mbedtls/tests/suites/test_suite_mpi.function

2116 lines
65 KiB
Text
Raw Normal View History

/* BEGIN_HEADER */
2015-03-09 18:05:11 +01:00
#include "mbedtls/bignum.h"
#include "mbedtls/entropy.h"
#include "bignum_core.h"
#include "bignum_mod.h"
#include "bignum_mod_raw.h"
#include "constant_time_internal.h"
#include "test/constant_flow.h"
#if MBEDTLS_MPI_MAX_BITS > 792
#define MPI_MAX_BITS_LARGER_THAN_792
#endif
/* Check the validity of the sign bit in an MPI object. Reject representations
* that are not supported by the rest of the library and indicate a bug when
* constructing the value. */
static int sign_is_valid( const mbedtls_mpi *X )
{
if( X->s != 1 && X->s != -1 )
return( 0 ); // invalid sign bit, e.g. 0
if( mbedtls_mpi_bitlen( X ) == 0 && X->s != 1 )
return( 0 ); // negative zero
return( 1 );
}
typedef struct mbedtls_test_mpi_random
{
data_t *data;
size_t pos;
size_t chunk_len;
} mbedtls_test_mpi_random;
/*
* This function is called by the Miller-Rabin primality test each time it
* chooses a random witness. The witnesses (or non-witnesses as provided by the
* test) are stored in the data member of the state structure. Each number is in
* the format that mbedtls_mpi_read_string understands and is chunk_len long.
*/
int mbedtls_test_mpi_miller_rabin_determinizer( void* state,
unsigned char* buf,
size_t len )
{
mbedtls_test_mpi_random *random = (mbedtls_test_mpi_random*) state;
if( random == NULL || random->data->x == NULL || buf == NULL )
return( -1 );
if( random->pos + random->chunk_len > random->data->len
|| random->chunk_len > len )
{
return( -1 );
}
memset( buf, 0, len );
/* The witness is written to the end of the buffer, since the buffer is
* used as big endian, unsigned binary data in mbedtls_mpi_read_binary.
* Writing the witness to the start of the buffer would result in the
* buffer being 'witness 000...000', which would be treated as
* witness * 2^n for some n. */
memcpy( buf + len - random->chunk_len, &random->data->x[random->pos],
random->chunk_len );
random->pos += random->chunk_len;
return( 0 );
}
/* Random generator that is told how many bytes to return. */
static int f_rng_bytes_left( void *state, unsigned char *buf, size_t len )
{
size_t *bytes_left = state;
size_t i;
for( i = 0; i < len; i++ )
{
if( *bytes_left == 0 )
return( MBEDTLS_ERR_ENTROPY_SOURCE_FAILED );
buf[i] = *bytes_left & 0xff;
--( *bytes_left );
}
return( 0 );
}
/* Test whether bytes represents (in big-endian base 256) a number b that
* is significantly above a power of 2. That is, b must not have a long run
* of unset bits after the most significant bit.
*
* Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}.
* This function returns 1 if, when drawing a number between 0 and b,
* the probability that this number is at least 2^n is not negligible.
* This probability is (b - 2^n) / b and this function checks that this
* number is above some threshold A. The threshold value is heuristic and
* based on the needs of mpi_random_many().
*/
static int is_significantly_above_a_power_of_2( data_t *bytes )
{
const uint8_t *p = bytes->x;
size_t len = bytes->len;
unsigned x;
/* Skip leading null bytes */
while( len > 0 && p[0] == 0 )
{
++p;
--len;
}
/* 0 is not significantly above a power of 2 */
if( len == 0 )
return( 0 );
/* Extract the (up to) 2 most significant bytes */
if( len == 1 )
x = p[0];
else
x = ( p[0] << 8 ) | p[1];
/* Shift the most significant bit of x to position 8 and mask it out */
while( ( x & 0xfe00 ) != 0 )
x >>= 1;
x &= 0x00ff;
/* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above
* a power of 2 iff x is significantly above 0 compared to 2^8.
* Testing x >= 2^4 amounts to picking A = 1/16 in the function
* description above. */
return( x >= 0x10 );
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_BIGNUM_C
* END_DEPENDENCIES
*/
2015-04-29 17:02:01 +02:00
/* BEGIN_CASE */
2017-05-30 15:23:15 +02:00
void mpi_null( )
2015-04-29 17:02:01 +02:00
{
mbedtls_mpi X, Y, Z;
2015-04-29 17:02:01 +02:00
mbedtls_mpi_init( &X );
mbedtls_mpi_init( &Y );
mbedtls_mpi_init( &Z );
2015-04-29 17:02:01 +02:00
TEST_ASSERT( mbedtls_mpi_get_bit( &X, 42 ) == 0 );
TEST_ASSERT( mbedtls_mpi_lsb( &X ) == 0 );
TEST_ASSERT( mbedtls_mpi_bitlen( &X ) == 0 );
TEST_ASSERT( mbedtls_mpi_size( &X ) == 0 );
2015-04-29 17:02:01 +02:00
exit:
mbedtls_mpi_free( &X );
2015-04-29 17:02:01 +02:00
}
/* END_CASE */
/* BEGIN_CASE */
2017-05-30 15:23:15 +02:00
void mpi_read_write_string( int radix_X, char * input_X, int radix_A,
char * input_A, int output_size, int result_read,
int result_write )
{
mbedtls_mpi X;
char str[1000];
size_t len;
mbedtls_mpi_init( &X );
memset( str, '!', sizeof( str ) );
TEST_ASSERT( mbedtls_mpi_read_string( &X, radix_X, input_X ) == result_read );
if( result_read == 0 )
{
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_write_string( &X, radix_A, str, output_size, &len ) == result_write );
if( result_write == 0 )
{
TEST_ASSERT( strcasecmp( str, input_A ) == 0 );
TEST_ASSERT( str[len] == '!' );
}
}
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_read_binary( data_t * buf, char * input_A )
{
mbedtls_mpi X;
2019-02-25 17:11:58 +01:00
char str[1000];
size_t len;
mbedtls_mpi_init( &X );
2017-06-09 05:32:58 +02:00
TEST_ASSERT( mbedtls_mpi_read_binary( &X, buf->x, buf->len ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_write_string( &X, 16, str, sizeof( str ), &len ) == 0 );
TEST_ASSERT( strcmp( (char *) str, input_A ) == 0 );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_io_null()
{
mbedtls_mpi_uint X = 0;
int ret;
ret = mbedtls_mpi_core_read_be( &X, 1, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_write_be( &X, 1, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_read_be( NULL, 0, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_write_be( NULL, 0, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_read_le( &X, 1, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_write_le( &X, 1, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_read_le( NULL, 0, NULL, 0 );
