2018-12-12 13:38:31 +01:00
|
|
|
|
/**
|
|
|
|
|
* \file psa/crypto_values.h
|
|
|
|
|
*
|
|
|
|
|
* \brief PSA cryptography module: macros to build and analyze integer values.
|
|
|
|
|
*
|
|
|
|
|
* \note This file may not be included directly. Applications must
|
|
|
|
|
* include psa/crypto.h. Drivers must include the appropriate driver
|
|
|
|
|
* header file.
|
|
|
|
|
*
|
|
|
|
|
* This file contains portable definitions of macros to build and analyze
|
|
|
|
|
* values of integral types that encode properties of cryptographic keys,
|
|
|
|
|
* designations of cryptographic algorithms, and error codes returned by
|
|
|
|
|
* the library.
|
|
|
|
|
*
|
2022-06-20 18:41:20 +02:00
|
|
|
|
* Note that many of the constants defined in this file are embedded in
|
|
|
|
|
* the persistent key store, as part of key metadata (including usage
|
|
|
|
|
* policies). As a consequence, they must not be changed (unless the storage
|
|
|
|
|
* format version changes).
|
|
|
|
|
*
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* This header file only defines preprocessor macros.
|
|
|
|
|
*/
|
|
|
|
|
/*
|
2020-08-07 13:07:28 +02:00
|
|
|
|
* Copyright The Mbed TLS Contributors
|
2023-11-02 20:47:20 +01:00
|
|
|
|
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#ifndef PSA_CRYPTO_VALUES_H
|
|
|
|
|
#define PSA_CRYPTO_VALUES_H
|
2021-05-19 17:32:44 +02:00
|
|
|
|
#include "mbedtls/private_access.h"
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** \defgroup error Error codes
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
2019-02-14 12:48:10 +01:00
|
|
|
|
/* PSA error codes */
|
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Error codes are standardized across PSA domains (framework, crypto, storage,
|
2022-06-29 14:37:17 +02:00
|
|
|
|
* etc.). Do not change the values in this section or even the expansions
|
|
|
|
|
* of each macro: it must be possible to `#include` both this header
|
|
|
|
|
* and some other PSA component's headers in the same C source,
|
|
|
|
|
* which will lead to duplicate definitions of the `PSA_SUCCESS` and
|
|
|
|
|
* `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
|
|
|
|
|
* to the same sequence of tokens.
|
|
|
|
|
*
|
|
|
|
|
* If you must add a new
|
2022-06-20 18:41:20 +02:00
|
|
|
|
* value, check with the Arm PSA framework group to pick one that other
|
|
|
|
|
* domains aren't already using. */
|
|
|
|
|
|
2023-01-04 19:50:27 +01:00
|
|
|
|
/* Tell uncrustify not to touch the constant definitions, otherwise
|
|
|
|
|
* it might change the spacing to something that is not PSA-compliant
|
|
|
|
|
* (e.g. adding a space after casts).
|
|
|
|
|
*
|
|
|
|
|
* *INDENT-OFF*
|
|
|
|
|
*/
|
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** The action was completed successfully. */
|
|
|
|
|
#define PSA_SUCCESS ((psa_status_t)0)
|
|
|
|
|
|
|
|
|
|
/** An error occurred that does not correspond to any defined
|
|
|
|
|
* failure cause.
|
|
|
|
|
*
|
|
|
|
|
* Implementations may use this error code if none of the other standard
|
|
|
|
|
* error codes are applicable. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The requested operation or a parameter is not supported
|
|
|
|
|
* by this implementation.
|
|
|
|
|
*
|
|
|
|
|
* Implementations should return this error code when an enumeration
|
|
|
|
|
* parameter such as a key type, algorithm, etc. is not recognized.
|
|
|
|
|
* If a combination of parameters is recognized and identified as
|
|
|
|
|
* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The requested action is denied by a policy.
|
|
|
|
|
*
|
|
|
|
|
* Implementations should return this error code when the parameters
|
|
|
|
|
* are recognized as valid and supported, and a policy explicitly
|
|
|
|
|
* denies the requested operation.
|
|
|
|
|
*
|
|
|
|
|
* If a subset of the parameters of a function call identify a
|
|
|
|
|
* forbidden operation, and another subset of the parameters are
|
|
|
|
|
* not valid or not supported, it is unspecified whether the function
|
|
|
|
|
* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
|
|
|
|
|
* #PSA_ERROR_INVALID_ARGUMENT. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** An output buffer is too small.
|
|
|
|
|
*
|
|
|
|
|
* Applications can call the \c PSA_xxx_SIZE macro listed in the function
|
|
|
|
|
* description to determine a sufficient buffer size.
|
|
|
|
|
*
|
|
|
|
|
* Implementations should preferably return this error code only
|
|
|
|
|
* in cases when performing the operation with a larger output
|
|
|
|
|
* buffer would succeed. However implementations may return this
|
|
|
|
|
* error if a function has invalid or unsupported parameters in addition
|
|
|
|
|
* to the parameters that determine the necessary output buffer size. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-02-14 12:48:10 +01:00
|
|
|
|
/** Asking for an item that already exists
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2019-02-14 12:48:10 +01:00
|
|
|
|
* Implementations should return this error, when attempting
|
|
|
|
|
* to write an item (like a key) that already exists. */
|
|
|
|
|
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-02-14 12:48:10 +01:00
|
|
|
|
/** Asking for an item that doesn't exist
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2019-02-14 12:48:10 +01:00
|
|
|
|
* Implementations should return this error, if a requested item (like
|
|
|
|
|
* a key) does not exist. */
|
|
|
|
|
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The requested action cannot be performed in the current state.
|
|
|
|
|
*
|
|
|
|
|
* Multipart operations return this error when one of the
|
|
|
|
|
* functions is called out of sequence. Refer to the function
|
|
|
|
|
* descriptions for permitted sequencing of functions.
|
|
|
|
|
*
|
|
|
|
|
* Implementations shall not return this error code to indicate
|
2019-05-14 16:24:21 +02:00
|
|
|
|
* that a key either exists or not,
|
|
|
|
|
* but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
|
2019-05-15 12:36:13 +02:00
|
|
|
|
* as applicable.
|
|
|
|
|
*
|
|
|
|
|
* Implementations shall not return this error code to indicate that a
|
2020-08-04 09:51:30 +02:00
|
|
|
|
* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
|
2019-05-15 12:36:13 +02:00
|
|
|
|
* instead. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The parameters passed to the function are invalid.
|
|
|
|
|
*
|
|
|
|
|
* Implementations may return this error any time a parameter or
|
|
|
|
|
* combination of parameters are recognized as invalid.
|
|
|
|
|
*
|
2019-05-15 12:36:13 +02:00
|
|
|
|
* Implementations shall not return this error code to indicate that a
|
2020-08-04 09:51:30 +02:00
|
|
|
|
* key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* instead.
|
|
|
|
|
*/
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** There is not enough runtime memory.
|
|
|
|
|
*
|
|
|
|
|
* If the action is carried out across multiple security realms, this
|
|
|
|
|
* error can refer to available memory in any of the security realms. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** There is not enough persistent storage.
|
|
|
|
|
*
|
|
|
|
|
* Functions that modify the key storage return this error code if
|
|
|
|
|
* there is insufficient storage space on the host media. In addition,
|
|
|
|
|
* many functions that do not otherwise access storage may return this
|
|
|
|
|
* error code if the implementation requires a mandatory log entry for
|
|
|
|
|
* the requested action and the log storage space is full. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** There was a communication failure inside the implementation.
|
|
|
|
|
*
|
|
|
|
|
* This can indicate a communication failure between the application
|
|
|
|
|
* and an external cryptoprocessor or between the cryptoprocessor and
|
|
|
|
|
* an external volatile or persistent memory. A communication failure
|
|
|
|
|
* may be transient or permanent depending on the cause.
|
|
|
|
|
*
|
|
|
|
|
* \warning If a function returns this error, it is undetermined
|
|
|
|
|
* whether the requested action has completed or not. Implementations
|
2019-07-18 13:52:30 +02:00
|
|
|
|
* should return #PSA_SUCCESS on successful completion whenever
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
|
|
|
|
|
* if the requested action was completed successfully in an external
|
|
|
|
|
* cryptoprocessor but there was a breakdown of communication before
|
|
|
|
|
* the cryptoprocessor could report the status to the application.
|
|
|
|
|
*/
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** There was a storage failure that may have led to data loss.
|
|
|
|
|
*
|
|
|
|
|
* This error indicates that some persistent storage is corrupted.
|
|
|
|
|
* It should not be used for a corruption of volatile memory
|
2019-05-16 21:35:18 +02:00
|
|
|
|
* (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* between the cryptoprocessor and its external storage (use
|
|
|
|
|
* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
|
|
|
|
|
* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
|
|
|
|
|
*
|
|
|
|
|
* Note that a storage failure does not indicate that any data that was
|
|
|
|
|
* previously read is invalid. However this previously read data may no
|
|
|
|
|
* longer be readable from storage.
|
|
|
|
|
*
|
|
|
|
|
* When a storage failure occurs, it is no longer possible to ensure
|
|
|
|
|
* the global integrity of the keystore. Depending on the global
|
|
|
|
|
* integrity guarantees offered by the implementation, access to other
|
|
|
|
|
* data may or may not fail even if the data is still readable but
|
2019-02-22 16:42:11 +01:00
|
|
|
|
* its integrity cannot be guaranteed.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* Implementations should only use this error code to report a
|
|
|
|
|
* permanent storage corruption. However application writers should
|
|
|
|
|
* keep in mind that transient errors while reading the storage may be
|
|
|
|
|
* reported using this error code. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** A hardware failure was detected.
|
|
|
|
|
*
|
|
|
|
|
* A hardware failure may be transient or permanent depending on the
|
|
|
|
|
* cause. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** A tampering attempt was detected.
|
|
|
|
|
*
|
|
|
|
|
* If an application receives this error code, there is no guarantee
|
|
|
|
|
* that previously accessed or computed data was correct and remains
|
|
|
|
|
* confidential. Applications should not perform any security function
|
|
|
|
|
* and should enter a safe failure state.
|
|
|
|
|
*
|
|
|
|
|
* Implementations may return this error code if they detect an invalid
|
|
|
|
|
* state that cannot happen during normal operation and that indicates
|
|
|
|
|
* that the implementation's security guarantees no longer hold. Depending
|
|
|
|
|
* on the implementation architecture and on its security and safety goals,
|
|
|
|
|
* the implementation may forcibly terminate the application.
|
|
|
|
|
*
|
|
|
|
|
* This error code is intended as a last resort when a security breach
|
|
|
|
|
* is detected and it is unsure whether the keystore data is still
|
|
|
|
|
* protected. Implementations shall only return this error code
|
|
|
|
|
* to report an alarm from a tampering detector, to indicate that
|
|
|
|
|
* the confidentiality of stored data can no longer be guaranteed,
|
|
|
|
|
* or to indicate that the integrity of previously returned data is now
|
|
|
|
|
* considered compromised. Implementations shall not use this error code
|
|
|
|
|
* to indicate a hardware failure that merely makes it impossible to
|
|
|
|
|
* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
|
|
|
|
|
* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
|
|
|
|
|
* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
|
|
|
|
|
* instead).
|
|
|
|
|
*
|
|
|
|
|
* This error indicates an attack against the application. Implementations
|
|
|
|
|
* shall not return this error code as a consequence of the behavior of
|
|
|
|
|
* the application itself. */
|
2019-05-16 21:35:18 +02:00
|
|
|
|
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** There is not enough entropy to generate random data needed
|
|
|
|
|
* for the requested action.
|
|
|
|
|
*
|
|
|
|
|
* This error indicates a failure of a hardware random generator.
|
|
|
|
|
* Application writers should note that this error can be returned not
|
|
|
|
|
* only by functions whose purpose is to generate random data, such
|
|
|
|
|
* as key, IV or nonce generation, but also by functions that execute
|
|
|
|
|
* an algorithm with a randomized result, as well as functions that
|
|
|
|
|
* use randomization of intermediate computations as a countermeasure
|
|
|
|
|
* to certain attacks.
|
|
|
|
|
*
|
|
|
|
|
* Implementations should avoid returning this error after psa_crypto_init()
|
|
|
|
|
* has succeeded. Implementations should generate sufficient
|
|
|
|
|
* entropy during initialization and subsequently use a cryptographically
|
|
|
|
|
* secure pseudorandom generator (PRNG). However implementations may return
|
|
|
|
|
* this error at any time if a policy requires the PRNG to be reseeded
|
|
|
|
|
* during normal operation. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The signature, MAC or hash is incorrect.
|
|
|
|
|
*
|
|
|
|
|
* Verification functions return this error if the verification
|
|
|
|
|
* calculations completed successfully, and the value to be verified
|
|
|
|
|
* was determined to be incorrect.
|
|
|
|
|
*
|
|
|
|
|
* If the value to verify has an invalid size, implementations may return
|
|
|
|
|
* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The decrypted padding is incorrect.
|
|
|
|
|
*
|
|
|
|
|
* \warning In some protocols, when decrypting data, it is essential that
|
|
|
|
|
* the behavior of the application does not depend on whether the padding
|
|
|
|
|
* is correct, down to precise timing. Applications should prefer
|
|
|
|
|
* protocols that use authenticated encryption rather than plain
|
|
|
|
|
* encryption. If the application must perform a decryption of
|
|
|
|
|
* unauthenticated data, the application writer should take care not
|
|
|
|
|
* to reveal whether the padding is invalid.
|
|
|
|
|
*
|
|
|
|
|
* Implementations should strive to make valid and invalid padding
|
|
|
|
|
* as close as possible to indistinguishable to an external observer.
|
|
|
|
|
* In particular, the timing of a decryption operation should not
|
|
|
|
|
* depend on the validity of the padding. */
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-02-14 12:48:10 +01:00
|
|
|
|
/** Return this error when there's insufficient data when attempting
|
|
|
|
|
* to read from a resource. */
|
|
|
|
|
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2020-08-04 09:51:30 +02:00
|
|
|
|
/** The key identifier is not valid. See also :ref:\`key-handles\`.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
2019-02-14 12:48:10 +01:00
|
|
|
|
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2020-11-09 16:36:46 +01:00
|
|
|
|
/** Stored data has been corrupted.
|
|
|
|
|
*
|
|
|
|
|
* This error indicates that some persistent storage has suffered corruption.
|
|
|
|
|
* It does not indicate the following situations, which have specific error
|
|
|
|
|
* codes:
|
|
|
|
|
*
|
|
|
|
|
* - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
|
|
|
|
|
* - A communication error between the cryptoprocessor and its external
|
|
|
|
|
* storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
|
|
|
|
|
* - When the storage is in a valid state but is full - use
|
|
|
|
|
* #PSA_ERROR_INSUFFICIENT_STORAGE.
|
|
|
|
|
* - When the storage fails for other reasons - use
|
|
|
|
|
* #PSA_ERROR_STORAGE_FAILURE.
|
|
|
|
|
* - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
|
|
|
|
|
*
|
|
|
|
|
* \note A storage corruption does not indicate that any data that was
|
|
|
|
|
* previously read is invalid. However this previously read data might no
|
|
|
|
|
* longer be readable from storage.
