Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
18 KiB
This document explains the strategy that was used so far in starting the migration to PSA Crypto and mentions future perspectives and open questions.
Goals
Several benefits are expected from migrating to PSA Crypto:
G1. Use PSA Crypto drivers when available. G2. Allow isolation of long-term secrets (for example, private keys). G3. Allow isolation of short-term secrets (for example, TLS session keys). G4. Have a clean, unified API for Crypto (retire the legacy API). G5. Code size: compile out our implementation when a driver is available.
Currently, some parts of (G1) and (G2) are implemented when
MBEDTLS_USE_PSA_CRYPTO
is enabled. For (G2) to take effect, the application
needs to be changed to use new APIs.
Generally speaking, the numbering above doesn't mean that each goal requires the preceding ones to be completed, for example G2-G5 could be done in any order; however they all either depend on G1 or are just much more convenient if G1 is done before (note that this is not a dependency on G1 being complete, it's more like each bit of G2-G5 is helped by some specific bit in G1).
So, a solid intermediate goal would be to complete (G1) when
MBEDTLS_USA_PSA_CRYPTO
is enabled - that is, all crypto operations in X.509
and TLS would be done via the PSA Crypto API.
Compile-time options
We currently have two compile-time options that are relevant to the migration:
MBEDTLS_PSA_CRYPTO_C
- enabled by default, controls the presence of the PSA Crypto APIs.MBEDTLS_USE_PSA_CRYPTO
- disabled by default (enabled in "full" config), controls usage of PSA Crypto APIs to perform operations in X.509 and TLS (G1 above), as well as the availability of some new APIs (G2 above).
The reasons why MBEDTLS_USE_PSA_CRYPTO
is optional and disabled by default
are:
- it's incompatible with
MBEDTLS_ECP_RESTARTABLE
; - historical: used to be incompatible
MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER
(fixed early 2022, see https://github.com/ARMmbed/mbedtls/issues/5259); - it does not work well with
MBEDTLS_PSA_CRYPTO_CONFIG
(could compile with both of them, but thenMBEDTLS_PSA_CRYPTO_CONFIG
won't have the desired effect) - to avoid a hard/default dependency of TLS, X.509 and PK on
MBEDTLS_PSA_CRYPTO_C
, for backwards compatibility reasons:- when
MBEDTLS_PSA_CRYPTO_C
is enabled and used, applications need to callpsa_crypto_init()
before TLS/X.509 uses PSA functions MBEDTLS_PSA_CRYPTO_C
has a hard depend onMBEDTLS_ENTROPY_C || MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG
but it's currently possible to compilte TLS and X.509 without any of the options. Also, we can't just auto-enableMBEDTLS_ENTROPY_C
as it doesn't build out of the box on all platforms, and even lessMBEDTLS_PSA_CRYPTO_EXTERNAL_RNG
as it requires a user-provided RNG function.
- when
The downside of this approach is that until we feel ready to make
MBDEDTLS_USE_PSA_CRYPTO
non-optional (always enabled), we have to maintain
two versions of some parts of the code: one using PSA, the other using the
legacy APIs. However, see next section for strategies that can lower that
cost. The rest of this section explains the reasons for the
incompatibilities mentioned above.
In the medium term (writing this in early 2020), we're going to look for ways
to make MBEDTLS_USE_PSA_CRYPTO
non-optional (always enabled).
MBEDTLS_ECP_RESTARTABLE
Currently this option controls not only the presence of restartable APIs in the crypto library, but also their use in the TLS and X.509 layers. Since PSA Crypto does not support restartable operations, there's a clear conflict: the TLS and X.509 layers can't both use only PSA APIs and get restartable behaviour.
Supporting this in PSA is on our roadmap (it's been requested). But it's way
below generalizing support for MBEDTLS_USE_PSA_CRYPTO
for “mainstream” use
cases on our priority list. So in the medium term MBEDTLS_ECP_RESTARTABLE
is
incompatible with MBEDTLS_USE_PSA_CRYPTO
.
Note: it is possible to make the options compatible at build time simply by
deciding that when USE_PSA_CRYPTO
is enabled, PSA APIs are used except if
restartable behaviour was requested at run-time (in addition to enabling
MBEDTLS_ECP_RESTARTABLE
in the build).