TEST_EQUAL( ret, 0 );
ret = mbedtls_mpi_core_write_le( NULL, 0, NULL, 0 );
TEST_EQUAL( ret, 0 );
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_io_be( data_t *input, int nb_int, int nx_32_int, int iret,
int oret )
{
if( iret != 0 )
TEST_ASSERT( oret == 0 );
TEST_ASSERT( 0 <= nb_int );
size_t nb = nb_int;
unsigned char buf[1024];
TEST_ASSERT( nb <= sizeof( buf ) );
/* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need
* to halve the number of limbs to have the same size. */
size_t nx;
TEST_ASSERT( 0 <= nx_32_int );
if( sizeof( mbedtls_mpi_uint ) == 8 )
nx = nx_32_int / 2 + nx_32_int % 2;
else
nx = nx_32_int;
mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )];
TEST_ASSERT( nx <= sizeof( X ) / sizeof( X[0] ) );
int ret = mbedtls_mpi_core_read_be( X, nx, input->x, input->len );
TEST_EQUAL( ret, iret );
if( iret == 0 )
{
ret = mbedtls_mpi_core_write_be( X, nx, buf, nb );
TEST_EQUAL( ret, oret );
}
if( ( iret == 0 ) && ( oret == 0 ) )
{
if( nb > input->len )
{
size_t leading_zeroes = nb - input->len;
TEST_ASSERT( memcmp( buf + nb - input->len, input->x, input->len ) == 0 );
for( size_t i = 0; i < leading_zeroes; i++ )
TEST_EQUAL( buf[i], 0 );
}
else
{
size_t leading_zeroes = input->len - nb;
TEST_ASSERT( memcmp( input->x + input->len - nb, buf, nb ) == 0 );
for( size_t i = 0; i < leading_zeroes; i++ )
TEST_EQUAL( input->x[i], 0 );
}
}
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_io_le( data_t *input, int nb_int, int nx_32_int, int iret,
int oret )
{
if( iret != 0 )
TEST_ASSERT( oret == 0 );
TEST_ASSERT( 0 <= nb_int );
size_t nb = nb_int;
unsigned char buf[1024];
TEST_ASSERT( nb <= sizeof( buf ) );
/* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need
* to halve the number of limbs to have the same size. */
size_t nx;
TEST_ASSERT( 0 <= nx_32_int );
if( sizeof( mbedtls_mpi_uint ) == 8 )
nx = nx_32_int / 2 + nx_32_int % 2;
else
nx = nx_32_int;
mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )];
TEST_ASSERT( nx <= sizeof( X ) / sizeof( X[0] ) );
int ret = mbedtls_mpi_core_read_le( X, nx, input->x, input->len );
TEST_EQUAL( ret, iret );
if( iret == 0 )
{
ret = mbedtls_mpi_core_write_le( X, nx, buf, nb );
TEST_EQUAL( ret, oret );
}
if( ( iret == 0 ) && ( oret == 0 ) )
{
if( nb > input->len )
{
TEST_ASSERT( memcmp( buf, input->x, input->len ) == 0 );
for( size_t i = input->len; i < nb; i++ )
TEST_EQUAL( buf[i], 0 );
}
else
{
TEST_ASSERT( memcmp( input->x, buf, nb ) == 0 );
for( size_t i = nb; i < input->len; i++ )
TEST_EQUAL( input->x[i], 0 );
}
}
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_mod_setup( int ext_rep, int int_rep, int iret )
{
#define MLIMBS 8
mbedtls_mpi_uint mp[MLIMBS];
mbedtls_mpi_mod_modulus m;
int ret;
memset( mp, 0xFF, sizeof(mp) );
mbedtls_mpi_mod_modulus_init( &m );
ret = mbedtls_mpi_mod_modulus_setup( &m, mp, MLIMBS, ext_rep, int_rep );
TEST_EQUAL( ret, iret );
/* Address sanitiser should catch if we try to free mp */
mbedtls_mpi_mod_modulus_free( &m );
/* Make sure that the modulus doesn't have reference to mp anymore */
TEST_ASSERT( m.p != mp );
exit:
/* It should be safe to call an mbedtls free several times */
mbedtls_mpi_mod_modulus_free( &m );
#undef MLIMBS
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_mod_raw_io( data_t *input, int nb_int, int nx_32_int,
int iendian, int iret, int oret )
{
if( iret != 0 )
TEST_ASSERT( oret == 0 );
TEST_ASSERT( 0 <= nb_int );
size_t nb = nb_int;
unsigned char buf[1024];
TEST_ASSERT( nb <= sizeof( buf ) );
/* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need
* to halve the number of limbs to have the same size. */
size_t nx;
TEST_ASSERT( 0 <= nx_32_int );
if( sizeof( mbedtls_mpi_uint ) == 8 )
nx = nx_32_int / 2 + nx_32_int % 2;
else
nx = nx_32_int;
mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )];
TEST_ASSERT( nx <= sizeof( X ) / sizeof( X[0] ) );
int endian;
if( iendian == MBEDTLS_MPI_MOD_EXT_REP_INVALID )
endian = MBEDTLS_MPI_MOD_EXT_REP_LE;
else
endian = iendian;
mbedtls_mpi_mod_modulus m;
mbedtls_mpi_mod_modulus_init( &m );
mbedtls_mpi_uint init[sizeof( X ) / sizeof( X[0] )];
memset( init, 0xFF, sizeof( init ) );
int ret = mbedtls_mpi_mod_modulus_setup( &m, init, nx, endian,
MBEDTLS_MPI_MOD_REP_MONTGOMERY );
TEST_EQUAL( ret, 0 );
if( iendian == MBEDTLS_MPI_MOD_EXT_REP_INVALID && iret != 0 )
m.ext_rep = MBEDTLS_MPI_MOD_EXT_REP_INVALID;
ret = mbedtls_mpi_mod_raw_read( X, &m, input->x, input->len );
TEST_EQUAL( ret, iret );
if( iret == 0 )
{
if( iendian == MBEDTLS_MPI_MOD_EXT_REP_INVALID && oret != 0 )
m.ext_rep = MBEDTLS_MPI_MOD_EXT_REP_INVALID;
ret = mbedtls_mpi_mod_raw_write( X, &m, buf, nb );
TEST_EQUAL( ret, oret );
}
if( ( iret == 0 ) && ( oret == 0 ) )
{
if( nb > input->len )
{
if( endian == MBEDTLS_MPI_MOD_EXT_REP_BE )
{
size_t leading_zeroes = nb - input->len;
TEST_ASSERT( memcmp( buf + nb - input->len, input->x, input->len ) == 0 );
for( size_t i = 0; i < leading_zeroes; i++ )
TEST_EQUAL( buf[i], 0 );
}
else
{
TEST_ASSERT( memcmp( buf, input->x, input->len ) == 0 );
for( size_t i = input->len; i < nb; i++ )
TEST_EQUAL( buf[i], 0 );
}
}
else
{
if( endian == MBEDTLS_MPI_MOD_EXT_REP_BE )
{
size_t leading_zeroes = input->len - nb;
TEST_ASSERT( memcmp( input->x + input->len - nb, buf, nb ) == 0 );
for( size_t i = 0; i < leading_zeroes; i++ )
TEST_EQUAL( input->x[i], 0 );
}
else
{
TEST_ASSERT( memcmp( input->x, buf, nb ) == 0 );
for( size_t i = nb; i < input->len; i++ )
TEST_EQUAL( input->x[i], 0 );
}
}
}
exit:
mbedtls_mpi_mod_modulus_free( &m );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_read_binary_le( data_t * buf, char * input_A )
