The PSA_KEY_TYPE_PASSWORD key type to which this documentation change
refers to is not yet present in the code and will be introduced by a
parallel line of work.
Signed-off-by: Janos Follath <janos.follath@arm.com>
PAKE protocols make use of a range of cryptographic schemes and
primitives. Standards allow for several options to use for each of them.
They call the combination of specific algorithms cipher suites,
configurations or options.
Cipher suites are represented by a separate data type for several
reasons:
1. To allow for individual PAKE protocols to provide pre-defined cipher
suites.
2. To organise cipher suites into a unit that can be handled separately
from the operation context. The PAKE operation flow is already
complex, will be even more so when key confirmation is added.
Handling them separately should reduce the surface of the interface
the application developer needs to pay attention at any given time.
Signed-off-by: Janos Follath <janos.follath@arm.com>
No change of behaviour, encoding or naming intended in this commit: just
describe the same behaviour, but in a way that's hopefully clearer and
more complete.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Note on naming: previously considered input_numeric but then thought the
other two input function are "input <name>" not "input <adjective>" so
decided to follow that pattern. input_int would be shorter but sounds
too much like the C type, which could be confusing as that's not the
type of the parameter; IMO "integer" avoids that problem.
Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
Where a change was necessary, the new documentation was copied from the
PSA Crypto API spec exactly, with the exception of PSA_AEAD_TAG_LENGTH,
which needed some adjustment.
Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
Add an elliptic curve family for the twisted Edwards curves
Edwards25519 and Edwards448 ("Goldilocks"). As with Montgomery curves,
since these are the only two curves in common use, the family has a
generic name.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
In Doxygen documentation, use \c rather than \p when discussing
something that isn't a parameter of the current macro or function.
Where needed, explain what the thing is.
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
The return values of the functions are updated in the documetation.
All possible return values are added including nested functions' return
values. The values which cannot be returned are removed.
Signed-off-by: gabor-mezei-arm <gabor.mezei@arm.com>
Add the mbedtls_set_key_owner_id API,
API specific to the MbedTLS PSA implementation.
The API allows to define the owner of
volatile keys.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
Move all the PSA crypto APIs using key handles
to use key identifiers but psa_key_open() and
psa_key_close(). This is done without modifying
any test as key handles and key identifiers are
now the same.
Update the library modules using PSA crypto APIs
to get rid of key handles.
Programs and unit tests are updated to not use
key handles in subsequent commits, not in this
one.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
With PSA crypto v1.0.0, a volatile key identifier may
contain a owner identifier but no file is associated
to it. Thus rename the type psa_key_file_id_t to
mbedtls_svc_key_id_t to avoid a direct link with a
file when a key identifier involves an owner
identifier.
The new type name is prefixed by mbedtls to highlight
that the type is specific to Mbed TLS implementation
and not defined in the PSA Cryptography API
specification.
The svc in the type name stands for service as this
is the key identifier type from the point of view of
the service providing the Cryptography services.
The service can be completely provided by the present
library or partially in case of a multi-client service.
As a consequence rename as well:
. MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER to
MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER
. PSA_KEY_ID_INIT to MBEDTLS_SVC_KEY_ID_INIT
. PSA_KEY_FILE_GET_KEY_ID to MBEDTLS_SVC_KEY_ID_GET_KEY_ID
. psa_key_file_id_make to mbedtls_svc_key_id_make
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
The purpose of this commit and the following is for
psa_key_id_t to always be as defined by the PSA
Cryptography API specification.
Currently psa_key_id_t departs from its specification
definition when MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER
configuration flag is set. In that configuration, it is set
to be equal to psa_key_file_id_t which in that configuration
encodes an owner identifier along the key identifier.
Type psa_key_file_id_t was meant to be the key identifier type
used throughout the library code. If
MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER is set it
includes both a key and owner identifier, otherwise it is
equal to psa_key_id_t.
It has not been the key identifier type throughout the
library so far because when the PSA Cryptography
specification was developped the library Doxygen
documentation was used to generate the PSA Cryptography API
specification thus the need to use psa_key_id_t and not
psa_key_file_id_t.
As this constraint does not hold anymore, move
to psa_key_file_id_t as the key identifier type throughout
the library code.
By the way, this commit updates the key identifier
initialization in the tests to be compatible with a
composit key identifier. A psa_key_id_make()
inline function is introduced to initialize key
identifiers (composit ot not) at runtime.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
As a result, the copyright of contributors other than Arm is now
acknowledged, and the years of publishing are no longer tracked in the
source files.
Also remove the now-redundant lines declaring that the files are part of
MbedTLS.
This commit was generated using the following script:
# ========================
#!/bin/sh
# Find files
find '(' -path './.git' -o -path './3rdparty' ')' -prune -o -type f -print | xargs sed -bi '
# Replace copyright attribution line
s/Copyright.*Arm.*/Copyright The Mbed TLS Contributors/I
# Remove redundant declaration and the preceding line
$!N
/This file is part of Mbed TLS/Id
P
D
'
# ========================
Signed-off-by: Bence Szépkúti <bence.szepkuti@arm.com>
Follow the PSA Crypto specification which was updated between 1.0 beta3
and 1.0.0.
