void RasterizerOpenGL::SyncViewport(OpenGLState& current_state) {
const auto& regs = system.GPU().Maxwell3D().regs;
const bool geometry_shaders_enabled =
regs.IsShaderConfigEnabled(static_cast<size_t>(Maxwell::ShaderProgram::Geometry));
const std::size_t viewport_count =
geometry_shaders_enabled ? Tegra::Engines::Maxwell3D::Regs::NumViewports : 1;
for (std::size_t i = 0; i < viewport_count; i++) {
auto& viewport = current_state.viewports[i];
const auto& src = regs.viewports[i];
const Common::Rectangle<s32> viewport_rect{regs.viewport_transform[i].GetRect()};
viewport.x = viewport_rect.left;
viewport.y = viewport_rect.bottom;
viewport.width = viewport_rect.GetWidth();
viewport.height = viewport_rect.GetHeight();
2018-11-14 00:13:16 +01:00
viewport.depth_range_far = regs.viewports[i].depth_range_far;
viewport.depth_range_near = regs.viewports[i].depth_range_near;
}
2018-11-23 16:11:21 +01:00
state.depth_clamp.far_plane = regs.view_volume_clip_control.depth_clamp_far != 0;
state.depth_clamp.near_plane = regs.view_volume_clip_control.depth_clamp_near != 0;
}
void RasterizerOpenGL::SyncClipEnabled(
const std::array<bool, Maxwell::Regs::NumClipDistances>& clip_mask) {
const auto& regs = system.GPU().Maxwell3D().regs;
const std::array<bool, Maxwell::Regs::NumClipDistances> reg_state{
regs.clip_distance_enabled.c0 != 0, regs.clip_distance_enabled.c1 != 0,
regs.clip_distance_enabled.c2 != 0, regs.clip_distance_enabled.c3 != 0,
regs.clip_distance_enabled.c4 != 0, regs.clip_distance_enabled.c5 != 0,
regs.clip_distance_enabled.c6 != 0, regs.clip_distance_enabled.c7 != 0};
for (std::size_t i = 0; i < Maxwell::Regs::NumClipDistances; ++i) {
state.clip_distance[i] = reg_state[i] && clip_mask[i];
}
}
void RasterizerOpenGL::SyncClipCoef() {
UNIMPLEMENTED();
}
void RasterizerOpenGL::SyncCullMode() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.cull.enabled = regs.cull.enabled != 0;
if (state.cull.enabled) {
state.cull.front_face = MaxwellToGL::FrontFace(regs.cull.front_face);
state.cull.mode = MaxwellToGL::CullFace(regs.cull.cull_face);
const bool flip_triangles{regs.screen_y_control.triangle_rast_flip == 0 ||
regs.viewport_transform[0].scale_y < 0.0f};
// If the GPU is configured to flip the rasterized triangles, then we need to flip the
// notion of front and back. Note: We flip the triangles when the value of the register is 0
// because OpenGL already does it for us.