{
mbedtls_mpi X;
2019-02-25 17:11:58 +01:00
char str[1000];
size_t len;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_mpi_read_binary_le( &X, buf->x, buf->len ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_write_string( &X, 16, str, sizeof( str ), &len ) == 0 );
TEST_ASSERT( strcmp( (char *) str, input_A ) == 0 );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_write_binary( char * input_X, data_t * input_A,
int output_size, int result )
{
mbedtls_mpi X;
unsigned char buf[1000];
2011-04-24 17:53:29 +02:00
size_t buflen;
memset( buf, 0x00, 1000 );
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
2015-10-30 09:23:19 +01:00
buflen = mbedtls_mpi_size( &X );
if( buflen > (size_t) output_size )
buflen = (size_t) output_size;
TEST_ASSERT( mbedtls_mpi_write_binary( &X, buf, buflen ) == result );
if( result == 0)
{
TEST_ASSERT( mbedtls_test_hexcmp( buf, input_A->x,
buflen, input_A->len ) == 0 );
}
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_write_binary_le( char * input_X, data_t * input_A,
int output_size, int result )
{
mbedtls_mpi X;
unsigned char buf[1000];
size_t buflen;
memset( buf, 0x00, 1000 );
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
buflen = mbedtls_mpi_size( &X );
if( buflen > (size_t) output_size )
buflen = (size_t) output_size;
TEST_ASSERT( mbedtls_mpi_write_binary_le( &X, buf, buflen ) == result );
if( result == 0)
{
TEST_ASSERT( mbedtls_test_hexcmp( buf, input_A->x,
buflen, input_A->len ) == 0 );
}
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_FS_IO */
void mpi_read_file( char * input_file, data_t * input_A, int result )
{
mbedtls_mpi X;
unsigned char buf[1000];
2011-04-24 17:53:29 +02:00
size_t buflen;
FILE *file;
2015-02-14 17:01:34 +01:00
int ret;
memset( buf, 0x00, 1000 );
mbedtls_mpi_init( &X );
file = fopen( input_file, "r" );
TEST_ASSERT( file != NULL );
ret = mbedtls_mpi_read_file( &X, 16, file );
fclose(file);
2015-02-14 17:01:34 +01:00
TEST_ASSERT( ret == result );
if( result == 0 )
{
TEST_ASSERT( sign_is_valid( &X ) );
buflen = mbedtls_mpi_size( &X );
TEST_ASSERT( mbedtls_mpi_write_binary( &X, buf, buflen ) == 0 );
TEST_ASSERT( mbedtls_test_hexcmp( buf, input_A->x,
buflen, input_A->len ) == 0 );
}
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_FS_IO */
void mpi_write_file( char * input_X, char * output_file )
{
mbedtls_mpi X, Y;
FILE *file_out, *file_in;
int ret;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
file_out = fopen( output_file, "w" );
TEST_ASSERT( file_out != NULL );
ret = mbedtls_mpi_write_file( NULL, &X, 16, file_out );
fclose(file_out);
TEST_ASSERT( ret == 0 );
file_in = fopen( output_file, "r" );
TEST_ASSERT( file_in != NULL );
ret = mbedtls_mpi_read_file( &Y, 16, file_in );
fclose(file_in);
TEST_ASSERT( ret == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_get_bit( char * input_X, int pos, int val )
{
mbedtls_mpi X;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_get_bit( &X, pos ) == val );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_set_bit( char * input_X, int pos, int val,
char * output_Y, int result )
{
mbedtls_mpi X, Y;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, output_Y ) == 0 );
TEST_ASSERT( mbedtls_mpi_set_bit( &X, pos, val ) == result );
if( result == 0 )
{
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y ) == 0 );
}
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_lsb( char * input_X, int nr_bits )
{
mbedtls_mpi X;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_lsb( &X ) == (size_t) nr_bits );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_bitlen( char * input_X, int nr_bits )
{
mbedtls_mpi X;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_bitlen( &X ) == (size_t) nr_bits );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_gcd( char * input_X, char * input_Y,
char * input_A )
{
mbedtls_mpi A, X, Y, Z;
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_gcd( &Z, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
exit:
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_cmp_int( int input_X, int input_A, int result_CMP )
{
mbedtls_mpi X;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_mpi_lset( &X, input_X ) == 0);
TEST_ASSERT( mbedtls_mpi_cmp_int( &X, input_A ) == result_CMP);
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_cmp_mpi( char * input_X, char * input_Y,
int input_A )
{
mbedtls_mpi X, Y;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y ) == input_A );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_lt_ct( data_t * input_X, data_t * input_Y, int input_ret )
{
#define MAX_LEN 64
mbedtls_mpi_uint X[MAX_LEN];
mbedtls_mpi_uint Y[MAX_LEN];
unsigned exp_ret = input_ret;
unsigned ret;
size_t len = CHARS_TO_LIMBS(
input_X->len > input_Y->len ? input_X->len : input_Y->len );
TEST_ASSERT( len <= MAX_LEN );
TEST_ASSERT( mbedtls_mpi_core_read_be( X, len, input_X->x, input_X->len )
== 0 );
TEST_ASSERT( mbedtls_mpi_core_read_be( Y, len, input_Y->x, input_Y->len )
== 0 );
TEST_CF_SECRET( X, len * sizeof( mbedtls_mpi_uint ) );
TEST_CF_SECRET( Y, len * sizeof( mbedtls_mpi_uint ) );
ret = mbedtls_mpi_core_lt_ct( X, Y, len );
TEST_CF_PUBLIC( X, len * sizeof( mbedtls_mpi_uint ) );
TEST_CF_PUBLIC( Y, len * sizeof( mbedtls_mpi_uint ) );
TEST_CF_PUBLIC( &ret, sizeof( ret ) );
TEST_EQUAL( ret, exp_ret );
exit:
;
#undef MAX_LEN
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_lt_mpi_ct( int size_X, char * input_X,
int size_Y, char * input_Y,
int input_ret, int input_err )
{
unsigned ret = -1;
unsigned input_uret = input_ret;
mbedtls_mpi X, Y;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
2020-01-21 16:30:53 +01:00
TEST_ASSERT( mbedtls_mpi_grow( &X, size_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_grow( &Y, size_Y ) == 0 );
