Add a slot_number field to psa_key_attributes_t and getter/setter
functions. Since slot numbers can have the value 0, indicate the
presence of the field via a separate flag.
In psa_get_key_attributes(), report the slot number if the key is in a
secure element.
When creating a key, for now, applications cannot choose a slot
number. A subsequent commit will add this capability in the secure
element HAL.
Add infrastructure for internal, external and dual-use flags, with a
compile-time check (if static_assert is available) to ensure that the
same numerical value doesn't get declared for two different purposes
in crypto_struct.h (external or dual-use) and
psa_crypto_core.h (internal).
mbedtls_ctr_drbg_random can only return up to
MBEDTLS_CTR_DRBG_MAX_REQUEST (normally 1024) bytes at a time. So if
more than that is requested, call mbedtls_ctr_drbg_random in a loop.
Add tests that call psa_generate_random() (possibly via
psa_generate_key()) with a size that's larger than
MBEDTLS_CTR_DRBG_MAX_REQUEST. This causes psa_generate_random() to
fail because it calls mbedtls_ctr_drbg_random() without taking the
maximum request size of CTR_DRBG into account.
Non-regression test for #206
When psa_generate_random fails, psa_generate_key_internal frees the
key buffer but a the pointer to the now-freed buffer in the slot. Then
psa_generate_key calls psa_fail_key_creation which sees the pointer
and calls free() again.
This bug was introduced by ff5f0e7221
"Implement atomic-creation psa_{generate,generator_import}_key" which
changed how psa_generate_key() cleans up on errors. I went through the
code and could not find a similar bug in cleanup on an error during
key creation.
Fix#207
In tests of mbedtls_cipher_xxx and mbedtls_pk_xxx with
MBEDTLS_USE_PSA_CRYPTO enabled, initialize and deinitialize the PSA
subsystem in every function. Before, the tests were only passing
because the first function to be called happened to call
psa_crypto_init() but not mbedtls_psa_crypto_free(). In some
configurations (not tested on CI), psa_crypto_init() was not called so
the tests using PSA failed.
Call PSA_DONE() at the end of each test function. This ensures that no
resources are leaked in the form of PSA crypto slot contents.
Incidentally, this also fixes a build error due to
test_helper_psa_done() being unused in test_suite_pk: the fact that it
wasn't used betrayed the missing calls to PSA_DONE().
Conflict resolution:
* `scripts/config.pl`:
Take the exclusion of `MBEDTLS_PSA_CRYPTO_SE_C` from the API branch.
Take the removal of `MBEDTLS_PSA_CRYPTO_STORAGE_ITS_C` (obsolete) from
the development branch.
* `tests/scripts/all.sh`:
Multiple instances of factoring a sequence of `config.pl` calls into
a mere `config.pl baremetal` in the development branch, and a change in
the composition of `baremetal` in the API branch. In each case, take the
version from development.
* `tests/suites/test_suite_psa_crypto_slot_management.function`:
A function became non-static in development and disappeared in the API
branch. Keep the version from the API branch. Functions need to be
non-static if they're defined but unused in some configurations,
which is not the case for any function in this file at the moment.
* `tests/suites/test_suite_psa_crypto.function`:
Consecutive changes in the two branches, reconciled.
The flag to mark key slots as allocated was introduced to mark slots
that are claimed and in use, but do not have key material yet, at a
time when creating a key used several API functions: allocate a slot,
then progressively set its metadata, and finally create the key
material. Now that all of these steps are combined into a single
API function call, the notion of allocated-but-not-filled slot is no
longer relevant. So remove the corresponding flag.
A slot is occupied iff there is a key in it. (For a key in a secure
element, the key material is not present, but the slot contains the
key metadata.) This key must have a type which is nonzero, so use this
as an indicator that a slot is in use.
There is now a field for the key size in the key slot in memory. Use
it.
This makes psa_get_key_attributes() marginally faster at the expense
of memory that is available anyway in the current memory layout (16
bits for the size, 16 bits for flags). That's not the goal, though:
the goal is to simplify the code, in particular to make it more
uniform between transparent keys (whose size can be recomputed) and
keys in secure elements (whose size cannot be recomputed).
For keys in a secure element, the bit size is now saved by serializing
the type psa_key_bits_t (which is an alias for uint16_t) rather than
size_t.
Change the type of key slots in memory to use
psa_core_key_attributes_t rather than separate fields. The goal is to
simplify some parts of the code. This commit only does the mechanical
replacement, not the substitution.
The bit-field `allocate` is now a flag `PSA_KEY_SLOT_FLAG_ALLOCATED`
in the `flags` field.
Write accessor functions for flags.
Key slots now contain a bit size field which is currently unused.
Subsequent commits will make use of it.
Resolve conflicts by performing the following operations:
- Reject changes related to building a crypto submodule, since Mbed
Crypto is the crypto submodule.