Add corresponding test cases.
Signed-off-by: Steven Cooreman <steven.cooreman@silabs.com>
Rename PSA_ECC_CURVE_xxx to PSA_ECC_FAMILY_xxx, also rename
PSA_KEY_TYPE_GET_CURVE to PSA_KEY_TYPE_ECC_GET_FAMILY and rename
psa_ecc_curve_t to psa_ecc_family_t. Old defines are provided in
include/crypto_compat.h for backward compatibility.
Signed-off-by: Paul Elliott <paul.elliott@arm.com>
Define constants for ECC curve families and DH group families. These
constants have 0x0000 in the lower 16 bits of the key type.
Support these constants in the implementation and in the PSA metadata
tests.
Switch the slot management and secure element driver HAL tests to the
new curve encodings. This requires SE driver code to become slightly
more clever when figuring out the bit-size of an imported EC key since
it now needs to take the data size into account.
Switch some documentation to the new encodings.
Remove the macro PSA_ECC_CURVE_BITS which can no longer be implemented.
Whether a parameter should be const is an implementation detail of the
function, so don't declare a parameter of psa_hash_compare as
const. (This only applies to parameters themselves, not to objects
that pointer parameters points to.)
Rename some macros and functions related to signature which are
changing as part of the addition of psa_sign_message and
psa_verify_message.
perl -i -pe '%t = (
PSA_KEY_USAGE_SIGN => PSA_KEY_USAGE_SIGN_HASH,
PSA_KEY_USAGE_VERIFY => PSA_KEY_USAGE_VERIFY_HASH,
PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE => PSA_SIGNATURE_MAX_SIZE,
PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE => PSA_SIGN_OUTPUT_SIZE,
psa_asymmetric_sign => psa_sign_hash,
psa_asymmetric_verify => psa_verify_hash,
); s/\b(@{[join("|", keys %t)]})\b/$t{$1}/ge' $(git ls-files . ':!:**/crypto_compat.h')
Document that passing 0 to a close/destroy function does nothing and
returns PSA_SUCCESS.
Although this was not written explicitly, the specification strongly
suggested that this would return PSA_ERROR_INVALID_HANDLE. While
returning INVALID_HANDLE makes sense, it was awkward for a very common
programming style where applications can store 0 in a handle variable
to indicate that the handle has been closed or has never been open:
applications had to either check if (handle != 0) before calling
psa_close_key(handle) or psa_destroy_key(handle), or ignore errors
from the close/destroy function. Now applications following this style
can just call psa_close_key(handle) or psa_destroy_key(handle).
If none of the inputs to a key derivation is a
PSA_KEY_DERIVATION_INPUT_SECRET passed with
psa_key_derivation_input_key(), forbid
psa_key_derivation_output_key(). It usually doesn't make sense to
derive a key object if the secret isn't itself a proper key.
Allow a direct input as the SECRET input step in a key derivation, in
addition to allowing DERIVE keys. This makes it easier for
applications to run a key derivation where the "secret" input is
obtained from somewhere else. This makes it possible for the "secret"
input to be empty (keys cannot be empty), which some protocols do (for
example the IV derivation in EAP-TLS).
Conversely, allow a RAW_DATA key as the INFO/LABEL/SALT/SEED input to a key
derivation, in addition to allowing direct inputs. This doesn't
improve security, but removes a step when a personalization parameter
is stored in the key store, and allows this personalization parameter
to remain opaque.
Add test cases that explore step/key-type-and-keyhood combinations.
Keys of size 0 generally don't make sense: a key is supposed to be
secret. There is one edge case which is "raw data" keys, which are
useful to store non-key objects in the same storage location as keys.
However those are also problematic because they involve a zero-length
buffer. Manipulating zero-length buffers in C requires special cases
with functions like malloc() and memcpy(). Additionally, 0 as a key
size already has a meaning "unspecified", which does not always
overlap seamlessly with the meaning "0".
Therefore, forbid keys of size 0. No implementation may accept them.
Clarify how key creation functions use attributes. Explain the meaning
of attribute values, espcially what 0 means in each field where it has
a special meaning. Explain what an algorithm usage policy can be (an
algorithm, a wildcard with ANY_HASH, or 0).
* open output distinct key handles
* each handle must be closed
* destroying a key does not invalidate other handles
* closing a key can/might fail an active operation (but not required)
It may be possible that the implementation runs out of
memory when exporting a key from storage or a secure
element. For example, it may not be possible to directly
move the data from storage to the caller, so the implementation
will have to buffer the material temporarily (an issue if dynamic
memory allocation scheme is used). For a large key
this is more likely to return.
It may be possible that an implementation does not
fetch key material until a command like
this is called and such an error may occur if an
off-chip secure storage dependency may have been wiped.
Note that PSA_ERROR_NOT_PERMITTED is not included
because I can't think of a scenario where you have
a valid key handle but aren't allowed to read the
attributes