if (flip_triangles) {
if (state.cull.front_face == GL_CCW)
state.cull.front_face = GL_CW;
else if (state.cull.front_face == GL_CW)
state.cull.front_face = GL_CCW;
}
}
}
void RasterizerOpenGL::SyncPrimitiveRestart() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.primitive_restart.enabled = regs.primitive_restart.enabled;
state.primitive_restart.index = regs.primitive_restart.index;
}
void RasterizerOpenGL::SyncDepthTestState() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.depth.test_enabled = regs.depth_test_enable != 0;
state.depth.write_mask = regs.depth_write_enabled ? GL_TRUE : GL_FALSE;
if (!state.depth.test_enabled)
return;
state.depth.test_func = MaxwellToGL::ComparisonOp(regs.depth_test_func);
}
void RasterizerOpenGL::SyncStencilTestState() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.stencil.test_enabled = regs.stencil_enable != 0;
if (!regs.stencil_enable) {
return;
}
state.stencil.front.test_func = MaxwellToGL::ComparisonOp(regs.stencil_front_func_func);
state.stencil.front.test_ref = regs.stencil_front_func_ref;
state.stencil.front.test_mask = regs.stencil_front_func_mask;
state.stencil.front.action_stencil_fail = MaxwellToGL::StencilOp(regs.stencil_front_op_fail);
state.stencil.front.action_depth_fail = MaxwellToGL::StencilOp(regs.stencil_front_op_zfail);
state.stencil.front.action_depth_pass = MaxwellToGL::StencilOp(regs.stencil_front_op_zpass);
state.stencil.front.write_mask = regs.stencil_front_mask;
if (regs.stencil_two_side_enable) {
state.stencil.back.test_func = MaxwellToGL::ComparisonOp(regs.stencil_back_func_func);
state.stencil.back.test_ref = regs.stencil_back_func_ref;
state.stencil.back.test_mask = regs.stencil_back_func_mask;
state.stencil.back.action_stencil_fail = MaxwellToGL::StencilOp(regs.stencil_back_op_fail);
state.stencil.back.action_depth_fail = MaxwellToGL::StencilOp(regs.stencil_back_op_zfail);
state.stencil.back.action_depth_pass = MaxwellToGL::StencilOp(regs.stencil_back_op_zpass);
state.stencil.back.write_mask = regs.stencil_back_mask;
} else {
state.stencil.back.test_func = GL_ALWAYS;
state.stencil.back.test_ref = 0;
state.stencil.back.test_mask = 0xFFFFFFFF;
state.stencil.back.write_mask = 0xFFFFFFFF;
state.stencil.back.action_stencil_fail = GL_KEEP;
state.stencil.back.action_depth_fail = GL_KEEP;
state.stencil.back.action_depth_pass = GL_KEEP;
}
}
void RasterizerOpenGL::SyncColorMask() {
const auto& regs = system.GPU().Maxwell3D().regs;
2018-11-16 17:48:10 +01:00
const std::size_t count =
regs.independent_blend_enable ? Tegra::Engines::Maxwell3D::Regs::NumRenderTargets : 1;
2018-11-16 17:48:10 +01:00
for (std::size_t i = 0; i < count; i++) {
const auto& source = regs.color_mask[regs.color_mask_common ? 0 : i];
auto& dest = state.color_mask[i];
dest.red_enabled = (source.R == 0) ? GL_FALSE : GL_TRUE;
dest.green_enabled = (source.G == 0) ? GL_FALSE : GL_TRUE;
dest.blue_enabled = (source.B == 0) ? GL_FALSE : GL_TRUE;
dest.alpha_enabled = (source.A == 0) ? GL_FALSE : GL_TRUE;
}
}
2018-11-14 04:02:54 +01:00
void RasterizerOpenGL::SyncMultiSampleState() {
const auto& regs = system.GPU().Maxwell3D().regs;
2018-11-14 04:02:54 +01:00
state.multisample_control.alpha_to_coverage = regs.multisample_control.alpha_to_coverage != 0;
state.multisample_control.alpha_to_one = regs.multisample_control.alpha_to_one != 0;
}
2018-11-14 02:09:01 +01:00
void RasterizerOpenGL::SyncFragmentColorClampState() {
const auto& regs = system.GPU().Maxwell3D().regs;
2018-11-14 02:09:01 +01:00
state.fragment_color_clamp.enabled = regs.frag_color_clamp != 0;
}
void RasterizerOpenGL::SyncBlendState() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.blend_color.red = regs.blend_color.r;
state.blend_color.green = regs.blend_color.g;
state.blend_color.blue = regs.blend_color.b;