TEST_ASSERT( mbedtls_mpi_lt_mpi_ct( &X, &Y, &ret ) == input_err );
if( input_err == 0 )
TEST_ASSERT( ret == input_uret );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_cmp_abs( char * input_X, char * input_Y,
int input_A )
{
mbedtls_mpi X, Y;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_abs( &X, &Y ) == input_A );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_copy( char *src_hex, char *dst_hex )
{
mbedtls_mpi src, dst, ref;
mbedtls_mpi_init( &src );
mbedtls_mpi_init( &dst );
mbedtls_mpi_init( &ref );
TEST_ASSERT( mbedtls_test_read_mpi( &src, src_hex ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &ref, dst_hex ) == 0 );
/* mbedtls_mpi_copy() */
TEST_ASSERT( mbedtls_test_read_mpi( &dst, dst_hex ) == 0 );
TEST_ASSERT( mbedtls_mpi_copy( &dst, &src ) == 0 );
TEST_ASSERT( sign_is_valid( &dst ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &dst, &src ) == 0 );
/* mbedtls_mpi_safe_cond_assign(), assignment done */
mbedtls_mpi_free( &dst );
TEST_ASSERT( mbedtls_test_read_mpi( &dst, dst_hex ) == 0 );
TEST_ASSERT( mbedtls_mpi_safe_cond_assign( &dst, &src, 1 ) == 0 );
TEST_ASSERT( sign_is_valid( &dst ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &dst, &src ) == 0 );
/* mbedtls_mpi_safe_cond_assign(), assignment not done */
mbedtls_mpi_free( &dst );
TEST_ASSERT( mbedtls_test_read_mpi( &dst, dst_hex ) == 0 );
TEST_ASSERT( mbedtls_mpi_safe_cond_assign( &dst, &src, 0 ) == 0 );
TEST_ASSERT( sign_is_valid( &dst ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &dst, &ref ) == 0 );
exit:
mbedtls_mpi_free( &src );
mbedtls_mpi_free( &dst );
mbedtls_mpi_free( &ref );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_copy_self( char *input_X )
{
mbedtls_mpi X, A;
mbedtls_mpi_init( &A );
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_copy( &X, &X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_X ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
exit:
mbedtls_mpi_free( &A );
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_swap( char *X_hex, char *Y_hex )
{
mbedtls_mpi X, Y, X0, Y0;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y );
mbedtls_mpi_init( &X0 ); mbedtls_mpi_init( &Y0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X0, X_hex ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y0, Y_hex ) == 0 );
/* mbedtls_mpi_swap() */
TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, Y_hex ) == 0 );
mbedtls_mpi_swap( &X, &Y );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( sign_is_valid( &Y ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y0 ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &X0 ) == 0 );
/* mbedtls_mpi_safe_cond_swap(), swap done */
mbedtls_mpi_free( &X );
mbedtls_mpi_free( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, Y_hex ) == 0 );
TEST_ASSERT( mbedtls_mpi_safe_cond_swap( &X, &Y, 1 ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( sign_is_valid( &Y ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y0 ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &X0 ) == 0 );
/* mbedtls_mpi_safe_cond_swap(), swap not done */
mbedtls_mpi_free( &X );
mbedtls_mpi_free( &Y );
TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, Y_hex ) == 0 );
TEST_ASSERT( mbedtls_mpi_safe_cond_swap( &X, &Y, 0 ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( sign_is_valid( &Y ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &X0 ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &Y0 ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y );
mbedtls_mpi_free( &X0 ); mbedtls_mpi_free( &Y0 );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_swap_self( char *X_hex )
{
mbedtls_mpi X, X0;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &X0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X0, X_hex ) == 0 );
mbedtls_mpi_swap( &X, &X );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &X0 ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &X0 );
}
/* END_CASE */
2013-11-21 10:39:37 +01:00
/* BEGIN_CASE */
void mpi_shrink( int before, int used, int min, int after )
2013-11-21 10:39:37 +01:00
{
mbedtls_mpi X;
mbedtls_mpi_init( &X );
2013-11-21 10:39:37 +01:00
TEST_ASSERT( mbedtls_mpi_grow( &X, before ) == 0 );
if( used > 0 )
{
size_t used_bit_count = used * 8 * sizeof( mbedtls_mpi_uint );
TEST_ASSERT( mbedtls_mpi_set_bit( &X, used_bit_count - 1, 1 ) == 0 );
}
TEST_EQUAL( X.n, (size_t) before );
TEST_ASSERT( mbedtls_mpi_shrink( &X, min ) == 0 );
TEST_EQUAL( X.n, (size_t) after );
2013-11-21 10:39:37 +01:00
exit:
mbedtls_mpi_free( &X );
2013-11-21 10:39:37 +01:00
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_add_mpi( char * input_X, char * input_Y,
char * input_A )
{
mbedtls_mpi X, Y, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_add_mpi( &Z, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
/* result == first operand */
TEST_ASSERT( mbedtls_mpi_add_mpi( &X, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
/* result == second operand */
TEST_ASSERT( mbedtls_mpi_add_mpi( &Y, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Y ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_add_mpi_inplace( char * input_X, char * input_A )
{
mbedtls_mpi X, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_sub_abs( &X, &X, &X ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_int( &X, 0 ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_add_abs( &X, &X, &X ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_mpi_add_mpi( &X, &X, &X ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_add_abs( char * input_X, char * input_Y,
char * input_A )
{
mbedtls_mpi X, Y, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_add_abs( &Z, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
/* result == first operand */
TEST_ASSERT( mbedtls_mpi_add_abs( &X, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