|
|
|
|
|
*
|
|
|
|
|
* When a storage failure occurs, it is no longer possible to ensure the
|
|
|
|
|
* global integrity of the keystore.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
|
|
|
|
|
|
2020-11-09 17:39:56 +01:00
|
|
|
|
/** Data read from storage is not valid for the implementation.
|
|
|
|
|
*
|
|
|
|
|
* This error indicates that some data read from storage does not have a valid
|
|
|
|
|
* format. It does not indicate the following situations, which have specific
|
|
|
|
|
* error codes:
|
|
|
|
|
*
|
|
|
|
|
* - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
|
|
|
|
|
* - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
|
|
|
|
|
* - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
|
|
|
|
|
*
|
|
|
|
|
* This error is typically a result of either storage corruption on a
|
|
|
|
|
* cleartext storage backend, or an attempt to read data that was
|
|
|
|
|
* written by an incompatible version of the library.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
|
|
|
|
|
|
2022-09-09 18:15:43 +02:00
|
|
|
|
/** The function that returns this status is defined as interruptible and
|
|
|
|
|
* still has work to do, thus the user should call the function again with the
|
|
|
|
|
* same operation context until it either returns #PSA_SUCCESS or any other
|
|
|
|
|
* error. This is not an error per se, more a notification of status.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
|
|
|
|
|
|
2023-01-04 19:50:27 +01:00
|
|
|
|
/* *INDENT-ON* */
|
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/**@}*/
|
|
|
|
|
|
|
|
|
|
/** \defgroup crypto_types Key and algorithm types
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Note that key type values, including ECC family and DH group values, are
|
|
|
|
|
* embedded in the persistent key store, as part of key metadata. As a
|
|
|
|
|
* consequence, they must not be changed (unless the storage format version
|
|
|
|
|
* changes).
|
|
|
|
|
*/
|
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** An invalid key type value.
|
|
|
|
|
*
|
|
|
|
|
* Zero is not the encoding of any key type.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-09-24 14:11:49 +02:00
|
|
|
|
/** Vendor-defined key type flag.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* Key types defined by this standard will never have the
|
|
|
|
|
* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
|
|
|
|
|
* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
|
|
|
|
|
* respect the bitwise structure used by standard encodings whenever practical.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
|
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
|
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
|
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
|
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-09-24 14:11:49 +02:00
|
|
|
|
/** Whether a key type is vendor-defined.
|
|
|
|
|
*
|
|
|
|
|
* See also #PSA_KEY_TYPE_VENDOR_FLAG.
|
|
|
|
|
*/
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
|
|
|
|
|
(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
|
|
|
|
|
|
|
|
|
|
/** Whether a key type is an unstructured array of bytes.
|
|
|
|
|
*
|
|
|
|
|
* This encompasses both symmetric keys and non-key data.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
|
2019-12-04 18:58:44 +01:00
|
|
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
|
|
|
|
|
((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Whether a key type is asymmetric: either a key pair or a public key. */
|
|
|
|
|
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
|
|
|
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK \
|
|
|
|
|
& ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
|
|
|
|
|
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
|
|
|
|
|
/** Whether a key type is the public part of a key pair. */
|
|
|
|
|
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
|
|
|
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
|
|
|
|
|
/** Whether a key type is a key pair containing a private part and a public
|
|
|
|
|
* part. */
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
|
|
|
|
|
/** The key pair type corresponding to a public key type.
|
|
|
|
|
*
|
|
|
|
|
* You may also pass a key pair type as \p type, it will be left unchanged.
|
|
|
|
|
*
|
|
|
|
|
* \param type A public key type or key pair type.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding key pair type.
|
|
|
|
|
* If \p type is not a public key or a key pair,
|
|
|
|
|
* the return value is undefined.
|
|
|
|
|
*/
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
|
|
|
|
|
/** The public key type corresponding to a key pair type.
|
|
|
|
|
*
|
|
|
|
|
* You may also pass a key pair type as \p type, it will be left unchanged.
|
|
|
|
|
*
|
|
|
|
|
* \param type A public key type or key pair type.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding public key type.
|
|
|
|
|
* If \p type is not a public key or a key pair,
|
|
|
|
|
* the return value is undefined.
|
|
|
|
|
*/
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
|
|
|
|
|
|
|
|
|
|
/** Raw data.
|
|
|
|
|
*
|
|
|
|
|
* A "key" of this type cannot be used for any cryptographic operation.
|
|
|
|
|
* Applications may use this type to store arbitrary data in the keystore. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** HMAC key.
|
|
|
|
|
*
|
|
|
|
|
* The key policy determines which underlying hash algorithm the key can be
|
|
|
|
|
* used for.
|
|
|
|
|
*
|
|
|
|
|
* HMAC keys should generally have the same size as the underlying hash.
|
2020-12-18 14:23:51 +01:00
|
|
|
|
* This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* \c alg is the HMAC algorithm or the underlying hash algorithm. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** A secret for key derivation.
|
2021-04-30 11:37:57 +02:00
|
|
|
|
*
|
|
|
|
|
* This key type is for high-entropy secrets only. For low-entropy secrets,
|
|
|
|
|
* #PSA_KEY_TYPE_PASSWORD should be used instead.
|
|
|
|
|
*
|
|
|
|
|
* These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
|
|
|
|
|
* #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* The key policy determines which key derivation algorithm the key
|
|
|
|
|
* can be used for.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-04-20 11:18:25 +02:00
|
|
|
|
/** A low-entropy secret for password hashing or key derivation.
|
|
|
|
|
*
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* This key type is suitable for passwords and passphrases which are typically
|
|
|
|
|
* intended to be memorizable by humans, and have a low entropy relative to
|
|
|
|
|
* their size. It can be used for randomly generated or derived keys with
|
2021-05-07 12:11:38 +02:00
|
|
|
|
* maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* for such keys. It is not suitable for passwords with extremely low entropy,
|
|
|
|
|
* such as numerical PINs.
|
|
|
|
|
*
|
|
|
|
|
* These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
|
|
|
|
|
* key derivation algorithms. Algorithms that accept such an input were
|
|
|
|
|
* designed to accept low-entropy secret and are known as password hashing or
|
|
|
|
|
* key stretching algorithms.
|
|
|
|
|
*
|
|
|
|
|
* These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
|
|
|
|
|
* key derivation algorithms, as the algorithms that take such an input expect
|
|
|
|
|
* it to be high-entropy.
|
|
|
|
|
*
|
|
|
|
|
* The key policy determines which key derivation algorithm the key can be
|
|
|
|
|
* used for, among the permissible subset defined above.
|
2021-04-20 11:18:25 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
|
2021-04-20 11:18:25 +02:00
|
|
|
|
|
2021-05-03 10:49:54 +02:00
|
|
|
|
/** A secret value that can be used to verify a password hash.
|
|
|
|
|
*
|
|
|
|
|
* The key policy determines which key derivation algorithm the key
|
|
|
|
|
* can be used for, among the same permissible subset as for
|
|
|
|
|
* #PSA_KEY_TYPE_PASSWORD.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
|
2021-05-03 10:49:54 +02:00
|
|
|
|
|
2021-04-30 11:37:57 +02:00
|
|
|
|
/** A secret value that can be used in when computing a password hash.
|
2021-04-20 11:18:25 +02:00
|
|
|
|
*
|
|
|
|
|
* The key policy determines which key derivation algorithm the key
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* can be used for, among the subset of algorithms that can use pepper.
|
2021-04-20 11:18:25 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
|
2021-04-20 11:18:25 +02:00
|
|
|
|
|
2019-05-21 16:01:06 +02:00
|
|
|
|
/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
|
|
|
|
|
* 32 bytes (AES-256).
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-09-21 11:59:39 +02:00
|
|
|
|
/** Key for a cipher, AEAD or MAC algorithm based on the
|
|
|
|
|
* ARIA block cipher. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
|
2021-09-21 11:59:39 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
|
|
|
|
|
*
|
2021-03-16 18:21:34 +01:00
|
|
|
|
* The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
|
|
|
|
|
* 192 bits (3-key 3DES).
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* Note that single DES and 2-key 3DES are weak and strongly
|
|
|
|
|
* deprecated and should only be used to decrypt legacy data. 3-key 3DES
|
|
|
|
|
* is weak and deprecated and should only be used in legacy protocols.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-05-21 16:01:06 +02:00
|
|
|
|
/** Key for a cipher, AEAD or MAC algorithm based on the
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* Camellia block cipher. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-05-06 15:20:04 +02:00
|
|
|
|
/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
|
|
|
|
|
*
|
|
|
|
|
* ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
|
|
|
|
|
*
|
2022-03-10 18:36:37 +01:00
|
|
|
|
* \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
|
|
|
|
|
* 12-byte nonces.
|
|
|
|
|
*
|
|
|
|
|
* \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
|
|
|
|
|
* with the initial counter value 1, you can process and discard a
|
|
|
|
|
* 64-byte block before the real data.
|
2019-05-06 15:20:04 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
|
2019-05-06 15:20:04 +02:00
|
|
|
|
|
2021-03-16 18:19:18 +01:00
|
|
|
|
/** RSA public key.
|
|
|
|
|
*
|
|
|
|
|
* The size of an RSA key is the bit size of the modulus.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
|
2021-03-16 18:19:18 +01:00
|
|
|
|
/** RSA key pair (private and public key).
|
|
|
|
|
*
|
|
|
|
|
* The size of an RSA key is the bit size of the modulus.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Whether a key type is an RSA key (pair or public-only). */
|
|
|
|
|
#define PSA_KEY_TYPE_IS_RSA(type) \
|
2019-05-16 19:39:54 +02:00
|
|
|
|
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
|
|
|
|
|
#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
|
|
|
|
|
#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
|
2019-09-25 23:16:21 +02:00
|
|
|
|
/** Elliptic curve key pair.
|
2021-03-16 18:19:18 +01:00
|
|
|
|
*
|
|
|
|
|
* The size of an elliptic curve key is the bit size associated with the curve,
|
|
|
|
|
* i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
|
|
|
|
|
* See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
|
2019-09-25 23:16:21 +02:00
|
|
|
|
*
|
2020-06-02 18:19:28 +02:00
|
|
|
|
* \param curve A value of type ::psa_ecc_family_t that
|
|
|
|
|
* identifies the ECC curve to be used.
|
2019-09-25 23:16:21 +02:00
|
|
|
|
*/
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
|
|
|
|
|
(PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
|
2019-09-25 23:16:21 +02:00
|
|
|
|
/** Elliptic curve public key.
|
2021-03-16 18:19:18 +01:00
|
|
|
|
*
|
|
|
|
|
* The size of an elliptic curve public key is the same as the corresponding
|
|
|
|
|
* private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
|
|
|
|
|
* `PSA_ECC_FAMILY_xxx` curve families).
|
2019-09-25 23:16:21 +02:00
|
|
|
|
*
|
2020-06-02 18:19:28 +02:00
|
|
|
|
* \param curve A value of type ::psa_ecc_family_t that
|
|
|
|
|
* identifies the ECC curve to be used.
|
2019-09-25 23:16:21 +02:00
|
|
|
|
*/
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
|
|
|
|
|
(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
|
|
|
|
|
|
|
|
|
|
/** Whether a key type is an elliptic curve key (pair or public-only). */
|
|
|
|
|
#define PSA_KEY_TYPE_IS_ECC(type) \
|
2019-05-16 19:39:54 +02:00
|
|
|
|
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
|
2018-12-12 14:02:48 +01:00
|
|
|
|
/** Whether a key type is an elliptic curve key pair. */
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
|
2019-05-16 19:39:54 +02:00
|
|
|
|
PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
|
2018-12-12 14:02:48 +01:00
|
|
|
|
/** Whether a key type is an elliptic curve public key. */
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
|
|
|
|
|
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
|
|
|
|
|
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
|
|
|
|
|
|
|
|
|
|
/** Extract the curve from an elliptic curve key type. */
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
|
|
|
|
|
((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
|
|
|
|
|
0))
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2022-01-20 22:41:17 +01:00
|
|
|
|
/** Check if the curve of given family is Weierstrass elliptic curve. */
|
|
|
|
|
#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
|
|
|
|
|
|
2019-12-03 17:24:19 +01:00
|
|
|
|
/** SEC Koblitz curves over prime fields.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following curves:
|
|
|
|
|
* secp192k1, secp224k1, secp256k1.
|
|
|
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
|
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
|
|
|
* https://www.secg.org/sec2-v2.pdf
|
2024-01-03 20:59:03 +01:00
|
|
|
|
*
|
|
|
|
|
* \note For secp224k1, the bit-size is 225 (size of a private value).
|
2024-01-03 20:59:38 +01:00
|
|
|
|
*
|
|
|
|
|
* \note Mbed TLS only supports secp192k1 and secp256k1.
|
2019-12-03 17:24:19 +01:00
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
|
|
|
|
/** SEC random curves over prime fields.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following curves:
|
2024-01-03 20:58:55 +01:00
|
|
|
|
* secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
|
2019-12-03 17:24:19 +01:00
|
|
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
|
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
|
|
|
* https://www.secg.org/sec2-v2.pdf
|
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
|
2024-01-03 20:59:38 +01:00
|
|
|
|
/* SECP160R2 (SEC2 v1, obsolete, not supported in Mbed TLS) */
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
|
|
|
|
/** SEC Koblitz curves over binary fields.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following curves:
|
|
|
|
|
* sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
|
|
|
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
|
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
|
|
|
* https://www.secg.org/sec2-v2.pdf
|
2024-01-03 20:59:38 +01:00
|
|
|
|
*
|
|
|
|
|
* \note Mbed TLS does not support any curve in this family.
|
2019-12-03 17:24:19 +01:00
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
|
|
|
|
/** SEC random curves over binary fields.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following curves:
|
|
|
|
|
* sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
|
|
|
|
|
* They are defined in _Standards for Efficient Cryptography_,
|
|
|
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
|
|
|
* https://www.secg.org/sec2-v2.pdf
|
2024-01-03 20:59:38 +01:00
|
|
|
|
*
|
|
|
|
|
* \note Mbed TLS does not support any curve in this family.
|
2019-12-03 17:24:19 +01:00
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
|
|
|
|
/** SEC additional random curves over binary fields.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following curve:
|
|
|
|
|
* sect163r2.
|
|
|
|
|
* It is defined in _Standards for Efficient Cryptography_,
|
|
|
|
|
* _SEC 2: Recommended Elliptic Curve Domain Parameters_.
|
|
|
|
|
* https://www.secg.org/sec2-v2.pdf
|
2024-01-03 20:59:38 +01:00
|
|
|
|
*
|
|
|
|
|
* \note Mbed TLS does not support any curve in this family.
|
2019-12-03 17:24:19 +01:00
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
|
|
|
|
/** Brainpool P random curves.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following curves:
|
|
|
|
|
* brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
|
|
|
|
|
* brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
|
|
|
|
|
* It is defined in RFC 5639.
|
2024-01-03 20:59:38 +01:00
|
|
|
|
*
|
|
|
|
|
* \note Mbed TLS only supports the 256-bit, 384-bit and 512-bit curves
|
|
|
|
|
* in this family.
|
2019-12-03 17:24:19 +01:00
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
|
|
|
|
/** Curve25519 and Curve448.