state.blend_color.alpha = regs.blend_color.a;
state.independant_blend.enabled = regs.independent_blend_enable;
if (!state.independant_blend.enabled) {
auto& blend = state.blend[0];
const auto& src = regs.blend;
blend.enabled = src.enable[0] != 0;
if (blend.enabled) {
blend.rgb_equation = MaxwellToGL::BlendEquation(src.equation_rgb);
blend.src_rgb_func = MaxwellToGL::BlendFunc(src.factor_source_rgb);
blend.dst_rgb_func = MaxwellToGL::BlendFunc(src.factor_dest_rgb);
blend.a_equation = MaxwellToGL::BlendEquation(src.equation_a);
blend.src_a_func = MaxwellToGL::BlendFunc(src.factor_source_a);
blend.dst_a_func = MaxwellToGL::BlendFunc(src.factor_dest_a);
}
2018-11-16 17:48:10 +01:00
for (std::size_t i = 1; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
state.blend[i].enabled = false;
}
return;
}
2018-11-16 17:48:10 +01:00
for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
auto& blend = state.blend[i];
const auto& src = regs.independent_blend[i];
blend.enabled = regs.blend.enable[i] != 0;
if (!blend.enabled)
continue;
blend.rgb_equation = MaxwellToGL::BlendEquation(src.equation_rgb);
blend.src_rgb_func = MaxwellToGL::BlendFunc(src.factor_source_rgb);
blend.dst_rgb_func = MaxwellToGL::BlendFunc(src.factor_dest_rgb);
blend.a_equation = MaxwellToGL::BlendEquation(src.equation_a);
blend.src_a_func = MaxwellToGL::BlendFunc(src.factor_source_a);
blend.dst_a_func = MaxwellToGL::BlendFunc(src.factor_dest_a);
}
}
void RasterizerOpenGL::SyncLogicOpState() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.logic_op.enabled = regs.logic_op.enable != 0;
if (!state.logic_op.enabled)
return;
ASSERT_MSG(regs.blend.enable[0] == 0,
"Blending and logic op can't be enabled at the same time.");
state.logic_op.operation = MaxwellToGL::LogicOp(regs.logic_op.operation);
}
2018-11-21 04:40:32 +01:00
void RasterizerOpenGL::SyncScissorTest(OpenGLState& current_state) {
const auto& regs = system.GPU().Maxwell3D().regs;
const bool geometry_shaders_enabled =
regs.IsShaderConfigEnabled(static_cast<size_t>(Maxwell::ShaderProgram::Geometry));
const std::size_t viewport_count =
geometry_shaders_enabled ? Tegra::Engines::Maxwell3D::Regs::NumViewports : 1;
for (std::size_t i = 0; i < viewport_count; i++) {
2018-11-14 00:13:16 +01:00
const auto& src = regs.scissor_test[i];
2018-11-21 04:40:32 +01:00
auto& dst = current_state.viewports[i].scissor;
2018-11-14 00:13:16 +01:00
dst.enabled = (src.enable != 0);
if (dst.enabled == 0) {
return;
}
const u32 width = src.max_x - src.min_x;
const u32 height = src.max_y - src.min_y;
dst.x = src.min_x;
dst.y = src.min_y;
dst.width = width;
dst.height = height;
2018-10-09 02:49:36 +02:00
}
}
void RasterizerOpenGL::SyncTransformFeedback() {
const auto& regs = system.GPU().Maxwell3D().regs;
2019-03-09 07:33:56 +01:00
UNIMPLEMENTED_IF_MSG(regs.tfb_enabled != 0, "Transform feedbacks are not implemented");
}
void RasterizerOpenGL::SyncPointState() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.point.size = regs.point_size;
}
void RasterizerOpenGL::SyncPolygonOffset() {
const auto& regs = system.GPU().Maxwell3D().regs;
state.polygon_offset.fill_enable = regs.polygon_offset_fill_enable != 0;
state.polygon_offset.line_enable = regs.polygon_offset_line_enable != 0;
state.polygon_offset.point_enable = regs.polygon_offset_point_enable != 0;
state.polygon_offset.units = regs.polygon_offset_units;
state.polygon_offset.factor = regs.polygon_offset_factor;
state.polygon_offset.clamp = regs.polygon_offset_clamp;
}
void RasterizerOpenGL::CheckAlphaTests() {
const auto& regs = system.GPU().Maxwell3D().regs;
2019-03-09 07:33:56 +01:00
UNIMPLEMENTED_IF_MSG(regs.alpha_test_enabled != 0 && regs.rt_control.count > 1,
"Alpha Testing is enabled with more than one rendertarget");
}
} // namespace OpenGL