/* result == second operand */
TEST_ASSERT( mbedtls_mpi_add_abs( &Y, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Y ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_add_int( char * input_X, int input_Y,
char * input_A )
{
mbedtls_mpi X, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_add_int( &Z, &X, input_Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_sub_mpi( char * input_X, char * input_Y,
char * input_A )
{
mbedtls_mpi X, Y, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_sub_mpi( &Z, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
/* result == first operand */
TEST_ASSERT( mbedtls_mpi_sub_mpi( &X, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
/* result == second operand */
TEST_ASSERT( mbedtls_mpi_sub_mpi( &Y, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Y ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_sub_abs( char * input_X, char * input_Y,
char * input_A, int sub_result )
{
mbedtls_mpi X, Y, Z, A;
int res;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
2015-10-30 09:23:19 +01:00
res = mbedtls_mpi_sub_abs( &Z, &X, &Y );
TEST_ASSERT( res == sub_result );
TEST_ASSERT( sign_is_valid( &Z ) );
if( res == 0 )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
/* result == first operand */
TEST_ASSERT( mbedtls_mpi_sub_abs( &X, &X, &Y ) == sub_result );
TEST_ASSERT( sign_is_valid( &X ) );
if( sub_result == 0 )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
/* result == second operand */
TEST_ASSERT( mbedtls_mpi_sub_abs( &Y, &X, &Y ) == sub_result );
TEST_ASSERT( sign_is_valid( &Y ) );
if( sub_result == 0 )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_sub_int( char * input_X, int input_Y,
char * input_A )
{
mbedtls_mpi X, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_sub_int( &Z, &X, input_Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_mul_mpi( char * input_X, char * input_Y,
char * input_A )
{
mbedtls_mpi X, Y, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_mul_mpi( &Z, &X, &Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_mul_int( char * input_X, int input_Y,
char * input_A, char * result_comparison )
{
mbedtls_mpi X, Z, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_mul_int( &Z, &X, input_Y ) == 0 );
TEST_ASSERT( sign_is_valid( &Z ) );
if( strcmp( result_comparison, "==" ) == 0 )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
else if( strcmp( result_comparison, "!=" ) == 0 )
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) != 0 );
else
TEST_ASSERT( "unknown operator" == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_div_mpi( char * input_X, char * input_Y,
char * input_A, char * input_B,
int div_result )
{
mbedtls_mpi X, Y, Q, R, A, B;
int res;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &R );
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &B, input_B ) == 0 );
res = mbedtls_mpi_div_mpi( &Q, &R, &X, &Y );
TEST_ASSERT( res == div_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &Q ) );
TEST_ASSERT( sign_is_valid( &R ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Q, &A ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) == 0 );
}
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &R );
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_div_int( char * input_X, int input_Y,
char * input_A, char * input_B,
int div_result )
{
mbedtls_mpi X, Q, R, A, B;
int res;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &A );
mbedtls_mpi_init( &B );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &B, input_B ) == 0 );
res = mbedtls_mpi_div_int( &Q, &R, &X, input_Y );
TEST_ASSERT( res == div_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &Q ) );
TEST_ASSERT( sign_is_valid( &R ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Q, &A ) == 0 );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) == 0 );
}
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &A );
mbedtls_mpi_free( &B );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_mod_mpi( char * input_X, char * input_Y,
char * input_A, int div_result )
{
mbedtls_mpi X, Y, A;
int res;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
res = mbedtls_mpi_mod_mpi( &X, &X, &Y );
TEST_ASSERT( res == div_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
}
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_mod_int( char * input_X, int input_Y,
int input_A, int div_result )
{
mbedtls_mpi X;
int res;
mbedtls_mpi_uint r;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
res = mbedtls_mpi_mod_int( &r, &X, input_Y );
TEST_ASSERT( res == div_result );
if( res == 0 )
{
TEST_ASSERT( r == (mbedtls_mpi_uint) input_A );
}
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_exp_mod( char * input_A, char * input_E,
char * input_N, char * input_X,
int exp_result )
{
mbedtls_mpi A, E, N, RR, Z, X;
int res;
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N );
mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &E, input_E ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &N, input_N ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
res = mbedtls_mpi_exp_mod( &Z, &A, &E, &N, NULL );
TEST_ASSERT( res == exp_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &X ) == 0 );
}
/* Now test again with the speed-up parameter supplied as an output. */
res = mbedtls_mpi_exp_mod( &Z, &A, &E, &N, &RR );
TEST_ASSERT( res == exp_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &X ) == 0 );
}
/* Now test again with the speed-up parameter supplied in calculated form. */
res = mbedtls_mpi_exp_mod( &Z, &A, &E, &N, &RR );
TEST_ASSERT( res == exp_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &X ) == 0 );
}
exit:
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N );
mbedtls_mpi_free( &RR ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_exp_mod_size( int A_bytes, int E_bytes, int N_bytes,