|
|
|
|
|
*
|
|
|
|
|
* This family comprises the following Montgomery curves:
|
|
|
|
|
* - 255-bit: Bernstein et al.,
|
|
|
|
|
* _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
|
|
|
|
|
* The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
|
|
|
|
|
* - 448-bit: Hamburg,
|
|
|
|
|
* _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
|
|
|
|
|
* The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
|
|
|
|
|
*/
|
2020-06-02 18:19:28 +02:00
|
|
|
|
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
2021-02-24 21:49:40 +01:00
|
|
|
|
/** The twisted Edwards curves Ed25519 and Ed448.
|
|
|
|
|
*
|
2021-02-24 21:52:21 +01:00
|
|
|
|
* These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
|
2021-03-16 18:25:14 +01:00
|
|
|
|
* #PSA_ALG_ED25519PH for the 255-bit curve,
|
2021-02-24 21:52:21 +01:00
|
|
|
|
* #PSA_ALG_ED448PH for the 448-bit curve).
|
2021-02-24 21:49:40 +01:00
|
|
|
|
*
|
|
|
|
|
* This family comprises the following twisted Edwards curves:
|
2021-03-16 18:25:14 +01:00
|
|
|
|
* - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
|
2021-02-24 21:49:40 +01:00
|
|
|
|
* to Curve25519.
|
|
|
|
|
* Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
|
|
|
|
|
* - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
|
|
|
|
|
* to Curve448.
|
|
|
|
|
* Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
|
2024-01-03 20:59:38 +01:00
|
|
|
|
*
|
|
|
|
|
* \note Mbed TLS does not support Edwards curves yet.
|
2021-02-24 21:49:40 +01:00
|
|
|
|
*/
|
|
|
|
|
#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
|
|
|
|
|
#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
|
|
|
|
|
#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
|
2019-09-25 23:16:21 +02:00
|
|
|
|
/** Diffie-Hellman key pair.
|
|
|
|
|
*
|
2020-06-03 16:17:39 +02:00
|
|
|
|
* \param group A value of type ::psa_dh_family_t that identifies the
|
2019-09-25 23:16:21 +02:00
|
|
|
|
* Diffie-Hellman group to be used.
|
|
|
|
|
*/
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
|
|
|
|
|
(PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
|
2019-09-25 23:16:21 +02:00
|
|
|
|
/** Diffie-Hellman public key.
|
|
|
|
|
*
|
2020-06-03 16:17:39 +02:00
|
|
|
|
* \param group A value of type ::psa_dh_family_t that identifies the
|
2019-09-25 23:16:21 +02:00
|
|
|
|
* Diffie-Hellman group to be used.
|
|
|
|
|
*/
|
2019-05-16 12:55:35 +02:00
|
|
|
|
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
|
|
|
|
|
(PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
|
|
|
|
|
|
|
|
|
|
/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
|
|
|
|
|
#define PSA_KEY_TYPE_IS_DH(type) \
|
2019-05-16 19:39:54 +02:00
|
|
|
|
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
|
2019-05-16 12:55:35 +02:00
|
|
|
|
~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
|
|
|
|
|
/** Whether a key type is a Diffie-Hellman key pair. */
|
2019-05-16 19:39:54 +02:00
|
|
|
|
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
|
2019-05-16 12:55:35 +02:00
|
|
|
|
(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
|
2019-05-16 19:39:54 +02:00
|
|
|
|
PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
|
2019-05-16 12:55:35 +02:00
|
|
|
|
/** Whether a key type is a Diffie-Hellman public key. */
|
|
|
|
|
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
|
|
|
|
|
(((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
|
|
|
|
|
PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
|
|
|
|
|
|
|
|
|
|
/** Extract the group from a Diffie-Hellman key type. */
|
2020-06-03 16:17:39 +02:00
|
|
|
|
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
|
|
|
|
|
((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
|
|
|
|
|
0))
|
2019-05-16 12:55:35 +02:00
|
|
|
|
|
2019-12-03 17:24:19 +01:00
|
|
|
|
/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
|
|
|
|
|
*
|
|
|
|
|
* This family includes groups with the following key sizes (in bits):
|
|
|
|
|
* 2048, 3072, 4096, 6144, 8192. A given implementation may support
|
|
|
|
|
* all of these sizes or only a subset.
|
|
|
|
|
*/
|
2020-06-03 16:17:39 +02:00
|
|
|
|
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
|
2019-12-03 17:24:19 +01:00
|
|
|
|
|
2019-12-02 17:44:12 +01:00
|
|
|
|
#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
|
2019-12-04 17:18:41 +01:00
|
|
|
|
(((type) >> 8) & 7)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** The block size of a block cipher.
|
|
|
|
|
*
|
|
|
|
|
* \param type A cipher key type (value of type #psa_key_type_t).
|
|
|
|
|
*
|
|
|
|
|
* \return The block size for a block cipher, or 1 for a stream cipher.
|
|
|
|
|
* The return value is undefined if \p type is not a supported
|
|
|
|
|
* cipher key type.
|
|
|
|
|
*
|
|
|
|
|
* \note It is possible to build stream cipher algorithms on top of a block
|
|
|
|
|
* cipher, for example CTR mode (#PSA_ALG_CTR).
|
|
|
|
|
* This macro only takes the key type into account, so it cannot be
|
|
|
|
|
* used to determine the size of the data that #psa_cipher_update()
|
|
|
|
|
* might buffer for future processing in general.
|
|
|
|
|
*
|
|
|
|
|
* \note This macro returns a compile-time constant if its argument is one.
|
|
|
|
|
*
|
|
|
|
|
* \warning This macro may evaluate its argument multiple times.
|
|
|
|
|
*/
|
2020-12-18 14:23:51 +01:00
|
|
|
|
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
|
2019-12-02 17:44:12 +01:00
|
|
|
|
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
|
2020-12-18 14:23:51 +01:00
|
|
|
|
1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
0u)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Note that algorithm values are embedded in the persistent key store,
|
|
|
|
|
* as part of key metadata. As a consequence, they must not be changed
|
|
|
|
|
* (unless the storage format version changes).
|
|
|
|
|
*/
|
|
|
|
|
|
2019-09-24 14:11:49 +02:00
|
|
|
|
/** Vendor-defined algorithm flag.
|
|
|
|
|
*
|
|
|
|
|
* Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
|
|
|
|
|
* bit set. Vendors who define additional algorithms must use an encoding with
|
|
|
|
|
* the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
|
|
|
|
|
* used by standard encodings whenever practical.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
|
2019-09-24 14:11:49 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
|
|
|
|
|
#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-09-24 14:11:49 +02:00
|
|
|
|
/** Whether an algorithm is vendor-defined.
|
|
|
|
|
*
|
|
|
|
|
* See also #PSA_ALG_VENDOR_FLAG.
|
|
|
|
|
*/
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_VENDOR_FLAG) != 0)
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a hash algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a hash algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_HASH(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a MAC algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a MAC algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_MAC(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a symmetric cipher algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_CIPHER(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is an authenticated encryption
|
|
|
|
|
* with associated data (AEAD) algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_AEAD(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
|
|
|
|
|
|
2020-05-26 17:07:16 +02:00
|
|
|
|
/** Whether the specified algorithm is an asymmetric signature algorithm,
|
2020-05-05 16:05:26 +02:00
|
|
|
|
* also known as public-key signature algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
2020-05-05 16:05:26 +02:00
|
|
|
|
* \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_SIGN(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
|
|
|
|
|
|
2020-05-05 16:05:26 +02:00
|
|
|
|
/** Whether the specified algorithm is an asymmetric encryption algorithm,
|
|
|
|
|
* also known as public-key encryption algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
2020-05-05 16:05:26 +02:00
|
|
|
|
* \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a key agreement algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
|
2019-02-08 11:24:59 +01:00
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a key derivation algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_KEY_DERIVATION(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
|
|
2021-04-20 13:07:21 +02:00
|
|
|
|
/** Whether the specified algorithm is a key stretching / password hashing
|
|
|
|
|
* algorithm.
|
|
|
|
|
*
|
|
|
|
|
* A key stretching / password hashing algorithm is a key derivation algorithm
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* that is suitable for use with a low-entropy secret such as a password.
|
|
|
|
|
* Equivalently, it's a key derivation algorithm that uses a
|
|
|
|
|
* #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
|
2021-04-20 13:07:21 +02:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* \return 1 if \p alg is a key stretching / password hashing algorithm, 0
|
2021-04-20 13:07:21 +02:00
|
|
|
|
* otherwise. This macro may return either 0 or 1 if \p alg is not a
|
|
|
|
|
* supported algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
|
|
|
|
|
(PSA_ALG_IS_KEY_DERIVATION(alg) && \
|
|
|
|
|
(alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
|
|
|
|
|
|
2021-08-26 12:52:56 +02:00
|
|
|
|
/** An invalid algorithm identifier value. */
|
2023-01-04 19:52:38 +01:00
|
|
|
|
/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
|
2021-08-26 12:52:56 +02:00
|
|
|
|
#define PSA_ALG_NONE ((psa_algorithm_t)0)
|
2023-01-04 19:52:38 +01:00
|
|
|
|
/* *INDENT-ON* */
|
2021-08-26 12:52:56 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
|
2019-09-20 17:01:11 +02:00
|
|
|
|
/** MD5 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
|
2019-09-20 17:01:11 +02:00
|
|
|
|
/** PSA_ALG_RIPEMD160 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
|
2019-09-20 17:01:11 +02:00
|
|
|
|
/** SHA1 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA2-224 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA2-256 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA2-384 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA2-512 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA2-512/224 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA2-512/256 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA3-224 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA3-256 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA3-384 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** SHA3-512 */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
|
2021-03-03 17:45:06 +01:00
|
|
|
|
/** The first 512 bits (64 bytes) of the SHAKE256 output.
|
2021-02-24 21:52:21 +01:00
|
|
|
|
*
|
|
|
|
|
* This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
|
|
|
|
|
* scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
|
|
|
|
|
* has the same output size and a (theoretically) higher security strength.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-01-28 13:29:01 +01:00
|
|
|
|
/** In a hash-and-sign algorithm policy, allow any hash algorithm.
|
2019-01-14 16:06:39 +01:00
|
|
|
|
*
|
2019-01-28 13:29:01 +01:00
|
|
|
|
* This value may be used to form the algorithm usage field of a policy
|
|
|
|
|
* for a signature algorithm that is parametrized by a hash. The key
|
|
|
|
|
* may then be used to perform operations using the same signature
|
|
|
|
|
* algorithm parametrized with any supported hash.
|
2019-01-14 16:06:39 +01:00
|
|
|
|
*
|
2019-01-28 13:29:01 +01:00
|
|
|
|
* That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
|
2021-10-04 18:10:38 +02:00
|
|
|
|
* - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
|
2019-01-28 13:29:01 +01:00
|
|
|
|
* Then you may create and use a key as follows:
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
|
|
|
|
|
* ```
|
2019-11-26 17:01:59 +01:00
|
|
|
|
* psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
|
2019-05-15 16:09:46 +02:00
|
|
|
|
* psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* ```
|
|
|
|
|
* - Import or generate key material.
|
2019-11-26 17:01:59 +01:00
|
|
|
|
* - Call psa_sign_hash() or psa_verify_hash(), passing
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
|
|
|
|
|
* call to sign or verify a message may use a different hash.
|
|
|
|
|
* ```
|
2020-08-04 09:51:30 +02:00
|
|
|
|
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
|
|
|
|
|
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
|
|
|
|
|
* psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* ```
|
|
|
|
|
*
|
|
|
|
|
* This value may not be used to build other algorithms that are
|
|
|
|
|
* parametrized over a hash. For any valid use of this macro to build
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
|
2019-01-14 16:06:39 +01:00
|
|
|
|
*
|
|
|
|
|
* This value may not be used to build an algorithm specification to
|
|
|
|
|
* perform an operation. It is only valid to build policies.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
|
2019-01-14 16:06:39 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
|
|
|
|
|
#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Macro to build an HMAC algorithm.
|
|
|
|
|
*
|
|
|
|
|
* For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding HMAC algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_HMAC(hash_alg) \
|
|
|
|
|
(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
|
|
|
|
|
(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is an HMAC algorithm.
|
|
|
|
|
*
|
|
|
|
|
* HMAC is a family of MAC algorithms that are based on a hash function.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_HMAC(alg) \
|
|
|
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
|
|
|
|
|
PSA_ALG_HMAC_BASE)
|
|
|
|
|
|
|
|
|
|
/* In the encoding of a MAC algorithm, the bits corresponding to
|
|
|
|
|
* PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
|
|
|
|
|
* truncated. As an exception, the value 0 means the untruncated algorithm,
|
|
|
|
|
* whatever its length is. The length is encoded in 6 bits, so it can
|
|
|
|
|
* reach up to 63; the largest MAC is 64 bytes so its trivial truncation
|
|
|
|
|
* to full length is correctly encoded as 0 and any non-trivial truncation
|
|
|
|
|
* is correctly encoded as a value between 1 and 63. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
|
2020-12-03 21:40:17 +01:00
|
|
|
|
#define PSA_MAC_TRUNCATION_OFFSET 16
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-02-22 19:59:35 +01:00
|
|
|
|
/* In the encoding of a MAC algorithm, the bit corresponding to
|
|
|
|
|
* #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
|
2021-03-02 11:44:51 +01:00
|
|
|
|
* is a wildcard algorithm. A key with such wildcard algorithm as permitted
|
|
|
|
|
* algorithm policy can be used with any algorithm corresponding to the
|
2021-02-22 19:59:35 +01:00
|
|
|
|
* same base class and having a (potentially truncated) MAC length greater or
|
|
|
|
|
* equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
|
2021-02-22 19:59:35 +01:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Macro to build a truncated MAC algorithm.
|
|
|
|
|
*
|
|
|
|
|
* A truncated MAC algorithm is identical to the corresponding MAC
|
|
|
|
|
* algorithm except that the MAC value for the truncated algorithm
|
|
|
|
|
* consists of only the first \p mac_length bytes of the MAC value
|
|
|
|
|
* for the untruncated algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \note This macro may allow constructing algorithm identifiers that
|
|
|
|
|
* are not valid, either because the specified length is larger
|
|
|
|
|
* than the untruncated MAC or because the specified length is
|
|
|
|
|
* smaller than permitted by the implementation.
|
|
|
|
|
*
|
|
|
|
|
* \note It is implementation-defined whether a truncated MAC that
|
|
|
|
|
* is truncated to the same length as the MAC of the untruncated
|
|
|
|
|
* algorithm is considered identical to the untruncated algorithm
|
|
|
|
|
* for policy comparison purposes.
|
|
|
|
|
*
|
2018-10-19 11:30:26 +02:00
|
|
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* is true). This may be a truncated or untruncated
|
|
|
|
|
* MAC algorithm.
|
|
|
|
|
* \param mac_length Desired length of the truncated MAC in bytes.
|
|
|
|
|
* This must be at most the full length of the MAC
|
|
|
|
|
* and must be at least an implementation-specified
|
|
|
|
|
* minimum. The implementation-specified minimum
|
|
|
|
|
* shall not be zero.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding MAC algorithm with the specified
|
|
|
|
|
* length.
