This is the first step towards making verify_chain() iterative. While from a
readability point of view the current recursive version is fine, one of the
goals of this refactoring is to prepare for restartable ECC integration, which
will need the explicit stack anyway.
Besides avoiding near-duplication, this avoids having three generations of
certificate (child, parent, grandparent) in one function, with all the
off-by-one opportunities that come with it.
This also allows to simplify the signature of verify_child(), which will be
done in next commit.
This is from the morally 5th (and soon obsolete) invocation of this function
in verify_top().
Doing this badtime-skipping when we search for a parent in the provided chain
is a change of behaviour, but it's backwards-compatible: it can only cause us
to accept valid chains that we used to reject before. Eg if the peer has a
chain with two version of an intermediate certificate with different validity
periods, the first non valid and the second valid - such cases are probably
rare or users would have complained already, but it doesn't hurt to handle it
properly as it allows for more uniform code.
This may look like a behaviour change because one check has been added to the
function that was previously done in only one of the 3 call sites. However it
is not, because:
- for the 2 call sites in verify(), the test always succeeds as path_cnt is 0.
- for the call site in verify_child(), the same test was done later anyway in
verify_top()
There are 3 instance that were replaced, but 2 instances of variants of this
function exist and will be handled next (the extra parameter that isn't used
so far is in preparation for that):
- one in verify_child() where path_cnt constraint is handled too
- one in verify_top() where there is extra logic to skip parents that are
expired or future, but only if there are better parents to be found
This is a slight change of behaviour in that the previous condition was:
- same subject
- signature matches
while the new condition is:
- exact same certificate
However the documentation for mbedtls_x509_crt_verify() (note on trust_ca)
mentions the new condition, so code that respected the documentation will keep
working.
In addition, this is a bit faster as it doesn't check the self-signature
(which never needs to be checked for certs in the trusted list).
When we're looking for a parent, in trusted CAs, 'top' should be 1.
This only impacted which call site for verify_top() was chosen, and the error
was then fixed inside verify_top() by iterating over CAs again, this time
correctly setting 'top' to 1.
This is the beginning of a series of commits refactoring the chain
building/verification functions in order to:
- make it simpler to understand and work with
- prepare integration of restartable ECC
Our current behaviour is a bit inconsistent here:
- when the bad signature is made by a trusted CA, we stop here and don't
include the trusted CA in the chain (don't call vrfy on it)
- otherwise, we just add NOT_TRUSTED to the flags but keep building the chain
and call vrfy on the upper certs
This ensures that the callback can actually clear that flag, and that it is
seen by the callback at the right level. This flag is not set at the same
place than others, and this difference will get bigger in the upcoming
refactor, so let's ensure we don't break anything here.
When a trusted CA is rolling its root keys, it could happen that for some
users the list of trusted roots contains two versions of the same CA with the
same name but different keys. Currently this is supported but wasn't tested.
Note: the intermediate file test-ca-alt.csr is commited on purpose, as not
commiting intermediate files causes make to regenerate files that we don't
want it to touch.
As we accept EE certs that are explicitly trusted (in the list of trusted
roots) and usually look for parent by subject, and in the future we might want
to avoid checking the self-signature on trusted certs, there could a risk that we
incorrectly accept a cert that looks like a trusted root except it doesn't
have the same key. This test ensures this will never happen.
The tests cover chains of length 0, 1 and 2, with one error, located at any of
the available levels in the chain. This exercises all three call sites of
f_vrfy (two in verify_top, one in verify_child). Chains of greater length
would not cover any new code path or behaviour that I can see.
So far there was no test ensuring that the flags passed to the vrfy callback
are correct (ie the flags for the current certificate, not including those of
the parent).
Actual tests case making use of that test function will be added in the next
commit.
md() already checks for md_info == NULL. Also, in the future it might also
return other errors (eg hardware errors if acceleration is used), so it make
more sense to check its return value than to check for NULL ourselves and then
assume no other error can occur.
Also, currently, md_info == NULL can never happen except if the MD and OID modules
get out of sync, or if the user messes with members of the x509_crt structure
directly.
This commit does not change the current behaviour, which is to treat MD errors
the same way as a bad signature or no trusted root.
The fact that self-signed end-entity certs can be explicitly trusted by
putting them in the CA list even if they don't have the CA bit was not
documented though it's intentional, and tested by "Certificate verification #73
(selfsigned trusted without CA bit)" in test_suite_x509parse.data
It is unclear to me whether the restriction that explicitly trusted end-entity
certs must be self-signed is a good one. However, it seems intentional as it is
tested in tests #42 and #43, so I'm not touching it for now.
With cmake, CFLAGS has to be set when invoking cmake, not make (which totally
ignores the value of CFLAGS when it runs and only keeps the one from cmake).
Also, in that case the flags were either redundant (-Werror etc) or wrong
(-std=c99 -pedantic) as some parts of the library will not build with
-pedantic (see the other -pedantic tests, which are correct, for what needs to
be disabled).