char * input_RR, int exp_result )
{
mbedtls_mpi A, E, N, RR, Z;
mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N );
mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &Z );
/* Set A to 2^(A_bytes - 1) + 1 */
TEST_ASSERT( mbedtls_mpi_lset( &A, 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_shift_l( &A, ( A_bytes * 8 ) - 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_set_bit( &A, 0, 1 ) == 0 );
/* Set E to 2^(E_bytes - 1) + 1 */
TEST_ASSERT( mbedtls_mpi_lset( &E, 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_shift_l( &E, ( E_bytes * 8 ) - 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_set_bit( &E, 0, 1 ) == 0 );
/* Set N to 2^(N_bytes - 1) + 1 */
TEST_ASSERT( mbedtls_mpi_lset( &N, 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_shift_l( &N, ( N_bytes * 8 ) - 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_set_bit( &N, 0, 1 ) == 0 );
if( strlen( input_RR ) )
TEST_ASSERT( mbedtls_test_read_mpi( &RR, input_RR ) == 0 );
TEST_ASSERT( mbedtls_mpi_exp_mod( &Z, &A, &E, &N, &RR ) == exp_result );
exit:
mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N );
mbedtls_mpi_free( &RR ); mbedtls_mpi_free( &Z );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_inv_mod( char * input_X, char * input_Y,
char * input_A, int div_result )
{
mbedtls_mpi X, Y, Z, A;
int res;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
res = mbedtls_mpi_inv_mod( &Z, &X, &Y );
TEST_ASSERT( res == div_result );
if( res == 0 )
{
TEST_ASSERT( sign_is_valid( &Z ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 );
}
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_GENPRIME */
void mpi_is_prime( char * input_X, int div_result )
{
mbedtls_mpi X;
int res;
mbedtls_mpi_init( &X );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
res = mbedtls_mpi_is_prime_ext( &X, 40, mbedtls_test_rnd_std_rand, NULL );
TEST_ASSERT( res == div_result );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_GENPRIME */
void mpi_is_prime_det( data_t * input_X, data_t * witnesses,
int chunk_len, int rounds )
{
mbedtls_mpi X;
int res;
mbedtls_test_mpi_random rand;
mbedtls_mpi_init( &X );
rand.data = witnesses;
rand.pos = 0;
rand.chunk_len = chunk_len;
TEST_ASSERT( mbedtls_mpi_read_binary( &X, input_X->x, input_X->len ) == 0 );
res = mbedtls_mpi_is_prime_ext( &X, rounds - 1,
mbedtls_test_mpi_miller_rabin_determinizer,
&rand );
TEST_ASSERT( res == 0 );
rand.data = witnesses;
rand.pos = 0;
rand.chunk_len = chunk_len;
res = mbedtls_mpi_is_prime_ext( &X, rounds,
mbedtls_test_mpi_miller_rabin_determinizer,
&rand );
TEST_ASSERT( res == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_GENPRIME */
void mpi_gen_prime( int bits, int flags, int ref_ret )
2014-06-16 17:12:40 +02:00
{
mbedtls_mpi X;
2014-06-16 17:12:40 +02:00
int my_ret;
mbedtls_mpi_init( &X );
2014-06-16 17:12:40 +02:00
my_ret = mbedtls_mpi_gen_prime( &X, bits, flags,
mbedtls_test_rnd_std_rand, NULL );
2014-06-16 17:12:40 +02:00
TEST_ASSERT( my_ret == ref_ret );
if( ref_ret == 0 )
{
size_t actual_bits = mbedtls_mpi_bitlen( &X );
2014-06-16 17:12:40 +02:00
TEST_ASSERT( actual_bits >= (size_t) bits );
TEST_ASSERT( actual_bits <= (size_t) bits + 1 );
TEST_ASSERT( sign_is_valid( &X ) );
2014-06-16 17:12:40 +02:00
TEST_ASSERT( mbedtls_mpi_is_prime_ext( &X, 40,
mbedtls_test_rnd_std_rand,
NULL ) == 0 );
if( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH )
2014-06-16 17:12:40 +02:00
{
/* X = ( X - 1 ) / 2 */
TEST_ASSERT( mbedtls_mpi_shift_r( &X, 1 ) == 0 );
TEST_ASSERT( mbedtls_mpi_is_prime_ext( &X, 40,
mbedtls_test_rnd_std_rand,
NULL ) == 0 );
2014-06-16 17:12:40 +02:00
}
}
exit:
mbedtls_mpi_free( &X );
2014-06-16 17:12:40 +02:00
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_shift_l( char * input_X, int shift_X,
char * input_A )
{
mbedtls_mpi X, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_shift_l( &X, shift_X ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_shift_r( char * input_X, int shift_X,
char * input_A )
{
mbedtls_mpi X, A;
mbedtls_mpi_init( &X ); mbedtls_mpi_init( &A );
TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 );
TEST_ASSERT( mbedtls_mpi_shift_r( &X, shift_X ) == 0 );
TEST_ASSERT( sign_is_valid( &X ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 );
exit:
mbedtls_mpi_free( &X ); mbedtls_mpi_free( &A );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_fill_random( int wanted_bytes, int rng_bytes,
int before, int expected_ret )
{
mbedtls_mpi X;
int ret;
size_t bytes_left = rng_bytes;
mbedtls_mpi_init( &X );
if( before != 0 )
{
/* Set X to sign(before) * 2^(|before|-1) */
TEST_ASSERT( mbedtls_mpi_lset( &X, before > 0 ? 1 : -1 ) == 0 );
if( before < 0 )
before = - before;
TEST_ASSERT( mbedtls_mpi_shift_l( &X, before - 1 ) == 0 );
}
ret = mbedtls_mpi_fill_random( &X, wanted_bytes,
f_rng_bytes_left, &bytes_left );
TEST_ASSERT( ret == expected_ret );
if( expected_ret == 0 )
{
/* mbedtls_mpi_fill_random is documented to use bytes from the RNG
* as a big-endian representation of the number. We know when
* our RNG function returns null bytes, so we know how many
* leading zero bytes the number has. */
size_t leading_zeros = 0;
if( wanted_bytes > 0 && rng_bytes % 256 == 0 )
leading_zeros = 1;
TEST_ASSERT( mbedtls_mpi_size( &X ) + leading_zeros ==
(size_t) wanted_bytes );
TEST_ASSERT( (int) bytes_left == rng_bytes - wanted_bytes );
TEST_ASSERT( sign_is_valid( &X ) );
}
exit:
mbedtls_mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_many( int min, data_t *bound_bytes, int iterations )
{
/* Generate numbers in the range 1..bound-1. Do it iterations times.
* This function assumes that the value of bound is at least 2 and
* that iterations is large enough that a one-in-2^iterations chance
* effectively never occurs.