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* \return Unspecified if \p mac_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* MAC algorithm or if \p mac_length is too small or
|
|
|
|
|
* too large for the specified MAC algorithm.
|
|
|
|
|
*/
|
2021-03-02 11:44:51 +01:00
|
|
|
|
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
|
|
|
|
|
(((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
|
|
|
|
|
PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
|
|
|
|
|
|
|
|
|
|
/** Macro to build the base MAC algorithm corresponding to a truncated
|
|
|
|
|
* MAC algorithm.
|
|
|
|
|
*
|
2018-10-19 11:30:26 +02:00
|
|
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* is true). This may be a truncated or untruncated
|
|
|
|
|
* MAC algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding base MAC algorithm.
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* \return Unspecified if \p mac_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* MAC algorithm.
|
|
|
|
|
*/
|
2021-03-02 11:44:51 +01:00
|
|
|
|
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
|
|
|
|
|
((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
|
|
|
|
|
PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Length to which a MAC algorithm is truncated.
|
|
|
|
|
*
|
2018-10-19 11:30:26 +02:00
|
|
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* is true).
|
|
|
|
|
*
|
|
|
|
|
* \return Length of the truncated MAC in bytes.
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* \return 0 if \p mac_alg is a non-truncated MAC algorithm.
|
|
|
|
|
* \return Unspecified if \p mac_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* MAC algorithm.
|
|
|
|
|
*/
|
2018-10-19 11:30:26 +02:00
|
|
|
|
#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
|
|
|
|
|
(((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-02-08 11:44:21 +01:00
|
|
|
|
/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*
|
2021-02-25 10:20:29 +01:00
|
|
|
|
* A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
|
2021-02-08 11:44:21 +01:00
|
|
|
|
* sharing the same base algorithm, and where the (potentially truncated) MAC
|
|
|
|
|
* length of the specific algorithm is equal to or larger then the wildcard
|
|
|
|
|
* algorithm's minimum MAC length.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*
|
2021-02-18 12:08:41 +01:00
|
|
|
|
* \note When setting the minimum required MAC length to less than the
|
|
|
|
|
* smallest MAC length allowed by the base algorithm, this effectively
|
|
|
|
|
* becomes an 'any-MAC-length-allowed' policy for that base algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param mac_alg A MAC algorithm identifier (value of type
|
|
|
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
|
|
|
|
|
* is true).
|
|
|
|
|
* \param min_mac_length Desired minimum length of the message authentication
|
|
|
|
|
* code in bytes. This must be at most the untruncated
|
|
|
|
|
* length of the MAC and must be at least 1.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*
|
2021-02-18 12:08:41 +01:00
|
|
|
|
* \return The corresponding MAC wildcard algorithm with the
|
|
|
|
|
* specified minimum length.
|
|
|
|
|
* \return Unspecified if \p mac_alg is not a supported MAC
|
|
|
|
|
* algorithm or if \p min_mac_length is less than 1 or
|
|
|
|
|
* too large for the specified MAC algorithm.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*/
|
2021-03-02 11:44:51 +01:00
|
|
|
|
#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
(PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
|
|
|
|
|
PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
|
2021-02-18 12:03:50 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
|
2019-07-11 16:47:40 +02:00
|
|
|
|
/** The CBC-MAC construction over a block cipher
|
|
|
|
|
*
|
|
|
|
|
* \warning CBC-MAC is insecure in many cases.
|
|
|
|
|
* A more secure mode, such as #PSA_ALG_CMAC, is recommended.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
|
2019-07-11 16:47:40 +02:00
|
|
|
|
/** The CMAC construction over a block cipher */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
|
|
|
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
|
|
|
|
|
PSA_ALG_CIPHER_MAC_BASE)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
|
|
|
|
|
#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a stream cipher.
|
|
|
|
|
*
|
|
|
|
|
* A stream cipher is a symmetric cipher that encrypts or decrypts messages
|
|
|
|
|
* by applying a bitwise-xor with a stream of bytes that is generated
|
|
|
|
|
* from a key.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier or if it is not a symmetric cipher algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_STREAM_CIPHER(alg) \
|
|
|
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
(PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2020-12-07 18:20:28 +01:00
|
|
|
|
/** The stream cipher mode of a stream cipher algorithm.
|
2019-05-06 15:20:04 +02:00
|
|
|
|
*
|
2020-12-07 18:20:28 +01:00
|
|
|
|
* The underlying stream cipher is determined by the key type.
|
2020-12-08 00:08:31 +01:00
|
|
|
|
* - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
|
2019-05-06 15:20:04 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
|
2019-05-06 15:20:04 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** The CTR stream cipher mode.
|
|
|
|
|
*
|
|
|
|
|
* CTR is a stream cipher which is built from a block cipher.
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
* For example, to use AES-128-CTR, use this algorithm with
|
|
|
|
|
* a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-07-11 16:47:40 +02:00
|
|
|
|
/** The CFB stream cipher mode.
|
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-07-11 16:47:40 +02:00
|
|
|
|
/** The OFB stream cipher mode.
|
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The XTS cipher mode.
|
|
|
|
|
*
|
|
|
|
|
* XTS is a cipher mode which is built from a block cipher. It requires at
|
|
|
|
|
* least one full block of input, but beyond this minimum the input
|
|
|
|
|
* does not need to be a whole number of blocks.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2020-07-06 14:08:59 +02:00
|
|
|
|
/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
|
2020-08-25 11:47:50 +02:00
|
|
|
|
*
|
|
|
|
|
* \warning ECB mode does not protect the confidentiality of the encrypted data
|
|
|
|
|
* except in extremely narrow circumstances. It is recommended that applications
|
|
|
|
|
* only use ECB if they need to construct an operating mode that the
|
|
|
|
|
* implementation does not provide. Implementations are encouraged to provide
|
|
|
|
|
* the modes that applications need in preference to supporting direct access
|
|
|
|
|
* to ECB.
|
2020-07-06 14:08:59 +02:00
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
*
|
2020-08-25 11:47:50 +02:00
|
|
|
|
* This symmetric cipher mode can only be used with messages whose lengths are a
|
|
|
|
|
* multiple of the block size of the chosen block cipher.
|
|
|
|
|
*
|
|
|
|
|
* ECB mode does not accept an initialization vector (IV). When using a
|
|
|
|
|
* multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
|
|
|
|
|
* and psa_cipher_set_iv() must not be called.
|
2020-07-06 14:08:59 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
|
2020-07-06 14:08:59 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** The CBC block cipher chaining mode, with no padding.
|
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
*
|
|
|
|
|
* This symmetric cipher mode can only be used with messages whose lengths
|
|
|
|
|
* are whole number of blocks for the chosen block cipher.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The CBC block cipher chaining mode with PKCS#7 padding.
|
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
*
|
|
|
|
|
* This is the padding method defined by PKCS#7 (RFC 2315) §10.3.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
|
2019-05-06 15:10:16 +02:00
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is an AEAD mode on a block cipher.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
|
|
|
|
|
* a block cipher, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
|
|
|
|
|
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
|
|
|
|
|
(PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
|
|
|
|
|
|
2019-02-15 13:02:02 +01:00
|
|
|
|
/** The CCM authenticated encryption algorithm.
|
2019-07-11 16:47:40 +02:00
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
2019-02-15 13:02:02 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
|
2019-02-15 13:02:02 +01:00
|
|
|
|
|
2021-10-14 12:23:06 +02:00
|
|
|
|
/** The CCM* cipher mode without authentication.
|
|
|
|
|
*
|
|
|
|
|
* This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
|
|
|
|
|
* For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
|
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
|
|
|
|
*
|
|
|
|
|
* Currently only 13-byte long IV's are supported.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
|
2021-10-14 12:23:06 +02:00
|
|
|
|
|
2019-02-15 13:02:02 +01:00
|
|
|
|
/** The GCM authenticated encryption algorithm.
|
2019-07-11 16:47:40 +02:00
|
|
|
|
*
|
|
|
|
|
* The underlying block cipher is determined by the key type.
|
2019-02-15 13:02:02 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
|
2019-05-06 15:10:16 +02:00
|
|
|
|
|
|
|
|
|
/** The Chacha20-Poly1305 AEAD algorithm.
|
|
|
|
|
*
|
|
|
|
|
* The ChaCha20_Poly1305 construction is defined in RFC 7539.
|
2019-05-06 15:20:04 +02:00
|
|
|
|
*
|
|
|
|
|
* Implementations must support 12-byte nonces, may support 8-byte nonces,
|
|
|
|
|
* and should reject other sizes.
|
|
|
|
|
*
|
|
|
|
|
* Implementations must support 16-byte tags and should reject other sizes.
|
2019-05-06 15:10:16 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2022-07-28 06:50:56 +02:00
|
|
|
|
/* In the encoding of an AEAD algorithm, the bits corresponding to
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
|
|
|
|
|
* The constants for default lengths follow this encoding.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
|
2020-12-03 21:40:17 +01:00
|
|
|
|
#define PSA_AEAD_TAG_LENGTH_OFFSET 16
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-02-22 19:59:35 +01:00
|
|
|
|
/* In the encoding of an AEAD algorithm, the bit corresponding to
|
|
|
|
|
* #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
|
2021-03-02 11:44:51 +01:00
|
|
|
|
* is a wildcard algorithm. A key with such wildcard algorithm as permitted
|
|
|
|
|
* algorithm policy can be used with any algorithm corresponding to the
|
2021-02-22 19:59:35 +01:00
|
|
|
|
* same base class and having a tag length greater than or equal to the one
|
|
|
|
|
* encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
|
2021-02-22 19:59:35 +01:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Macro to build a shortened AEAD algorithm.
|
|
|
|
|
*
|
|
|
|
|
* A shortened AEAD algorithm is similar to the corresponding AEAD
|
|
|
|
|
* algorithm, but has an authentication tag that consists of fewer bytes.
|
|
|
|
|
* Depending on the algorithm, the tag length may affect the calculation
|
|
|
|
|
* of the ciphertext.
|
|
|
|
|
*
|
2018-10-19 11:30:26 +02:00
|
|
|
|
* \param aead_alg An AEAD algorithm identifier (value of type
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* is true).
|
|
|
|
|
* \param tag_length Desired length of the authentication tag in bytes.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding AEAD algorithm with the specified
|
|
|
|
|
* length.
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* \return Unspecified if \p aead_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* AEAD algorithm or if \p tag_length is not valid
|
|
|
|
|
* for the specified AEAD algorithm.
|
|
|
|
|
*/
|
2020-12-16 11:36:46 +01:00
|
|
|
|
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
|
2021-03-02 11:44:51 +01:00
|
|
|
|
(((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
|
|
|
|
|
PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
PSA_ALG_AEAD_TAG_LENGTH_MASK))
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-02-18 12:03:50 +01:00
|
|
|
|
/** Retrieve the tag length of a specified AEAD algorithm
|
|
|
|
|
*
|
|
|
|
|
* \param aead_alg An AEAD algorithm identifier (value of type
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
|
2021-02-18 12:03:50 +01:00
|
|
|
|
* is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The tag length specified by the input algorithm.
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* \return Unspecified if \p aead_alg is not a supported
|
2021-03-08 17:25:03 +01:00
|
|
|
|
* AEAD algorithm.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
|
|
|
|
|
(((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
PSA_AEAD_TAG_LENGTH_OFFSET)
|
2021-02-18 12:03:50 +01:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Calculate the corresponding AEAD algorithm with the default tag length.
|
|
|
|
|
*
|
2018-10-19 11:30:26 +02:00
|
|
|
|
* \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
|
2021-03-08 17:19:47 +01:00
|
|
|
|
* #PSA_ALG_IS_AEAD(\p aead_alg) is true).
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2018-10-19 11:30:26 +02:00
|
|
|
|
* \return The corresponding AEAD algorithm with the default
|
|
|
|
|
* tag length for that algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
2020-12-16 11:36:46 +01:00
|
|
|
|
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
|
2019-08-21 09:33:04 +02:00
|
|
|
|
( \
|
2020-12-16 11:36:46 +01:00
|
|
|
|
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
|
|
|
|
|
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
|
|
|
|
|
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
0)
|
2020-12-16 11:36:46 +01:00
|
|
|
|
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
|
|
|
|
|
PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
|
|
|
|
|
PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
ref :
|
|
|
|
|
|
2021-02-08 11:44:21 +01:00
|
|
|
|
/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*
|
2021-02-25 10:20:29 +01:00
|
|
|
|
* A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
|
2021-02-18 12:03:50 +01:00
|
|
|
|
* sharing the same base algorithm, and where the tag length of the specific
|
2021-02-08 11:44:21 +01:00
|
|
|
|
* algorithm is equal to or larger then the minimum tag length specified by the
|
|
|
|
|
* wildcard algorithm.
|
2021-02-18 12:03:50 +01:00
|
|
|
|
*
|
2021-02-18 12:08:41 +01:00
|
|
|
|
* \note When setting the minimum required tag length to less than the
|
|
|
|
|
* smallest tag length allowed by the base algorithm, this effectively
|
|
|
|
|
* becomes an 'any-tag-length-allowed' policy for that base algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param aead_alg An AEAD algorithm identifier (value of type
|
|
|
|
|
* #psa_algorithm_t such that
|
|
|
|
|
* #PSA_ALG_IS_AEAD(\p aead_alg) is true).
|
|
|
|
|
* \param min_tag_length Desired minimum length of the authentication tag in
|
|
|
|
|
* bytes. This must be at least 1 and at most the largest
|
|
|
|
|
* allowed tag length of the algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding AEAD wildcard algorithm with the
|
|
|
|
|
* specified minimum length.
|
|
|
|
|
* \return Unspecified if \p aead_alg is not a supported
|
|
|
|
|
* AEAD algorithm or if \p min_tag_length is less than 1
|
|
|
|
|
* or too large for the specified AEAD algorithm.
|
|
|
|
|
*/
|
2021-02-18 12:11:39 +01:00
|
|
|
|
#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
(PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
|
|
|
|
|
PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
|
2021-02-18 12:03:50 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** RSA PKCS#1 v1.5 signature with hashing.
|
|
|
|
|
*
|
|
|
|
|
* This is the signature scheme defined by RFC 8017
|
|
|
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
|
|
|
* RSASSA-PKCS1-v1_5.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
|
|
|
* when specifying the algorithm in a usage policy.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
|
|
|
|
|
(PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
/** Raw PKCS#1 v1.5 signature.
|
|
|
|
|
*
|
|
|
|
|
* The input to this algorithm is the DigestInfo structure used by
|
|
|
|
|
* RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2
|
|
|
|
|
* steps 3–6.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
|
|
|
|
|
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
|
|
|
|
|
#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** RSA PSS signature with hashing.
|
|
|
|
|
*
|
|
|
|
|
* This is the signature scheme defined by RFC 8017
|
|
|
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
|
|
|
* RSASSA-PSS, with the message generation function MGF1, and with
|
2022-06-17 11:25:05 +02:00
|
|
|
|
* a salt length equal to the length of the hash, or the largest
|
|
|
|
|
* possible salt length for the algorithm and key size if that is
|
|
|
|
|
* smaller than the hash length. The specified hash algorithm is
|
|
|
|
|
* used to hash the input message, to create the salted hash, and
|
|
|
|
|
* for the mask generation.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
|
|
|
* when specifying the algorithm in a usage policy.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \return The corresponding RSA PSS signature algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_RSA_PSS(hash_alg) \
|
|
|
|
|
(PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
2021-10-04 18:10:38 +02:00
|
|
|
|
|
|
|
|
|
/** RSA PSS signature with hashing with relaxed verification.
|
|
|
|
|
*
|
|
|
|
|
* This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
|
|
|
|
|
* but allows an arbitrary salt length (including \c 0) when verifying a
|
|
|
|
|
* signature.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
|
|
|
* when specifying the algorithm in a usage policy.