- Reject X.509, NET, and SSL changes.
- Reject changes to README, as Mbed Crypto is a different project from
Mbed TLS, with a different README.
- Avoid adding mention of ssl-opt.sh in a comment near some modified
code in include/CMakeLists.txt (around where ENABLE_TESTING as added).
- Align config.pl in Mbed TLS with config.pl in Mbed Crypto where PSA
options are concerned, to make future merging easier. There is no
reason for the two to be different in this regard, now that Mbed TLS
always depends on Mbed Crypto. Remaining differences are only the
PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER option and the absence of X.509,
NET, and SSL related options in Mbed Crypto's config.pl.
- Align config.h in Mbed Crypto with Mbed TLS's copy, with a few notable
exceptions:
- Leave CMAC on by default.
- Leave storage on by default (including ITS emulation).
- Avoid documenting the PSA Crypto API as is in beta stage in
documentation for MBEDTLS_PSA_CRYPTO_C.
The only remaining differences are a lack of X.509, NET, and SSL
options in Mbed Crypto's config.h, as well as an additional
Mbed-Crypto-specific PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER option.
Documentation for the check params feature and related macros is also
updated to match Mbed TLS's description.
- Reject tests/data_files/Makefile changes to generate DER versions of
CRTs and keys, as none of those are used by Mbed Crypto tests.
- Add the "no PEM and no filesystem" test to all.sh, without ssl-opt.sh
run, as Mbed Crypto doesn't have ssl-opt.sh. Also remove use of PSA
Crypto storage and ITS emulation, since those depend on filesystem
support.
- Reject addition of test when no ciphersuites have MAC to all.sh, as
the option being tested, MBEDTLS_SSL_SOME_MODES_USE_MAC, is not
present in Mbed Crypto.
- Use baremetal config in all.sh, as Mbed Crypto's baremetal
configuration does exclude the net module (as it doesn't exist in Mbed
Crypto)
- Reject cmake_subproject_build changes, continuing to link only
libmbedcrypto.
- Reject changes to visualc and associated templates. Mbed Crypto
doesn't need additional logic to handle submodule-sourced headers.
- Avoid adding fuzzers from Mbed TLS. The only relevant fuzzers are the
privkey and pubkey fuzzers, but non-trivial work would be required to
integrate those into Mbed Crypto (more than is comfortable in a merge
commit).
- Reject addition of Docker wrappers for compat.sh and ssl-opt.sh, as
those are not present in Mbed Crypto.
- Remove calls to SSL-related scripts from basic-in-docker.sh
Fix test errors by performing the following:
- Avoid using a link that Doxygen can't seem to resolve in Mbed Crypto,
but can resolve in Mbed TLS. In documentation for
MBEDTLS_CHECK_PARAMS, don't attempt to link to MBEDTLS_PARAM_FAILED.
* origin/development: (339 commits)
Do not build fuzz on windows
No booleans and import config
Removing space before opening parenthesis
Style corrections
Syntax fix
Fixes warnings from MSVC
Add a linker flag to enable gcov in basic-build-test.sh
Update crypto submodule to a revision with the HAVEGE header changes
Test with MBEDTLS_ECP_RESTARTABLE
Allow TODO in code
Use the docstring in the command line help
Split _abi_compliance_command into smaller functions
Record the commits that were compared
Document how to build the typical argument for -s
Allow running /somewhere/else/path/to/abi_check.py
tests: Limit each log to 10 GiB
Warn if VLAs are used
Remove redundant compiler flag
Consistently spell -Wextra
Fix parsing issue when int parameter is in base 16
...
65528 bits is more than any reasonable key until we start supporting
post-quantum cryptography.
This limit is chosen to allow bit-sizes to be stored in 16 bits, with
65535 left to indicate an invalid value. It's a whole number of bytes,
which facilitates some calculations, in particular allowing a key of
exactly PSA_CRYPTO_MAX_STORAGE_SIZE to be created but not one bit
more.
As a resource usage limit, this is arguably too large, but that's out
of scope of the current commit.
Test that key import, generation and derivation reject overly large
sizes.
Move the "core attributes" to a substructure of psa_key_attribute_t.
The motivation is to be able to use the new structure
psa_core_key_attributes_t internally.
For a key in a secure element, save the bit size alongside the slot
number.
This is a quick-and-dirty implementation where the storage format
depends on sizeof(size_t), which is fragile. This should be replaced
by a more robust implementation before going into production.
Add a parameter to the key import method of a secure element driver to
make it report the key size in bits. This is necessary (otherwise the
core has no idea what the bit-size is), and making import report it is
easier than adding a separate method (for other key creation methods,
this information is an input, not an output).
Nothing has been saved to disk yet, but there is stale data in
psa_crypto_transaction. This stale data should not be reused, but do
wipe it to reduce the risk of it mattering somehow in the future.