*/
mbedtls_mpi upper_bound;
size_t n_bits;
mbedtls_mpi result;
size_t b;
/* If upper_bound is small, stats[b] is the number of times the value b
* has been generated. Otherwise stats[b] is the number of times a
* value with bit b set has been generated. */
size_t *stats = NULL;
size_t stats_len;
int full_stats;
size_t i;
mbedtls_mpi_init( &upper_bound );
mbedtls_mpi_init( &result );
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
bound_bytes->x, bound_bytes->len ) );
n_bits = mbedtls_mpi_bitlen( &upper_bound );
/* Consider a bound "small" if it's less than 2^5. This value is chosen
* to be small enough that the probability of missing one value is
* negligible given the number of iterations. It must be less than
* 256 because some of the code below assumes that "small" values
* fit in a byte. */
if( n_bits <= 5 )
{
full_stats = 1;
stats_len = bound_bytes->x[bound_bytes->len - 1];
}
else
{
full_stats = 0;
stats_len = n_bits;
}
ASSERT_ALLOC( stats, stats_len );
for( i = 0; i < (size_t) iterations; i++ )
{
mbedtls_test_set_step( i );
TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL ) );
TEST_ASSERT( sign_is_valid( &result ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 );
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 );
if( full_stats )
{
uint8_t value;
TEST_EQUAL( 0, mbedtls_mpi_write_binary( &result, &value, 1 ) );
TEST_ASSERT( value < stats_len );
++stats[value];
}
else
{
for( b = 0; b < n_bits; b++ )
stats[b] += mbedtls_mpi_get_bit( &result, b );
}
}
if( full_stats )
{
for( b = min; b < stats_len; b++ )
{
mbedtls_test_set_step( 1000000 + b );
/* Assert that each value has been reached at least once.
* This is almost guaranteed if the iteration count is large
* enough. This is a very crude way of checking the distribution.
*/
TEST_ASSERT( stats[b] > 0 );
}
}
else
{
int statistically_safe_all_the_way =
is_significantly_above_a_power_of_2( bound_bytes );
for( b = 0; b < n_bits; b++ )
{
mbedtls_test_set_step( 1000000 + b );
/* Assert that each bit has been set in at least one result and
* clear in at least one result. Provided that iterations is not
* too small, it would be extremely unlikely for this not to be
* the case if the results are uniformly distributed.
*
* As an exception, the top bit may legitimately never be set
* if bound is a power of 2 or only slightly above.
*/
if( statistically_safe_all_the_way || b != n_bits - 1 )
{
TEST_ASSERT( stats[b] > 0 );
}
TEST_ASSERT( stats[b] < (size_t) iterations );
}
}
exit:
mbedtls_mpi_free( &upper_bound );
mbedtls_mpi_free( &result );
mbedtls_free( stats );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_sizes( int min, data_t *bound_bytes, int nlimbs, int before )
{
mbedtls_mpi upper_bound;
mbedtls_mpi result;
mbedtls_mpi_init( &upper_bound );
mbedtls_mpi_init( &result );
if( before != 0 )
{
/* Set result to sign(before) * 2^(|before|-1) */
TEST_ASSERT( mbedtls_mpi_lset( &result, before > 0 ? 1 : -1 ) == 0 );
if( before < 0 )
before = - before;
TEST_ASSERT( mbedtls_mpi_shift_l( &result, before - 1 ) == 0 );
}
TEST_EQUAL( 0, mbedtls_mpi_grow( &result, nlimbs ) );
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
bound_bytes->x, bound_bytes->len ) );
TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL ) );
TEST_ASSERT( sign_is_valid( &result ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 );
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 );
exit:
mbedtls_mpi_free( &upper_bound );
mbedtls_mpi_free( &result );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_fail( int min, data_t *bound_bytes, int expected_ret )
{
mbedtls_mpi upper_bound;
mbedtls_mpi result;
int actual_ret;
mbedtls_mpi_init( &upper_bound );
mbedtls_mpi_init( &result );
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
bound_bytes->x, bound_bytes->len ) );
actual_ret = mbedtls_mpi_random( &result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL );
TEST_EQUAL( expected_ret, actual_ret );
exit:
mbedtls_mpi_free( &upper_bound );
mbedtls_mpi_free( &result );
}
/* END_CASE */
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* BEGIN_CASE */
void mpi_core_add_if( char * input_A, char * input_B,
char * input_X4, int carry4,
char * input_X8, int carry8 )
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
{
mbedtls_mpi X4, X8, A, B;
mbedtls_mpi_uint *a = NULL; /* first value to add */
mbedtls_mpi_uint *b = NULL; /* second value to add */
mbedtls_mpi_uint *x = NULL; /* expected */
mbedtls_mpi_uint *d = NULL; /* destination - the in/out first op */
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
mbedtls_mpi_init( &A );
mbedtls_mpi_init( &B );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
mbedtls_mpi_init( &X4 );
mbedtls_mpi_init( &X8 );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* We only need to work with one of (X4, carry4) or (X8, carry8) depending
* on sizeof(mbedtls_mpi_uint)
*/
mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8;
mbedtls_mpi_uint carry = ( sizeof(mbedtls_mpi_uint) == 4 ) ? carry4 : carry8;
/* All of the inputs are +ve (or zero) */
TEST_EQUAL( 1, A.s );
TEST_EQUAL( 1, B.s );
TEST_EQUAL( 1, X->s );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* Test cases are such that A <= B, so #limbs should be <= */
TEST_ASSERT( A.n <= B.n );
TEST_ASSERT( X->n <= B.n );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */
/* mbedtls_mpi_core_add_if() uses input arrays of mbedtls_mpi_uints which
* must be the same size. The MPIs we've read in will only have arrays
* large enough for the number they represent. Therefore we create new
* raw arrays of mbedtls_mpi_uints and populate them from the MPIs we've
* just read in.
*
* We generated test data such that B was always >= A, so that's how many
* limbs each of these need.