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding RSA PSS signature algorithm.
|
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
|
|
|
|
|
(PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is RSA PSS with standard salt.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm value or an algorithm policy wildcard.
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is of the form
|
|
|
|
|
* #PSA_ALG_RSA_PSS(\c hash_alg),
|
|
|
|
|
* where \c hash_alg is a hash algorithm or
|
|
|
|
|
* #PSA_ALG_ANY_HASH. 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not
|
|
|
|
|
* a supported algorithm identifier or policy.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
|
|
|
|
|
|
2021-10-04 18:10:38 +02:00
|
|
|
|
/** Whether the specified algorithm is RSA PSS with any salt.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm value or an algorithm policy wildcard.
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is of the form
|
|
|
|
|
* #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
|
|
|
|
|
* where \c hash_alg is a hash algorithm or
|
|
|
|
|
* #PSA_ALG_ANY_HASH. 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not
|
|
|
|
|
* a supported algorithm identifier or policy.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is RSA PSS.
|
|
|
|
|
*
|
|
|
|
|
* This includes any of the RSA PSS algorithm variants, regardless of the
|
|
|
|
|
* constraints on salt length.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm value or an algorithm policy wildcard.
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is of the form
|
|
|
|
|
* #PSA_ALG_RSA_PSS(\c hash_alg) or
|
|
|
|
|
* #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
|
|
|
|
|
* where \c hash_alg is a hash algorithm or
|
|
|
|
|
* #PSA_ALG_ANY_HASH. 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not
|
|
|
|
|
* a supported algorithm identifier or policy.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_RSA_PSS(alg) \
|
2021-10-08 16:28:32 +02:00
|
|
|
|
(PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
|
|
|
|
|
PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
|
2021-10-04 18:10:38 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** ECDSA signature with hashing.
|
|
|
|
|
*
|
|
|
|
|
* This is the ECDSA signature scheme defined by ANSI X9.62,
|
|
|
|
|
* with a random per-message secret number (*k*).
|
|
|
|
|
*
|
|
|
|
|
* The representation of the signature as a byte string consists of
|
2021-12-21 06:14:10 +01:00
|
|
|
|
* the concatenation of the signature values *r* and *s*. Each of
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* *r* and *s* is encoded as an *N*-octet string, where *N* is the length
|
|
|
|
|
* of the base point of the curve in octets. Each value is represented
|
|
|
|
|
* in big-endian order (most significant octet first).
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
|
|
|
* when specifying the algorithm in a usage policy.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \return The corresponding ECDSA signature algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_ECDSA(hash_alg) \
|
|
|
|
|
(PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
/** ECDSA signature without hashing.
|
|
|
|
|
*
|
|
|
|
|
* This is the same signature scheme as #PSA_ALG_ECDSA(), but
|
|
|
|
|
* without specifying a hash algorithm. This algorithm may only be
|
|
|
|
|
* used to sign or verify a sequence of bytes that should be an
|
|
|
|
|
* already-calculated hash. Note that the input is padded with
|
|
|
|
|
* zeros on the left or truncated on the left as required to fit
|
|
|
|
|
* the curve size.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Deterministic ECDSA signature with hashing.
|
|
|
|
|
*
|
|
|
|
|
* This is the deterministic ECDSA signature scheme defined by RFC 6979.
|
|
|
|
|
*
|
|
|
|
|
* The representation of a signature is the same as with #PSA_ALG_ECDSA().
|
|
|
|
|
*
|
|
|
|
|
* Note that when this algorithm is used for verification, signatures
|
|
|
|
|
* made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
|
|
|
|
|
* same private key are accepted. In other words,
|
|
|
|
|
* #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
|
|
|
|
|
* #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
2019-01-14 16:06:39 +01:00
|
|
|
|
* This includes #PSA_ALG_ANY_HASH
|
|
|
|
|
* when specifying the algorithm in a usage policy.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \return The corresponding deterministic ECDSA signature
|
|
|
|
|
* algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
|
|
|
|
|
(PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#define PSA_ALG_IS_ECDSA(alg) \
|
2019-11-29 11:55:48 +01:00
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
PSA_ALG_ECDSA_BASE)
|
|
|
|
|
#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
|
2019-11-29 11:55:48 +01:00
|
|
|
|
(((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
|
|
|
|
|
(PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
|
|
|
|
|
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
|
|
|
|
|
(PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
|
|
|
|
|
|
2021-02-24 21:52:21 +01:00
|
|
|
|
/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
|
|
|
|
|
* using standard parameters.
|
|
|
|
|
*
|
|
|
|
|
* Contexts are not supported in the current version of this specification
|
|
|
|
|
* because there is no suitable signature interface that can take the
|
|
|
|
|
* context as a parameter. A future version of this specification may add
|
|
|
|
|
* suitable functions and extend this algorithm to support contexts.
|
|
|
|
|
*
|
|
|
|
|
* PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
|
|
|
|
|
* In this specification, the following curves are supported:
|
|
|
|
|
* - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
|
|
|
|
|
* in RFC 8032.
|
|
|
|
|
* The curve is Edwards25519.
|
|
|
|
|
* The hash function used internally is SHA-512.
|
|
|
|
|
* - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
|
|
|
|
|
* in RFC 8032.
|
|
|
|
|
* The curve is Edwards448.
|
|
|
|
|
* The hash function used internally is the first 114 bytes of the
|
2021-03-16 18:40:36 +01:00
|
|
|
|
* SHAKE256 output.
|
2021-02-24 21:52:21 +01:00
|
|
|
|
*
|
|
|
|
|
* This algorithm can be used with psa_sign_message() and
|
|
|
|
|
* psa_verify_message(). Since there is no prehashing, it cannot be used
|
|
|
|
|
* with psa_sign_hash() or psa_verify_hash().
|
|
|
|
|
*
|
|
|
|
|
* The signature format is the concatenation of R and S as defined by
|
|
|
|
|
* RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
|
|
|
|
|
* string for Ed448).
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
|
2021-02-24 21:52:21 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
|
2021-02-24 21:52:21 +01:00
|
|
|
|
#define PSA_ALG_IS_HASH_EDDSA(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
|
|
|
|
|
|
|
|
|
|
/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
|
2021-03-01 10:20:20 +01:00
|
|
|
|
* using SHA-512 and the Edwards25519 curve.
|
2021-02-24 21:52:21 +01:00
|
|
|
|
*
|
|
|
|
|
* See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
|
|
|
|
|
*
|
|
|
|
|
* This algorithm is Ed25519 as specified in RFC 8032.
|
|
|
|
|
* The curve is Edwards25519.
|
2021-03-01 10:28:29 +01:00
|
|
|
|
* The prehash is SHA-512.
|
2021-03-16 18:40:36 +01:00
|
|
|
|
* The hash function used internally is SHA-512.
|
2021-03-01 10:28:29 +01:00
|
|
|
|
*
|
|
|
|
|
* This is a hash-and-sign algorithm: to calculate a signature,
|
|
|
|
|
* you can either:
|
|
|
|
|
* - call psa_sign_message() on the message;
|
|
|
|
|
* - or calculate the SHA-512 hash of the message
|
|
|
|
|
* with psa_hash_compute()
|
|
|
|
|
* or with a multi-part hash operation started with psa_hash_setup(),
|
|
|
|
|
* using the hash algorithm #PSA_ALG_SHA_512,
|
|
|
|
|
* then sign the calculated hash with psa_sign_hash().
|
|
|
|
|
* Verifying a signature is similar, using psa_verify_message() or
|
|
|
|
|
* psa_verify_hash() instead of the signature function.
|
2021-02-24 21:52:21 +01:00
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_ED25519PH \
|
|
|
|
|
(PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
|
|
|
|
|
* using SHAKE256 and the Edwards448 curve.
|
|
|
|
|
*
|
|
|
|
|
* See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
|
|
|
|
|
*
|
|
|
|
|
* This algorithm is Ed448 as specified in RFC 8032.
|
|
|
|
|
* The curve is Edwards448.
|
2021-03-01 10:28:29 +01:00
|
|
|
|
* The prehash is the first 64 bytes of the SHAKE256 output.
|
2021-02-24 21:52:21 +01:00
|
|
|
|
* The hash function used internally is the first 114 bytes of the
|
2021-03-16 18:40:36 +01:00
|
|
|
|
* SHAKE256 output.
|
2021-03-01 10:28:29 +01:00
|
|
|
|
*
|
|
|
|
|
* This is a hash-and-sign algorithm: to calculate a signature,
|
|
|
|
|
* you can either:
|
|
|
|
|
* - call psa_sign_message() on the message;
|
|
|
|
|
* - or calculate the first 64 bytes of the SHAKE256 output of the message
|
|
|
|
|
* with psa_hash_compute()
|
|
|
|
|
* or with a multi-part hash operation started with psa_hash_setup(),
|
2021-03-03 17:45:06 +01:00
|
|
|
|
* using the hash algorithm #PSA_ALG_SHAKE256_512,
|
2021-03-01 10:28:29 +01:00
|
|
|
|
* then sign the calculated hash with psa_sign_hash().
|
|
|
|
|
* Verifying a signature is similar, using psa_verify_message() or
|
|
|
|
|
* psa_verify_hash() instead of the signature function.
|
2021-02-24 21:52:21 +01:00
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_ED448PH \
|
2021-03-03 17:45:06 +01:00
|
|
|
|
(PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
|
2021-02-24 21:52:21 +01:00
|
|
|
|
|
2021-02-24 21:39:52 +01:00
|
|
|
|
/* Default definition, to be overridden if the library is extended with
|
|
|
|
|
* more hash-and-sign algorithms that we want to keep out of this header
|
|
|
|
|
* file. */
|
|
|
|
|
#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
|
|
|
|
|
|
2021-09-22 16:42:02 +02:00
|
|
|
|
/** Whether the specified algorithm is a signature algorithm that can be used
|
|
|
|
|
* with psa_sign_hash() and psa_verify_hash().
|
|
|
|
|
*
|
|
|
|
|
* This encompasses all strict hash-and-sign algorithms categorized by
|
|
|
|
|
* PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
|
|
|
|
|
* paradigm more loosely:
|
|
|
|
|
* - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
|
|
|
|
|
* - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if alg is a signature algorithm that can be used to sign a
|
|
|
|
|
* hash. 0 if alg is a signature algorithm that can only be used
|
|
|
|
|
* to sign a message. 0 if alg is not a signature algorithm.
|
|
|
|
|
* This macro can return either 0 or 1 if alg is not a
|
|
|
|
|
* supported algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_SIGN_HASH(alg) \
|
|
|
|
|
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
|
|
|
|
|
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
|
|
|
|
|
PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a signature algorithm that can be used
|
|
|
|
|
* with psa_sign_message() and psa_verify_message().
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if alg is a signature algorithm that can be used to sign a
|
|
|
|
|
* message. 0 if \p alg is a signature algorithm that can only be used
|
|
|
|
|
* to sign an already-calculated hash. 0 if \p alg is not a signature
|
|
|
|
|
* algorithm. This macro can return either 0 or 1 if \p alg is not a
|
|
|
|
|
* supported algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
(PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
|
2021-09-22 16:42:02 +02:00
|
|
|
|
|
2019-01-14 16:02:15 +01:00
|
|
|
|
/** Whether the specified algorithm is a hash-and-sign algorithm.
|
|
|
|
|
*
|
2020-05-05 16:05:26 +02:00
|
|
|
|
* Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
|
|
|
|
|
* structured in two parts: first the calculation of a hash in a way that
|
|
|
|
|
* does not depend on the key, then the calculation of a signature from the
|
2021-09-22 16:15:05 +02:00
|
|
|
|
* hash value and the key. Hash-and-sign algorithms encode the hash
|
|
|
|
|
* used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
|
|
|
|
|
* to extract this algorithm.
|
|
|
|
|
*
|
|
|
|
|
* Thus, for a hash-and-sign algorithm,
|
|
|
|
|
* `psa_sign_message(key, alg, input, ...)` is equivalent to
|
|
|
|
|
* ```
|
|
|
|
|
* psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
|
|
|
|
|
* psa_sign_hash(key, alg, hash, ..., signature, ...);
|
|
|
|
|
* ```
|
|
|
|
|
* Most usefully, separating the hash from the signature allows the hash
|
|
|
|
|
* to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
|
|
|
|
|
* and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
|
|
|
|
|
* calculating the hash and then calling psa_verify_hash().
|
2019-01-14 16:02:15 +01:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
|
2021-09-22 16:15:05 +02:00
|
|
|
|
(PSA_ALG_IS_SIGN_HASH(alg) && \
|
|
|
|
|
((alg) & PSA_ALG_HASH_MASK) != 0)
|
2019-01-14 16:02:15 +01:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Get the hash used by a hash-and-sign signature algorithm.
|
|
|
|
|
*
|
|
|
|
|
* A hash-and-sign algorithm is a signature algorithm which is
|
|
|
|
|
* composed of two phases: first a hashing phase which does not use
|
|
|
|
|
* the key and produces a hash of the input message, then a signing
|
|
|
|
|
* phase which only uses the hash and the key and not the message
|
|
|
|
|
* itself.
|
|
|
|
|
*
|
|
|
|
|
* \param alg A signature algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_SIGN(\p alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The underlying hash algorithm if \p alg is a hash-and-sign
|
|
|
|
|
* algorithm.
|
|
|
|
|
* \return 0 if \p alg is a signature algorithm that does not
|
|
|
|
|
* follow the hash-and-sign structure.
|
|
|
|
|
* \return Unspecified if \p alg is not a signature algorithm or
|
|
|
|
|
* if it is not supported by the implementation.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_SIGN_GET_HASH(alg) \
|
2019-01-14 16:02:15 +01:00
|
|
|
|
(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
|
2018-12-12 13:38:31 +01:00
|
|
|
|
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
|
|
|
|
|
0)
|
|
|
|
|
|
|
|
|
|
/** RSA PKCS#1 v1.5 encryption.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** RSA OAEP encryption.
|
|
|
|
|
*
|
|
|
|
|
* This is the encryption scheme defined by RFC 8017
|
|
|
|
|
* (PKCS#1: RSA Cryptography Specifications) under the name
|
|
|
|
|
* RSAES-OAEP, with the message generation function MGF1.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
|
|
|
|
|
* for MGF1.
|
|
|
|
|
*
|
2020-05-05 16:00:17 +02:00
|
|
|
|
* \return The corresponding RSA OAEP encryption algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_RSA_OAEP(hash_alg) \
|
|
|
|
|
(PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
#define PSA_ALG_IS_RSA_OAEP(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
|
|
|
|
|
#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
|
|
|
|
|
(PSA_ALG_IS_RSA_OAEP(alg) ? \
|
|
|
|
|
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
|
|
|
|
|
0)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Macro to build an HKDF algorithm.