MBEDTLS_PSA_CRYPTO_CONFIG
(This section taken from a comment by Gilles.)
X509 and TLS code use MBEDTLS_xxx
macros to decide whether an algorithm is
supported. This doesn't make MBEDTLS_USE_PSA_CRYPTO
incompatible with
MBEDTLS_PSA_CRYPTO_CONFIG
per se, but it makes it incompatible with most
useful uses of MBEDTLS_PSA_CRYPTO_CONFIG
. The point of
MBEDTLS_PSA_CRYPTO_CONFIG
is to be able to build a library with support for
an algorithm through a PSA driver only, without building the software
implementation of that algorithm. But then the TLS code would consider the
algorithm unavailable.
This is tracked in https://github.com/ARMmbed/mbedtls/issues/3674 and https://github.com/ARMmbed/mbedtls/issues/3677. But now that I look at it with fresh eyes, I don't think the approach we were planning to use would actually works. This needs more design effort.
This is something we need to support eventually, and several partners want it.
I don't know what the priority is for MBEDTLS_USE_PSA_CRYPTO
between
improving driver support and covering more of the protocol. It seems to me
that it'll be less work overall to first implement a good architecture for
MBEDTLS_USE_PSA_CRYPTO + MBEDTLS_PSA_CRYPTO_CONFIG
and then extend to more
protocol features, because implementing that architecture will require changes
to the existing code and the less code there is at this point the better,
whereas extending to more protocol features will require the same amount of
work either way.
Backwards compatibility issues with making it always on
- Existing applications may not be calling
psa_crypto_init()
before using TLS, X.509 or PK. We can try to work around that by calling (the relevant part of) it ourselves under the hood as needed, but that would likely require splitting init between the parts that can fail and the parts that can't (see https://github.com/ARM-software/psa-crypto-api/pull/536 for that). - It's currently not possible to enable
MBEDTLS_PSA_CRYPTO_C
in configurations that don't haveMBEDTLS_ENTROPY_C
, and we can't just auto-enable the latter, as it won't build or work out of the box on all platforms. There are two kinds of things we'd need to do if we want to work around that:- Make it possible to enable the parts of PSA Crypto that don't require an
RNG (typically, public key operations, symmetric crypto, some key
management functions (destroy etc)) in configurations that don't have
ENTROPY_C
. This requires going through the PSA code base to adjust dependencies. Risk: there may be annoying dependencies, some of which may be surprising. - For operations that require an RNG, provide an alternative function
accepting an explicit
f_rng
parameter (see #5238), that would be available in entropy-less builds. (Then code using those functions still needs to have one version using it, for entropy-less builds, and one version using the standard function, for driver support in build with entropy.)
- Make it possible to enable the parts of PSA Crypto that don't require an
RNG (typically, public key operations, symmetric crypto, some key
management functions (destroy etc)) in configurations that don't have
See https://github.com/ARMmbed/mbedtls/issues/5156
Taking advantage of the existing abstractions layers - or not
The Crypto library in Mbed TLS currently has 3 abstraction layers that offer algorithm-agnostic APIs for a class of algorithms:
- MD for messages digests aka hashes (including HMAC)
- Cipher for symmetric ciphers (included AEAD)
- PK for asymmetric (aka public-key) cryptography (excluding key exchange)
Note: key exchange (FFDH, ECDH) is not covered by an abstraction layer.
These abstraction layers typically provide, in addition to the API for crypto
operations, types and numerical identifiers for algorithms (for
example mbedtls_cipher_mode_t
and its values). The
current strategy is to keep using those identifiers in most of the code, in
particular in existing structures and public APIs, even when
MBEDTLS_USE_PSA_CRYPTO
is enabled. (This is not an issue for G1, G2, G3
above, and is only potentially relevant for G4.)
The are multiple strategies that can be used regarding the place of those layers in the migration to PSA.
Silently call to PSA from the abstraction layer
- Provide a new definition (conditionally on
USE_PSA_CRYPTO
) of wrapper functions in the abstraction layer, that calls PSA instead of the legacy crypto API. - Upside: changes contained to a single place, no need to change TLS or X.509 code anywhere.
- Downside: tricky to implement if the PSA implementation is currently done on top of that layer (dependency loop).