|
|
|
|
|
*
|
2022-11-08 11:17:00 +01:00
|
|
|
|
* For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2019-01-08 10:31:27 +01:00
|
|
|
|
* This key derivation algorithm uses the following inputs:
|
2019-05-16 16:05:19 +02:00
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
|
2019-01-08 10:31:27 +01:00
|
|
|
|
* It is optional; if omitted, the derivation uses an empty salt.
|
2019-05-16 16:05:19 +02:00
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
|
|
|
|
|
* You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
|
|
|
|
|
* You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
|
2019-01-08 10:31:27 +01:00
|
|
|
|
* starting to generate output.
|
|
|
|
|
*
|
2022-06-03 09:05:08 +02:00
|
|
|
|
* \warning HKDF processes the salt as follows: first hash it with hash_alg
|
|
|
|
|
* if the salt is longer than the block size of the hash algorithm; then
|
|
|
|
|
* pad with null bytes up to the block size. As a result, it is possible
|
|
|
|
|
* for distinct salt inputs to result in the same outputs. To ensure
|
|
|
|
|
* unique outputs, it is recommended to use a fixed length for salt values.
|
|
|
|
|
*
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding HKDF algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_HKDF(hash_alg) \
|
|
|
|
|
(PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
/** Whether the specified algorithm is an HKDF algorithm.
|
|
|
|
|
*
|
|
|
|
|
* HKDF is a family of key derivation algorithms that are based on a hash
|
|
|
|
|
* function and the HMAC construction.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_HKDF(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
|
|
|
|
|
#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
|
|
|
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
|
2022-05-10 12:38:27 +02:00
|
|
|
|
/** Macro to build an HKDF-Extract algorithm.
|
|
|
|
|
*
|
2022-11-08 11:17:00 +01:00
|
|
|
|
* For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
|
2022-05-10 12:38:27 +02:00
|
|
|
|
* HKDF-Extract using HMAC-SHA-256.
|
|
|
|
|
*
|
|
|
|
|
* This key derivation algorithm uses the following inputs:
|
2022-05-18 15:43:54 +02:00
|
|
|
|
* - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
|
2022-05-10 12:38:27 +02:00
|
|
|
|
* - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
|
|
|
|
|
* "extract" step.
|
2022-05-18 15:43:54 +02:00
|
|
|
|
* The inputs are mandatory and must be passed in the order above.
|
|
|
|
|
* Each input may only be passed once.
|
2022-05-10 12:38:27 +02:00
|
|
|
|
*
|
|
|
|
|
* \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
|
|
|
|
|
* should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
|
|
|
|
|
* as a separate algorithm for the sake of protocols that use it as a
|
|
|
|
|
* building block. It may also be a slight performance optimization
|
|
|
|
|
* in applications that use HKDF with the same salt and key but many
|
|
|
|
|
* different info strings.
|
|
|
|
|
*
|
2022-05-18 15:43:54 +02:00
|
|
|
|
* \warning HKDF processes the salt as follows: first hash it with hash_alg
|
|
|
|
|
* if the salt is longer than the block size of the hash algorithm; then
|
|
|
|
|
* pad with null bytes up to the block size. As a result, it is possible
|
|
|
|
|
* for distinct salt inputs to result in the same outputs. To ensure
|
|
|
|
|
* unique outputs, it is recommended to use a fixed length for salt values.
|
|
|
|
|
*
|
2022-05-10 12:38:27 +02:00
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding HKDF-Extract algorithm.
|
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
|
|
|
|
|
(PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
/** Whether the specified algorithm is an HKDF-Extract algorithm.
|
|
|
|
|
*
|
|
|
|
|
* HKDF-Extract is a family of key derivation algorithms that are based
|
|
|
|
|
* on a hash function and the HMAC construction.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
|
2022-05-10 12:38:27 +02:00
|
|
|
|
/** Macro to build an HKDF-Expand algorithm.
|
|
|
|
|
*
|
2022-11-08 11:17:00 +01:00
|
|
|
|
* For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
|
2022-05-10 12:38:27 +02:00
|
|
|
|
* HKDF-Expand using HMAC-SHA-256.
|
|
|
|
|
*
|
|
|
|
|
* This key derivation algorithm uses the following inputs:
|
2022-06-02 11:16:52 +02:00
|
|
|
|
* - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
|
2022-05-10 12:38:27 +02:00
|
|
|
|
* - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
|
|
|
|
|
*
|
|
|
|
|
* The inputs are mandatory and must be passed in the order above.
|
|
|
|
|
* Each input may only be passed once.
|
|
|
|
|
*
|
|
|
|
|
* \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
|
|
|
|
|
* should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
|
|
|
|
|
* a separate algorithm for the sake of protocols that use it as a building
|
|
|
|
|
* block. It may also be a slight performance optimization in applications
|
|
|
|
|
* that use HKDF with the same salt and key but many different info strings.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding HKDF-Expand algorithm.
|
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_HKDF_EXPAND(hash_alg) \
|
|
|
|
|
(PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
2022-05-11 14:16:05 +02:00
|
|
|
|
/** Whether the specified algorithm is an HKDF-Expand algorithm.
|
2022-05-10 12:38:27 +02:00
|
|
|
|
*
|
|
|
|
|
* HKDF-Expand is a family of key derivation algorithms that are based
|
|
|
|
|
* on a hash function and the HMAC construction.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_HKDF_EXPAND(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
|
|
|
|
|
|
2022-06-02 11:37:03 +02:00
|
|
|
|
/** Whether the specified algorithm is an HKDF or HKDF-Extract or
|
|
|
|
|
* HKDF-Expand algorithm.
|
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_ANY_HKDF(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
|
|
|
|
|
((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
|
|
|
|
|
((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Macro to build a TLS-1.2 PRF algorithm.
|
|
|
|
|
*
|
|
|
|
|
* TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
|
|
|
|
|
* specified in Section 5 of RFC 5246. It is based on HMAC and can be
|
|
|
|
|
* used with either SHA-256 or SHA-384.
|
|
|
|
|
*
|
2019-05-29 17:32:39 +02:00
|
|
|
|
* This key derivation algorithm uses the following inputs, which must be
|
|
|
|
|
* passed in the order given here:
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
|
2019-05-21 15:58:13 +02:00
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
|
|
|
|
|
*
|
|
|
|
|
* For the application to TLS-1.2 key expansion, the seed is the
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* concatenation of ServerHello.Random + ClientHello.Random,
|
2019-05-21 15:58:13 +02:00
|
|
|
|
* and the label is "key expansion".
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2022-11-08 11:17:00 +01:00
|
|
|
|
* For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* TLS 1.2 PRF using HMAC-SHA-256.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding TLS-1.2 PRF algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_TLS12_PRF(hash_alg) \
|
|
|
|
|
(PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_TLS12_PRF(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
|
|
|
|
|
#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
|
|
|
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
|
|
|
|
|
*
|
|
|
|
|
* In a pure-PSK handshake in TLS 1.2, the master secret is derived
|
|
|
|
|
* from the PreSharedKey (PSK) through the application of padding
|
|
|
|
|
* (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
|
|
|
|
|
* The latter is based on HMAC and can be used with either SHA-256
|
|
|
|
|
* or SHA-384.
|
|
|
|
|
*
|
2019-05-29 17:32:39 +02:00
|
|
|
|
* This key derivation algorithm uses the following inputs, which must be
|
|
|
|
|
* passed in the order given here:
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
|
2022-04-07 13:38:53 +02:00
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
|
|
|
|
|
* computation of the premaster secret. This input is optional;
|
|
|
|
|
* if omitted, it defaults to a string of null bytes with the same length
|
|
|
|
|
* as the secret (PSK) input.
|
2019-05-21 15:58:13 +02:00
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
|
|
|
|
|
*
|
|
|
|
|
* For the application to TLS-1.2, the seed (which is
|
|
|
|
|
* forwarded to the TLS-1.2 PRF) is the concatenation of the
|
|
|
|
|
* ClientHello.Random + ServerHello.Random,
|
2022-04-07 13:38:53 +02:00
|
|
|
|
* the label is "master secret" or "extended master secret" and
|
|
|
|
|
* the other secret depends on the key exchange specified in the cipher suite:
|
|
|
|
|
* - for a plain PSK cipher suite (RFC 4279, Section 2), omit
|
|
|
|
|
* PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
|
|
|
|
|
* - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
|
|
|
|
|
* (RFC 5489, Section 2), the other secret should be the output of the
|
|
|
|
|
* PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
|
|
|
|
|
* The recommended way to pass this input is to use a key derivation
|
|
|
|
|
* algorithm constructed as
|
|
|
|
|
* PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
|
|
|
|
|
* and to call psa_key_derivation_key_agreement(). Alternatively,
|
|
|
|
|
* this input may be an output of `psa_raw_key_agreement()` passed with
|
|
|
|
|
* psa_key_derivation_input_bytes(), or an equivalent input passed with
|
|
|
|
|
* psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
|
|
|
|
|
* - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
|
|
|
|
|
* should be the 48-byte client challenge (the PreMasterSecret of
|
|
|
|
|
* (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
|
|
|
|
|
* a 46-byte random string chosen by the client. On the server, this is
|
|
|
|
|
* typically an output of psa_asymmetric_decrypt() using
|
|
|
|
|
* PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
|
|
|
|
|
* with `psa_key_derivation_input_bytes()`.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2022-11-08 11:17:00 +01:00
|
|
|
|
* For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
|
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding TLS-1.2 PSK to MS algorithm.
|
2019-03-05 19:32:26 +01:00
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
|
|
|
|
|
(PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
|
|
|
|
|
#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
|
|
|
|
|
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
2022-09-16 13:19:49 +02:00
|
|
|
|
/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
|
|
|
|
|
* in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
|
|
|
|
|
* will use to derive the session secret, as defined by step 2 of
|
|
|
|
|
* https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
|
|
|
|
|
* Uses PSA_ALG_SHA_256.
|
|
|
|
|
* This function takes a single input:
|
|
|
|
|
* #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
|
|
|
|
|
* The only supported curve is secp256r1 (the 256-bit curve in
|
|
|
|
|
* #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
|
2022-09-26 16:59:31 +02:00
|
|
|
|
* The output has to be read as a single chunk of 32 bytes, defined as
|
|
|
|
|
* PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
|
2022-07-29 16:00:16 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
|
2022-07-29 16:00:16 +02:00
|
|
|
|
|
2021-04-20 13:07:21 +02:00
|
|
|
|
/* This flag indicates whether the key derivation algorithm is suitable for
|
|
|
|
|
* use on low-entropy secrets such as password - these algorithms are also
|
|
|
|
|
* known as key stretching or password hashing schemes. These are also the
|
|
|
|
|
* algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
|
2021-05-04 10:19:37 +02:00
|
|
|
|
*
|
|
|
|
|
* Those algorithms cannot be combined with a key agreement algorithm.
|
2021-04-20 13:07:21 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
|
2021-04-20 13:07:21 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
|
2021-04-30 11:37:57 +02:00
|
|
|
|
/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
|
2021-04-20 12:53:07 +02:00
|
|
|
|
*
|
|
|
|
|
* PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* This macro specifies the PBKDF2 algorithm constructed using a PRF based on
|
|
|
|
|
* HMAC with the specified hash.
|
2022-11-08 11:17:00 +01:00
|
|
|
|
* For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* using the PRF HMAC-SHA-256.
|
2021-04-20 12:53:07 +02:00
|
|
|
|
*
|
2021-04-30 12:42:36 +02:00
|
|
|
|
* This key derivation algorithm uses the following inputs, which must be
|
|
|
|
|
* provided in the following order:
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* This input step must be used exactly once.
|
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
|
|
|
|
|
* This input step must be used one or more times; if used several times, the
|
|
|
|
|
* inputs will be concatenated. This can be used to build the final salt
|
|
|
|
|
* from multiple sources, both public and secret (also known as pepper).
|
2021-04-30 12:42:36 +02:00
|
|
|
|
* - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* This input step must be used exactly once.
|
2021-04-20 12:53:07 +02:00
|
|
|
|
*
|
|
|
|
|
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
|
|
|
|
|
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
|
|
|
|
|
*
|
|
|
|
|
* \return The corresponding PBKDF2-HMAC-XXX algorithm.
|
|
|
|
|
* \return Unspecified if \p hash_alg is not a supported
|
|
|
|
|
* hash algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
|
|
|
|
|
(PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
|
|
|
|
|
|
|
|
|
|
/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key derivation algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
|
|
|
|
|
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
|
2023-05-24 09:05:14 +02:00
|
|
|
|
#define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
|
|
|
|
|
(PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
|
2021-05-03 11:41:49 +02:00
|
|
|
|
/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
|
|
|
|
|
*
|
|
|
|
|
* PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
|
|
|
|
|
* This macro specifies the PBKDF2 algorithm constructed using the
|
|
|
|
|
* AES-CMAC-PRF-128 PRF specified by RFC 4615.
|
|
|
|
|
*
|
|
|
|
|
* This key derivation algorithm uses the same inputs as
|
2021-05-04 10:34:56 +02:00
|
|
|
|
* #PSA_ALG_PBKDF2_HMAC() with the same constraints.
|
2021-05-03 11:41:49 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
|
2021-05-03 11:41:49 +02:00
|
|
|
|
|
2023-07-27 17:44:05 +02:00
|
|
|
|
#define PSA_ALG_IS_PBKDF2(kdf_alg) \
|
|
|
|
|
(PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
|
2023-08-16 08:18:27 +02:00
|
|
|
|
((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
|
2023-07-27 17:44:05 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
|
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-01-18 16:44:49 +01:00
|
|
|
|
/** Macro to build a combined algorithm that chains a key agreement with
|
|
|
|
|
* a key derivation.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2019-01-18 16:44:49 +01:00
|
|
|
|
* \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
|
|
|
|
|
* that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
|
|
|
|
|
* \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
|
|
|
|
|
* that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2019-01-18 16:44:49 +01:00
|
|
|
|
* \return The corresponding key agreement and derivation
|
|
|
|
|
* algorithm.
|
|
|
|
|
* \return Unspecified if \p ka_alg is not a supported
|
|
|
|
|
* key agreement algorithm or \p kdf_alg is not a
|
|
|
|
|
* supported key derivation algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
2019-01-18 16:44:49 +01:00
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
|
|
|
|
|
((ka_alg) | (kdf_alg))
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
|
|
|
|
|
|
2019-01-18 16:44:49 +01:00
|
|
|
|
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
|
|
|
|
|
(((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-02-08 11:24:59 +01:00
|
|
|
|
/** Whether the specified algorithm is a raw key agreement algorithm.
|
|
|
|
|
*
|
|
|
|
|
* A raw key agreement algorithm is one that does not specify
|
|
|
|
|
* a key derivation function.
|
|
|
|
|
* Usually, raw key agreement algorithms are constructed directly with
|
|
|
|
|
* a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
|
2020-10-19 12:06:30 +02:00
|
|
|
|
* constructed with #PSA_ALG_KEY_AGREEMENT().
|
2019-02-08 11:24:59 +01:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \p alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
2019-01-18 16:44:49 +01:00
|
|
|
|
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
|
2019-02-08 11:24:59 +01:00
|
|
|
|
(PSA_ALG_IS_KEY_AGREEMENT(alg) && \
|
|
|
|
|
PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
|
2019-01-18 16:44:49 +01:00
|
|
|
|
|
|
|
|
|
#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
|
|
|
|
|
((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
|
|
|
|
|
|
|
|
|
|
/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
2019-03-05 19:32:02 +01:00
|
|
|
|
* The shared secret produced by key agreement is
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* `g^{ab}` in big-endian format.
|
|
|
|
|
* It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
|
|
|
|
|
* in bits.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
|
2019-01-18 16:44:49 +01:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
|
|
|
|
|
*
|
2019-03-05 19:32:02 +01:00
|
|
|
|
* This includes the raw finite field Diffie-Hellman algorithm as well as
|
|
|
|
|
* finite-field Diffie-Hellman followed by any supporter key derivation
|
|
|
|
|
* algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key agreement algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_FFDH(alg) \
|
2019-01-18 16:44:49 +01:00
|
|
|
|
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
|
|
|
|
|
*
|
2019-01-18 16:44:49 +01:00
|
|
|
|
* The shared secret produced by key agreement is the x-coordinate of
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* the shared secret point. It is always `ceiling(m / 8)` bytes long where
|
|
|
|
|
* `m` is the bit size associated with the curve, i.e. the bit size of the
|
|
|
|
|
* order of the curve's coordinate field. When `m` is not a multiple of 8,
|
|
|
|
|
* the byte containing the most significant bit of the shared secret
|
|
|
|
|
* is padded with zero bits. The byte order is either little-endian
|
|
|
|
|
* or big-endian depending on the curve type.
|
|
|
|
|
*
|
2020-06-02 18:19:28 +02:00
|
|
|
|
* - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
|
|
|
* in little-endian byte order.
|
|
|
|
|
* The bit size is 448 for Curve448 and 255 for Curve25519.
|
|
|
|
|
* - For Weierstrass curves over prime fields (curve types
|
2020-06-02 18:19:28 +02:00
|
|
|
|
* `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
|
|
|
* in big-endian byte order.
|
|
|
|
|
* The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
|
|
|
|
|
* - For Weierstrass curves over binary fields (curve types
|
2020-06-02 18:19:28 +02:00
|
|
|
|
* `PSA_ECC_FAMILY_SECTXXX`),
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
|
|
|
|
|
* in big-endian byte order.
|
|
|
|
|
* The bit size is `m` for the field `F_{2^m}`.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
|
2019-01-18 16:44:49 +01:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
|
|
|
|
|
* algorithm.
|
|
|
|
|
*
|
2019-03-05 19:32:02 +01:00
|
|
|
|
* This includes the raw elliptic curve Diffie-Hellman algorithm as well as
|
|
|
|
|
* elliptic curve Diffie-Hellman followed by any supporter key derivation
|
|
|
|
|
* algorithm.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
|
|
|
|
|
* 0 otherwise.
|
|
|
|
|
* This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* key agreement algorithm identifier.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_IS_ECDH(alg) \
|
2019-01-18 16:44:49 +01:00
|
|
|
|
(PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-01-14 16:06:39 +01:00
|
|
|
|
/** Whether the specified algorithm encoding is a wildcard.
|
|
|
|
|
*
|
|
|
|
|
* Wildcard values may only be used to set the usage algorithm field in
|
|
|
|
|
* a policy, not to perform an operation.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if \c alg is a wildcard algorithm encoding.
|
|
|
|
|
* \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
|
|
|
|
|
* an operation).
|
|
|
|
|
* \return This macro may return either 0 or 1 if \c alg is not a supported
|
|
|
|
|
* algorithm identifier.
|
|
|
|
|
*/
|
2021-02-22 19:59:35 +01:00
|
|
|
|
#define PSA_ALG_IS_WILDCARD(alg) \
|
|
|
|
|
(PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
|
|
|
|
|
PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
|
|
|
|
|
PSA_ALG_IS_MAC(alg) ? \
|
|
|
|
|
(alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
|
|
|
|
|
PSA_ALG_IS_AEAD(alg) ? \
|
|
|
|
|
(alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
|
2021-02-08 11:44:21 +01:00
|
|
|
|
(alg) == PSA_ALG_ANY_HASH)
|
2019-01-14 16:06:39 +01:00
|
|
|
|
|
2021-05-03 11:53:40 +02:00
|
|
|
|
/** Get the hash used by a composite algorithm.
|
|
|
|
|
*
|
|
|
|
|
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
|
|
|
|
|
*
|
|
|
|
|
* \return The underlying hash algorithm if alg is a composite algorithm that
|
|
|
|
|
* uses a hash algorithm.
|
|
|
|
|
*
|
2021-05-07 12:13:48 +02:00
|
|
|
|
* \return \c 0 if alg is not a composite algorithm that uses a hash.
|
2021-05-03 11:53:40 +02:00
|
|
|
|
*/
|
|
|
|
|
#define PSA_ALG_GET_HASH(alg) \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
(((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
|
2021-05-03 11:53:40 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/**@}*/
|
|
|
|
|
|
|
|
|
|
/** \defgroup key_lifetimes Key lifetimes
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Note that location and persistence level values are embedded in the
|
|
|
|
|
* persistent key store, as part of key metadata. As a consequence, they
|
|
|
|
|
* must not be changed (unless the storage format version changes).
|
|
|
|
|
*/
|
|
|
|
|
|
2020-02-05 19:07:18 +01:00
|
|
|
|
/** The default lifetime for volatile keys.
|
|
|
|
|
*
|
2020-08-04 09:51:30 +02:00
|
|
|
|
* A volatile key only exists as long as the identifier to it is not destroyed.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* The key material is guaranteed to be erased on a power reset.
|
2020-02-05 19:07:18 +01:00
|
|
|
|
*
|
|
|
|
|
* A key with this lifetime is typically stored in the RAM area of the
|
|
|
|
|
* PSA Crypto subsystem. However this is an implementation choice.
|
|
|
|
|
* If an implementation stores data about the key in a non-volatile memory,
|
|
|
|
|
* it must release all the resources associated with the key and erase the
|
|
|
|
|
* key material if the calling application terminates.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2020-05-04 18:42:44 +02:00
|
|
|
|
/** The default lifetime for persistent keys.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* A persistent key remains in storage until it is explicitly destroyed or
|
|
|
|
|
* until the corresponding storage area is wiped. This specification does
|
2020-08-18 23:05:06 +02:00
|
|
|
|
* not define any mechanism to wipe a storage area, but integrations may
|
2018-12-12 13:38:31 +01:00
|
|
|
|
* provide their own mechanism (for example to perform a factory reset,
|
|
|
|
|
* to prepare for device refurbishment, or to uninstall an application).
|
|
|
|
|
*
|
|
|
|
|
* This lifetime value is the default storage area for the calling
|
2020-08-18 23:05:06 +02:00
|
|
|
|
* application. Integrations of Mbed TLS may support other persistent lifetimes.
|
2020-05-04 18:42:44 +02:00
|
|
|
|
* See ::psa_key_lifetime_t for more information.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2020-05-04 19:03:10 +02:00
|
|
|
|
/** The persistence level of volatile keys.
|
|
|
|
|
*
|
|
|
|
|
* See ::psa_key_persistence_t for more information.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
|
2020-05-04 19:03:10 +02:00
|
|
|
|
|
|
|
|
|
/** The default persistence level for persistent keys.
|
|
|
|
|
*
|
|
|
|
|
* See ::psa_key_persistence_t for more information.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
|
2020-05-04 19:03:10 +02:00
|
|
|
|
|
|
|
|
|
/** A persistence level indicating that a key is never destroyed.
|
|
|
|
|
*
|
|
|
|
|
* See ::psa_key_persistence_t for more information.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
|
2020-02-05 19:07:18 +01:00
|
|
|
|
|
|
|
|
|
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
((psa_key_persistence_t) ((lifetime) & 0x000000ff))
|
2020-02-05 19:07:18 +01:00
|
|
|
|
|
|
|
|
|
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
((psa_key_location_t) ((lifetime) >> 8))
|
2020-02-05 19:07:18 +01:00
|
|
|
|
|
|
|
|
|
/** Whether a key lifetime indicates that the key is volatile.
|
|
|
|
|
*
|
|
|
|
|
* A volatile key is automatically destroyed by the implementation when
|
|
|
|
|
* the application instance terminates. In particular, a volatile key
|
|
|
|
|
* is automatically destroyed on a power reset of the device.
|
|
|
|
|
*
|
|
|
|
|
* A key that is not volatile is persistent. Persistent keys are
|
|
|
|
|
* preserved until the application explicitly destroys them or until an
|
|
|
|
|
* implementation-specific device management event occurs (for example,
|
|
|
|
|
* a factory reset).
|
|
|
|
|
*
|
|
|
|
|
* \param lifetime The lifetime value to query (value of type
|
|
|
|
|
* ::psa_key_lifetime_t).
|
|
|
|
|
*
|
|
|
|
|
* \return \c 1 if the key is volatile, otherwise \c 0.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
|
|
|
|
|
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
|
2020-06-01 12:29:26 +02:00
|
|
|
|
PSA_KEY_PERSISTENCE_VOLATILE)
|
2020-02-05 19:07:18 +01:00
|
|
|
|
|
2021-04-21 20:05:59 +02:00
|
|
|
|
/** Whether a key lifetime indicates that the key is read-only.
|
|
|
|
|
*
|
|
|
|
|
* Read-only keys cannot be created or destroyed through the PSA Crypto API.
|
|
|
|
|
* They must be created through platform-specific means that bypass the API.
|
|
|
|
|
*
|
|
|
|
|
* Some platforms may offer ways to destroy read-only keys. For example,
|
2021-06-07 23:21:50 +02:00
|
|
|
|
* consider a platform with multiple levels of privilege, where a
|
|
|
|
|
* low-privilege application can use a key but is not allowed to destroy
|
|
|
|
|
* it, and the platform exposes the key to the application with a read-only
|
|
|
|
|
* lifetime. High-privilege code can destroy the key even though the
|
|
|
|
|
* application sees the key as read-only.
|
2021-04-21 20:05:59 +02:00
|
|
|
|
*
|
|
|
|
|
* \param lifetime The lifetime value to query (value of type
|
|
|
|
|
* ::psa_key_lifetime_t).
|
|
|
|
|
*
|
|
|
|
|
* \return \c 1 if the key is read-only, otherwise \c 0.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
|
|
|
|
|
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
|
|
|
|
|
PSA_KEY_PERSISTENCE_READ_ONLY)
|
|
|
|
|
|
2020-05-04 19:07:18 +02:00
|
|
|
|
/** Construct a lifetime from a persistence level and a location.
|
|
|
|
|
*
|
|
|
|
|
* \param persistence The persistence level
|
|
|
|
|
* (value of type ::psa_key_persistence_t).
|
|
|
|
|
* \param location The location indicator
|
|
|
|
|
* (value of type ::psa_key_location_t).
|
|
|
|
|
*
|
|
|
|
|
* \return The constructed lifetime value.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
|
|
|
|
|
((location) << 8 | (persistence))
|
|
|
|
|
|
2020-05-04 19:03:10 +02:00
|
|
|
|
/** The local storage area for persistent keys.
|
|
|
|
|
*
|
|
|
|
|
* This storage area is available on all systems that can store persistent
|
|
|
|
|
* keys without delegating the storage to a third-party cryptoprocessor.
|
|
|
|
|
*
|
|
|
|
|
* See ::psa_key_location_t for more information.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
|
2020-05-04 19:03:10 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
|
2020-02-05 19:07:18 +01:00
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Note that key identifier values are embedded in the
|
|
|
|
|
* persistent key store, as part of key metadata. As a consequence, they
|
|
|
|
|
* must not be changed (unless the storage format version changes).
|
|
|
|
|
*/
|
|
|
|
|
|
2021-08-26 13:32:30 +02:00
|
|
|
|
/** The null key identifier.
|
|
|
|
|
*/
|
2023-01-04 19:52:38 +01:00
|
|
|
|
/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
|
2021-08-26 13:32:30 +02:00
|
|
|
|
#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
|
2023-01-04 19:52:38 +01:00
|
|
|
|
/* *INDENT-ON* */
|
2019-05-06 18:56:14 +02:00
|
|
|
|
/** The minimum value for a key identifier chosen by the application.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
|
2019-05-16 15:27:14 +02:00
|
|
|
|
/** The maximum value for a key identifier chosen by the application.
|
2019-05-06 18:56:14 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
|
2019-05-16 15:27:14 +02:00
|
|
|
|
/** The minimum value for a key identifier chosen by the implementation.
|
2019-05-06 18:56:14 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
|
2019-05-16 15:27:14 +02:00
|
|
|
|
/** The maximum value for a key identifier chosen by the implementation.
|
2019-05-06 18:56:14 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
|
2019-05-06 18:56:14 +02:00
|
|
|
|
|
2020-09-14 16:17:41 +02:00
|
|
|
|
|
|
|
|
|
#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
|
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
|
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
|
2020-09-14 16:17:41 +02:00
|
|
|
|
|
|
|
|
|
/** Utility to initialize a key identifier at runtime.
|
|
|
|
|
*
|
|
|
|
|
* \param unused Unused parameter.
|
|
|
|
|
* \param key_id Identifier of the key.
|
|
|
|
|
*/
|
|
|
|
|
static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
|
2023-01-11 14:50:10 +01:00
|
|
|
|
unsigned int unused, psa_key_id_t key_id)
|
2020-09-14 16:17:41 +02:00
|
|
|
|
{
|
2023-01-11 14:50:10 +01:00
|
|
|
|
(void) unused;
|
2020-09-14 16:17:41 +02:00
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
return key_id;
|
2020-09-14 16:17:41 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Compare two key identifiers.
|
|
|
|
|
*
|
|
|
|
|
* \param id1 First key identifier.
|
|
|
|
|
* \param id2 Second key identifier.
|
|
|
|
|
*
|
|
|
|
|
* \return Non-zero if the two key identifier are equal, zero otherwise.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
|
|
|
|
|
mbedtls_svc_key_id_t id2)
|
2020-09-14 16:17:41 +02:00
|
|
|
|
{
|
2023-01-11 14:50:10 +01:00
|
|
|
|
return id1 == id2;
|
2020-09-14 16:17:41 +02:00
|
|
|
|
}
|
|
|
|
|
|
2020-07-31 11:26:37 +02:00
|
|
|
|
/** Check whether a key identifier is null.
|
|
|
|
|
*
|
|
|
|
|
* \param key Key identifier.
|
|
|
|
|
*
|
|
|
|
|
* \return Non-zero if the key identifier is null, zero otherwise.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
|
2020-07-31 11:26:37 +02:00
|
|
|
|
{
|
2023-01-11 14:50:10 +01:00
|
|
|
|
return key == 0;
|
2020-07-31 11:26:37 +02:00
|
|
|
|
}
|
|
|
|
|
|
2020-09-14 16:17:41 +02:00
|
|
|
|
#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
|
|
|
|
|
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
|
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
|
|
|
|
|
#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
|
2020-09-14 16:17:41 +02:00
|
|
|
|
|
|
|
|
|
/** Utility to initialize a key identifier at runtime.
|
|
|
|
|
*
|
|
|
|
|
* \param owner_id Identifier of the key owner.
|
|
|
|
|
* \param key_id Identifier of the key.