This strategy is currently (late 2021) used for ECDSA signature verification in the PK layer, and could be extended to all operations in the PK layer.
This strategy is not very well suited to the Cipher layer, as the PSA implementation is currently done on top of that layer.
This strategy will probably be used for some time for the PK layer, while we
figure out what the future of that layer is: parts of it (parse/write, ECDSA
signatures in the format that X.509 & TLS want) are not covered by PSA, so
they will need to keep existing in some way. Also the PK layer is also a good
place for dispatching to either PSA or mbedtls_xxx_restartable
while that
part is not covered by PSA yet.
Replace calls for each operation
- For every operation that's done through this layer in TLS or X.509, just
replace function call with calls to PSA (conditionally on
USE_PSA_CRYPTO
) - Upside: conceptually simple, and if the PSA implementation is currently done on top of that layer, avoids concerns about dependency loops.
- Upside: opens the door to building TLS/X.509 without that layer, saving some code size.
- Downside: TLS/X.509 code has to be done for each operation.
This strategy is currently (late 2021) used for the MD layer. (Currently only a subset of calling places, but will be extended to all of them.)
In the future (early 2022) we're going to use it for the Cipher layer as well.
Opt-in use of PSA from the abstraction layer
- Provide a new way to set up a context that causes operations on that context to be done via PSA.
- Upside: changes mostly contained in one place, TLS/X.509 code only needs to
be changed when setting up the context, but not when using it. In
particular, no changes to/duplication of existing public APIs that expect a
key to be passed as a context of this layer (eg,
mbedtls_pk_context
). - Upside: avoids dependency loop when PSA implemented on top of that layer.
- Downside: when the context is typically set up by the application, requires changes in application code.
This strategy is not useful when no context is used, for example with the
one-shot function mbedtls_md()
.
There are two variants of this strategy: one where using the new setup function also allows for key isolation (the key is only held by PSA, supporting both G1 and G2 in that area), and one without isolation (the key is still stored outsede of PSA most of the time, supporting only G1).
This strategy, with support for key isolation, is currently (end of 2021) used for ECDSA
signature generation in the PK layer - see mbedtls_pk_setup_opaque()
. This
allows use of PSA-held private ECDSA keys in TLS and X.509 with no change to
the TLS/X.509 code, but a contained change in the application. If could be
extended to other private key operations in the PK layer, which is the plan as
of early 2022.
This strategy, without key isolation, is also currently used in the Cipher
layer - see mbedtls_cipher_setup_psa()
. This allows use of PSA for cipher
operations in TLS with no change to the application code, and a
contained change in TLS code. (It currently only supports a subset of
ciphers.) However, we'll move to the "Replace calls for each operation"
strategy (early 2022), in the hope of being able to build without this layer
in order to save some code size in the future.
Note: for private key operations in the PK layer, both the "silent" and the "opt-in" strategy can apply, and can complement each other, as one provides support for key isolation, but at the (unavoidable) code of change in application code, while the other requires no application change to get support for drivers, but fails to provide isolation support.
Summary
Strategies currently used with each abstraction layer:
- PK (for G1): silently call PSA
- PK (for G2): opt-in use of PSA (new key type)
- Cipher (G1):
- late 2021: opt-in use of PSA (new setup function)
- early 2022: moving to "replace calls at each call site"
- MD (G1): replace calls at each call site
Migrating away from the legacy API
This section briefly introduces questions and possible plans towards G4, mainly as they relate to choices in previous stages.
The role of the PK/Cipher/MD APIs in user migration
We're currently taking advantage of the existing PK and Cipher layers in order to reduce the number of places where library code needs to be changed. It's only natural to consider using the same strategy (with the PK, MD and Cipher layers) for facilitating migration of application code.
Note: a necessary first step for that would be to make sure PSA is no longer implemented of top of the concerned layers
Zero-cost compatibility layer?
The most favourable case is if we can have a zero-cost abstraction (no
runtime, RAM usage or code size penalty), for example just a bunch of
#define
s, essentially mapping mbedtls_
APIs to their psa_
equivalent.
Unfortunately that's unlikely fully work. For example, the MD layer uses the same context type for hashes and HMACs, while the PSA API (rightfully) has distinct operation types. Similarly, the Cipher layer uses the same context type for unauthenticated and AEAD ciphers, which again the PSA API distinguishes.
It is unclear how much value, if any, a zero-cost compatibility layer that's incomplete (for example, for MD covering only hashes, or for Cipher covering only AEAD) or differs significantly from the existing API (for example, introducing new context types) would provide to users.
Low-cost compatibility layers?
Another possibility is to keep most or all of the existing API for the PK, MD
and Cipher layers, implemented on top of PSA, aiming for the lowest possible
cost. For example, mbedtls_md_context_t
would be defined as a (tagged) union
of psa_hash_operation_t
and psa_mac_operation_t
, then mbedtls_md_setup()
would initialize the correct part, and the rest of the functions be simple
wrappers around PSA functions. This would vastly reduce the complexity of the
layers compared to the existing (no need to dispatch through function
pointers, just call the corresponding PSA API).
Since this would still represent a non-zero cost, not only in terms of code size, but also in terms of maintenance (testing, etc.) this would probably be a temporary solution: for example keep the compatibility layers in 4.0 (and make them optional), but remove them in 5.0.
Again, this provides the most value to users if we can manage to keep the existing API unchanged. Their might be conflicts between this goal and that of reducing the cost, and judgment calls may need to be made.
Note: when it comes to holding public keys in the PK layer, depending on how
the rest of the code is structured, it may be worth holding the key data in
memory controlled by the PK layer as opposed to a PSA key slot, moving it to a
slot only when needed (see current ecdsa_verify_wrap
when
MBEDTLS_USE_PSA_CRYPTO
is defined) For example, when parsing a large
number, N, of X.509 certificates (for example the list of trusted roots), it
might be undesirable to use N PSA key slots for their public keys as long as
the certs are loaded. OTOH, this could also be addressed by merging the "X.509
parsing on-demand" (#2478), and then the public key data would be held as
bytes in the X.509 CRT structure, and only moved to a PK context / PSA slot
when it's actually used.
Note: the PK layer actually consists of two relatively distinct parts: crypto operations, which will be covered by PSA, and parsing/writing (exporting) from/to various formats, which is currently not fully covered by the PSA Crypto API.
Algorithm identifiers and other identifiers
It should be easy to provide the user with a bunch of #define
s for algorithm
identifiers, for example #define MBEDTLS_MD_SHA256 PSA_ALG_SHA_256
; most of
those would be in the MD, Cipher and PK compatibility layers mentioned above,
but there might be some in other modules that may be worth considering, for
example identifiers for elliptic curves.
Lower layers
Generally speaking, we would retire all of the low-level, non-generic modules, such as AES, SHA-256, RSA, DHM, ECDH, ECP, bignum, etc, without providing compatibility APIs for them. People would be encouraged to switch to the PSA API. (The compatibility implementation of the existing PK, MD, Cipher APIs would mostly benefit people who already used those generic APis rather than the low-level, alg-specific ones.)
APIs in TLS and X.509
Public APIs in TLS and X.509 may be affected by the migration in at least two ways:
-
APIs that rely on a legacy
mbedtls_
crypto type: for examplembedtls_ssl_conf_own_cert()
to configure a (certificate and the associated) private key. Currently the private key is passed as ambedtls_pk_context
object, which would probably change to apsa_key_id_t
. Since some users would probably still be using the compatibility PK layer, it would need a way to easily extract the PSA key ID from the PK context. -
APIs the accept list of identifiers: for example
mbedtls_ssl_conf_curves()
taking a list ofmbedtls_ecp_group_id
s. This could be changed to accept a list of pairs (psa_ecc_familiy_t
, size) but we should probably take this opportunity to move to a identifier independent from the underlying crypto implementation and use TLS-specific identifiers instead (based on IANA values or custom enums), as is currently done in the newmbedtls_ssl_conf_groups()
API, see #4859).
Testing
An question that needs careful consideration when we come around to removing the low-level crypto APIs and making PK, MD and Cipher optional compatibility layers is to be sure to preserve testing quality. A lot of the existing test cases use the low level crypto APIs; we would need to either keep using that API for tests, or manually migrated test to the PSA Crypto API. Perhaps a combination of both, perhaps evolving gradually over time.