|
|
|
|
|
*/
|
|
|
|
|
static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
|
2023-01-11 14:50:10 +01:00
|
|
|
|
mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
|
2020-09-14 16:17:41 +02:00
|
|
|
|
{
|
2023-01-11 14:50:10 +01:00
|
|
|
|
return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
|
|
|
|
|
.MBEDTLS_PRIVATE(owner) = owner_id };
|
2020-09-14 16:17:41 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/** Compare two key identifiers.
|
|
|
|
|
*
|
|
|
|
|
* \param id1 First key identifier.
|
|
|
|
|
* \param id2 Second key identifier.
|
|
|
|
|
*
|
|
|
|
|
* \return Non-zero if the two key identifier are equal, zero otherwise.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
|
|
|
|
|
mbedtls_svc_key_id_t id2)
|
2020-09-14 16:17:41 +02:00
|
|
|
|
{
|
2023-01-11 14:50:10 +01:00
|
|
|
|
return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
|
|
|
|
|
mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
|
2020-09-14 16:17:41 +02:00
|
|
|
|
}
|
|
|
|
|
|
2020-07-31 11:26:37 +02:00
|
|
|
|
/** Check whether a key identifier is null.
|
|
|
|
|
*
|
|
|
|
|
* \param key Key identifier.
|
|
|
|
|
*
|
|
|
|
|
* \return Non-zero if the key identifier is null, zero otherwise.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
|
2020-07-31 11:26:37 +02:00
|
|
|
|
{
|
2023-01-11 14:50:10 +01:00
|
|
|
|
return key.MBEDTLS_PRIVATE(key_id) == 0;
|
2020-07-31 11:26:37 +02:00
|
|
|
|
}
|
|
|
|
|
|
2020-09-14 16:17:41 +02:00
|
|
|
|
#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
|
2019-05-06 18:56:14 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/**@}*/
|
|
|
|
|
|
|
|
|
|
/** \defgroup policy Key policies
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Note that key usage flags are embedded in the
|
|
|
|
|
* persistent key store, as part of key metadata. As a consequence, they
|
|
|
|
|
* must not be changed (unless the storage format version changes).
|
|
|
|
|
*/
|
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Whether the key may be exported.
|
|
|
|
|
*
|
|
|
|
|
* A public key or the public part of a key pair may always be exported
|
|
|
|
|
* regardless of the value of this permission flag.
|
|
|
|
|
*
|
|
|
|
|
* If a key does not have export permission, implementations shall not
|
|
|
|
|
* allow the key to be exported in plain form from the cryptoprocessor,
|
|
|
|
|
* whether through psa_export_key() or through a proprietary interface.
|
|
|
|
|
* The key may however be exportable in a wrapped form, i.e. in a form
|
|
|
|
|
* where it is encrypted by another key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2019-05-14 14:24:28 +02:00
|
|
|
|
/** Whether the key may be copied.
|
|
|
|
|
*
|
2019-05-14 16:25:50 +02:00
|
|
|
|
* This flag allows the use of psa_copy_key() to make a copy of the key
|
2019-05-14 14:24:28 +02:00
|
|
|
|
* with the same policy or a more restrictive policy.
|
|
|
|
|
*
|
2019-05-14 16:25:50 +02:00
|
|
|
|
* For lifetimes for which the key is located in a secure element which
|
|
|
|
|
* enforce the non-exportability of keys, copying a key outside the secure
|
|
|
|
|
* element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
|
|
|
|
|
* Copying the key inside the secure element is permitted with just
|
|
|
|
|
* #PSA_KEY_USAGE_COPY if the secure element supports it.
|
|
|
|
|
* For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
|
2019-05-14 14:24:28 +02:00
|
|
|
|
* #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
|
|
|
|
|
* is sufficient to permit the copy.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
|
2019-05-14 14:24:28 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Whether the key may be used to encrypt a message.
|
|
|
|
|
*
|
|
|
|
|
* This flag allows the key to be used for a symmetric encryption operation,
|
|
|
|
|
* for an AEAD encryption-and-authentication operation,
|
|
|
|
|
* or for an asymmetric encryption operation,
|
|
|
|
|
* if otherwise permitted by the key's type and policy.
|
|
|
|
|
*
|
|
|
|
|
* For a key pair, this concerns the public key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Whether the key may be used to decrypt a message.
|
|
|
|
|
*
|
|
|
|
|
* This flag allows the key to be used for a symmetric decryption operation,
|
|
|
|
|
* for an AEAD decryption-and-verification operation,
|
|
|
|
|
* or for an asymmetric decryption operation,
|
|
|
|
|
* if otherwise permitted by the key's type and policy.
|
|
|
|
|
*
|
|
|
|
|
* For a key pair, this concerns the private key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-04-14 21:14:28 +02:00
|
|
|
|
/** Whether the key may be used to sign a message.
|
|
|
|
|
*
|
|
|
|
|
* This flag allows the key to be used for a MAC calculation operation or for
|
|
|
|
|
* an asymmetric message signature operation, if otherwise permitted by the
|
|
|
|
|
* key’s type and policy.
|
|
|
|
|
*
|
|
|
|
|
* For a key pair, this concerns the private key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
|
2021-04-14 21:14:28 +02:00
|
|
|
|
|
|
|
|
|
/** Whether the key may be used to verify a message.
|
|
|
|
|
*
|
|
|
|
|
* This flag allows the key to be used for a MAC verification operation or for
|
|
|
|
|
* an asymmetric message signature verification operation, if otherwise
|
|
|
|
|
* permitted by the key’s type and policy.
|
|
|
|
|
*
|
|
|
|
|
* For a key pair, this concerns the public key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
|
2021-04-14 21:14:28 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/** Whether the key may be used to sign a message.
|
|
|
|
|
*
|
|
|
|
|
* This flag allows the key to be used for a MAC calculation operation
|
|
|
|
|
* or for an asymmetric signature operation,
|
|
|
|
|
* if otherwise permitted by the key's type and policy.
|
|
|
|
|
*
|
|
|
|
|
* For a key pair, this concerns the private key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
|
|
|
|
/** Whether the key may be used to verify a message signature.
|
|
|
|
|
*
|
|
|
|
|
* This flag allows the key to be used for a MAC verification operation
|
|
|
|
|
* or for an asymmetric signature verification operation,
|
2022-12-04 18:19:59 +01:00
|
|
|
|
* if otherwise permitted by the key's type and policy.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*
|
|
|
|
|
* For a key pair, this concerns the public key.
|
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-04-20 11:18:53 +02:00
|
|
|
|
/** Whether the key may be used to derive other keys or produce a password
|
|
|
|
|
* hash.
|
2021-06-25 12:03:57 +02:00
|
|
|
|
*
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* This flag allows the key to be used for a key derivation operation or for
|
2022-12-04 18:19:59 +01:00
|
|
|
|
* a key agreement operation, if otherwise permitted by the key's type and
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* policy.
|
2021-04-20 11:18:53 +02:00
|
|
|
|
*
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* If this flag is present on all keys used in calls to
|
|
|
|
|
* psa_key_derivation_input_key() for a key derivation operation, then it
|
|
|
|
|
* permits calling psa_key_derivation_output_bytes() or
|
|
|
|
|
* psa_key_derivation_output_key() at the end of the operation.
|
2018-12-12 13:38:31 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
|
2018-12-12 13:38:31 +01:00
|
|
|
|
|
2021-05-03 10:23:12 +02:00
|
|
|
|
/** Whether the key may be used to verify the result of a key derivation,
|
|
|
|
|
* including password hashing.
|
2021-04-20 11:18:53 +02:00
|
|
|
|
*
|
2021-05-03 10:23:12 +02:00
|
|
|
|
* This flag allows the key to be used:
|
2021-04-20 11:18:53 +02:00
|
|
|
|
*
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* This flag allows the key to be used in a key derivation operation, if
|
2022-12-04 18:19:59 +01:00
|
|
|
|
* otherwise permitted by the key's type and policy.
|
2021-06-24 17:47:14 +02:00
|
|
|
|
*
|
|
|
|
|
* If this flag is present on all keys used in calls to
|
|
|
|
|
* psa_key_derivation_input_key() for a key derivation operation, then it
|
|
|
|
|
* permits calling psa_key_derivation_verify_bytes() or
|
|
|
|
|
* psa_key_derivation_verify_key() at the end of the operation.
|
2021-04-20 11:18:53 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
|
2021-04-20 11:18:53 +02:00
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
/**@}*/
|
|
|
|
|
|
2019-01-07 22:59:38 +01:00
|
|
|
|
/** \defgroup derivation Key derivation
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
2022-06-20 18:41:20 +02:00
|
|
|
|
/* Key input steps are not embedded in the persistent storage, so you can
|
|
|
|
|
* change them if needed: it's only an ABI change. */
|
|
|
|
|
|
2019-01-08 10:31:27 +01:00
|
|
|
|
/** A secret input for key derivation.
|
|
|
|
|
*
|
2019-09-23 18:13:17 +02:00
|
|
|
|
* This should be a key of type #PSA_KEY_TYPE_DERIVE
|
|
|
|
|
* (passed to psa_key_derivation_input_key())
|
|
|
|
|
* or the shared secret resulting from a key agreement
|
|
|
|
|
* (obtained via psa_key_derivation_key_agreement()).
|
2019-09-24 18:21:06 +02:00
|
|
|
|
*
|
|
|
|
|
* The secret can also be a direct input (passed to
|
|
|
|
|
* key_derivation_input_bytes()). In this case, the derivation operation
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* may not be used to derive keys: the operation will only allow
|
|
|
|
|
* psa_key_derivation_output_bytes(),
|
|
|
|
|
* psa_key_derivation_verify_bytes(), or
|
|
|
|
|
* psa_key_derivation_verify_key(), but not
|
|
|
|
|
* psa_key_derivation_output_key().
|
2019-01-08 10:31:27 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
|
2019-01-08 10:31:27 +01:00
|
|
|
|
|
2021-04-20 11:30:11 +02:00
|
|
|
|
/** A low-entropy secret input for password hashing / key stretching.
|
|
|
|
|
*
|
2021-04-30 11:37:57 +02:00
|
|
|
|
* This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
|
|
|
|
|
* psa_key_derivation_input_key()) or a direct input (passed to
|
|
|
|
|
* psa_key_derivation_input_bytes()) that is a password or passphrase. It can
|
|
|
|
|
* also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
|
|
|
|
|
* the shared secret resulting from a key agreement.
|
2021-04-20 11:30:11 +02:00
|
|
|
|
*
|
2021-05-05 10:05:06 +02:00
|
|
|
|
* The secret can also be a direct input (passed to
|
|
|
|
|
* key_derivation_input_bytes()). In this case, the derivation operation
|
2021-06-24 17:47:14 +02:00
|
|
|
|
* may not be used to derive keys: the operation will only allow
|
|
|
|
|
* psa_key_derivation_output_bytes(),
|
|
|
|
|
* psa_key_derivation_verify_bytes(), or
|
|
|
|
|
* psa_key_derivation_verify_key(), but not
|
|
|
|
|
* psa_key_derivation_output_key().
|
2021-04-20 11:30:11 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
|
2021-04-20 11:30:11 +02:00
|
|
|
|
|
2022-04-07 13:38:53 +02:00
|
|
|
|
/** A high-entropy additional secret input for key derivation.
|
|
|
|
|
*
|
|
|
|
|
* This is typically the shared secret resulting from a key agreement obtained
|
|
|
|
|
* via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
|
|
|
|
|
* type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
|
|
|
|
|
* a direct input passed to `psa_key_derivation_input_bytes()`.
|
|
|
|
|
*/
|
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
|
2023-01-11 14:50:10 +01:00
|
|
|
|
((psa_key_derivation_step_t) 0x0103)
|
2022-04-07 13:38:53 +02:00
|
|
|
|
|
2019-01-08 10:31:27 +01:00
|
|
|
|
/** A label for key derivation.
|
|
|
|
|
*
|
2019-09-23 18:13:17 +02:00
|
|
|
|
* This should be a direct input.
|
|
|
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
2019-01-08 10:31:27 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
|
2019-01-08 10:31:27 +01:00
|
|
|
|
|
|
|
|
|
/** A salt for key derivation.
|
|
|
|
|
*
|
2019-09-23 18:13:17 +02:00
|
|
|
|
* This should be a direct input.
|
2021-04-20 11:30:11 +02:00
|
|
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
|
|
|
|
|
* #PSA_KEY_TYPE_PEPPER.
|
2019-01-08 10:31:27 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
|
2019-01-08 10:31:27 +01:00
|
|
|
|
|
|
|
|
|
/** An information string for key derivation.
|
|
|
|
|
*
|
2019-09-23 18:13:17 +02:00
|
|
|
|
* This should be a direct input.
|
|
|
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
2019-01-08 10:31:27 +01:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
|
2019-01-08 10:31:27 +01:00
|
|
|
|
|
2019-05-21 15:58:13 +02:00
|
|
|
|
/** A seed for key derivation.
|
|
|
|
|
*
|
2019-09-23 18:13:17 +02:00
|
|
|
|
* This should be a direct input.
|
|
|
|
|
* It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
|
2019-05-21 15:58:13 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
|
2019-05-21 15:58:13 +02:00
|
|
|
|
|
2021-04-20 11:30:11 +02:00
|
|
|
|
/** A cost parameter for password hashing / key stretching.
|
|
|
|
|
*
|
2021-04-20 11:57:34 +02:00
|
|
|
|
* This must be a direct input, passed to psa_key_derivation_input_integer().
|
2021-04-20 11:30:11 +02:00
|
|
|
|
*/
|
2023-01-11 14:50:10 +01:00
|
|
|
|
#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
|
2021-04-20 11:30:11 +02:00
|
|
|
|
|
2019-01-07 22:59:38 +01:00
|
|
|
|
/**@}*/
|
|
|
|
|
|
2021-04-21 10:33:54 +02:00
|
|
|
|
/** \defgroup helper_macros Helper macros
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Helper macros */
|
|
|
|
|
|
|
|
|
|
/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
|
|
|
|
|
* regardless of the tag length they encode.
|
|
|
|
|
*
|
|
|
|
|
* \param aead_alg_1 An AEAD algorithm identifier.
|
|
|
|
|
* \param aead_alg_2 An AEAD algorithm identifier.
|
|
|
|
|
*
|
|
|
|
|
* \return 1 if both identifiers refer to the same AEAD algorithm,
|
|
|
|
|
* 0 otherwise.
|
|
|
|
|
* Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
|
|
|
|
|
* a supported AEAD algorithm.
|
|
|
|
|
*/
|
|
|
|
|
#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
|
|
|
|
|
(!(((aead_alg_1) ^ (aead_alg_2)) & \
|
|
|
|
|
~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
|
|
|
|
|
|
|
|
|
|
/**@}*/
|
|
|
|
|
|
2022-09-09 18:15:43 +02:00
|
|
|
|
/**@}*/
|
|
|
|
|
|
|
|
|
|
/** \defgroup interruptible Interruptible operations
|
|
|
|
|
* @{
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
|
|
|
|
|
* the maximum number of ops allowed to be executed by an interruptible
|
|
|
|
|
* function in a single call.
|
|
|
|
|
*/
|
2023-02-03 16:49:42 +01:00
|
|
|
|
#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
|
2022-09-09 18:15:43 +02:00
|
|
|
|
|
|
|
|
|
/**@}*/
|
|
|
|
|
|
2018-12-12 13:38:31 +01:00
|
|
|
|
#endif /* PSA_CRYPTO_VALUES_H */
|