*/
a = mbedtls_calloc( B.n, sizeof(mbedtls_mpi_uint) );
b = mbedtls_calloc( B.n, sizeof(mbedtls_mpi_uint) );
x = mbedtls_calloc( B.n, sizeof(mbedtls_mpi_uint) );
d = mbedtls_calloc( B.n, sizeof(mbedtls_mpi_uint) );
size_t bytes = B.n * sizeof(mbedtls_mpi_uint);
TEST_ASSERT( a != NULL );
TEST_ASSERT( b != NULL );
TEST_ASSERT( x != NULL );
TEST_ASSERT( d != NULL );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as
* processed by mbedtls_mpi_core_add_if()) are little endian, we can just
* copy what we have as long as MSBs are 0 (which they are from calloc())
*/
memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) );
memcpy( b, B.p, B.n * sizeof(mbedtls_mpi_uint) );
memcpy( x, X->p, X->n * sizeof(mbedtls_mpi_uint) );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 1a) a + b: d = a; d += b, cond = 0 => there should be no carry */
memcpy( d, a, bytes );
TEST_EQUAL( 0, mbedtls_mpi_core_add_if( d, b, B.n, 0 ) );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 1b) and d should be unchanged */
ASSERT_COMPARE( d, bytes, a, bytes );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 2a) a + b: d = a; d += b, cond = 1 => we should get the correct carry */
TEST_EQUAL( carry, mbedtls_mpi_core_add_if( d, b, B.n, 1 ) );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 2b) and d should have the correct result */
ASSERT_COMPARE( d, bytes, x, bytes );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 3a) b + a: d = b; d += a, cond = 0 => there should be no carry */
memcpy( d, b, bytes );
TEST_EQUAL( 0, mbedtls_mpi_core_add_if( d, a, B.n, 0 ) );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 3b) and d should be unchanged */
ASSERT_COMPARE( d, bytes, b, bytes );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 4a) b + a: d = b; d += a, cond = 1 => we should get the correct carry */
TEST_EQUAL( carry, mbedtls_mpi_core_add_if( d, a, B.n, 1 ) );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
/* 4b) and d should have the correct result */
ASSERT_COMPARE( d, bytes, x, bytes );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
exit:
mbedtls_free( a );
mbedtls_free( b );
mbedtls_free( x );
mbedtls_free( d );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
mbedtls_mpi_free( &X4 );
mbedtls_mpi_free( &X8 );
mbedtls_mpi_free( &A );
mbedtls_mpi_free( &B );
Add unit tests for the new function mbedtls_mpi_core_add_if() in bignum_new.c The test cases use the following MPI values. The .data file only includes those (a, b) values where a <= b, and gives the sum unconditionally; the test code exercises a >= b and cond == 0 using these values. The .data file gives two values for the carry out, which are for when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-add-if.pl - generate MPI tests in Perl for mbedtls_mpi_core_add_if() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @add_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_add_if(); } sub generate_mbedtls_mpi_core_add_if { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_add_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@add_mpis) { for my $bh (@add_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); next if $a > $b; # don't need to repeat test cases # $b is the larger (or equal) of the two numbers. That's the number of limbs # we'll be using. my $bound4 = bound_mpi4($b); my $bound8 = bound_mpi8($b); my $r = $a + $b; my ($r4, $carry4) = ($r->copy(), 0); my ($r8, $carry8) = ($r->copy(), 0); ($carry4, $r4) = $r4->bdiv($bound4); ($carry8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh = (0x$rh4, carry $carry4)/(0x$rh8, carry $carry8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($rh4), $carry4, str($rh8), $carry8); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-23 17:26:52 +02:00
}
/* END_CASE */
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
/* BEGIN_CASE */
void mpi_core_sub( char * input_l, char * input_r,
char * input_X4, char * input_X8,
int carry )
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
{
mbedtls_mpi l, r, X4, X8;
mbedtls_mpi_uint *la = NULL;
mbedtls_mpi_uint *ra = NULL;
mbedtls_mpi_uint *Xa = NULL;
mbedtls_mpi_uint *da = NULL;
mbedtls_mpi_init( &l );
mbedtls_mpi_init( &r );
mbedtls_mpi_init( &X4 );
mbedtls_mpi_init( &X8 );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &l, input_l ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &r, input_r ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) );
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
/* All of the inputs are +ve (or zero) */
TEST_EQUAL( 1, l.s );
TEST_EQUAL( 1, r.s );
TEST_EQUAL( 1, X4.s );
TEST_EQUAL( 1, X8.s );
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
/* Get the number of limbs we will need */
size_t limbs = ( l.n < r.n ) ? r.n : l.n;
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
/* We only need to work with X4 or X8, depending on sizeof(mbedtls_mpi_uint) */
mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8;
/* The result shouldn't have more limbs than the longest input */
TEST_ASSERT( X->n <= limbs );
/* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */
la = mbedtls_calloc( limbs, sizeof(mbedtls_mpi_uint) );
ra = mbedtls_calloc( limbs, sizeof(mbedtls_mpi_uint) );
Xa = mbedtls_calloc( limbs, sizeof(mbedtls_mpi_uint) );
da = mbedtls_calloc( limbs, sizeof(mbedtls_mpi_uint) );
TEST_ASSERT( la != NULL );
TEST_ASSERT( ra != NULL );
TEST_ASSERT( Xa != NULL );
TEST_ASSERT( da != NULL );
/* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as
* processed by mbedtls_mpi_core_add_if()) are little endian, we can just
* copy what we have as long as MSBs are 0 (which they are from calloc())
*/
memcpy( la, l.p, l.n * sizeof(mbedtls_mpi_uint) );
memcpy( ra, r.p, r.n * sizeof(mbedtls_mpi_uint) );
memcpy( Xa, X->p, X->n * sizeof(mbedtls_mpi_uint) );
/* 1a) d = l - r => we should get the correct carry */
TEST_EQUAL( mbedtls_mpi_core_sub( da, la, ra, limbs ), (mbedtls_mpi_uint) carry );
/* 1b) d = l - r => we should get the correct result */
ASSERT_COMPARE( da, bytes, Xa, bytes );
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
/* 2 and 3 test "d may be aliased to l or r" */
/* 2a) l -= r => we should get the correct carry (use d to avoid clobbering l) */
memcpy( da, la, limbs * sizeof(mbedtls_mpi_uint) );
TEST_EQUAL( mbedtls_mpi_core_sub( da, da, ra, limbs ), (mbedtls_mpi_uint) carry );
/* 2b) l -= r => we should get the correct result */
ASSERT_COMPARE( da, bytes, Xa, bytes );
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
/* 3a) r = l - r => we should get the correct carry (use d to avoid clobbering r) */
memcpy( da, ra, limbs * sizeof(mbedtls_mpi_uint) );
TEST_EQUAL( mbedtls_mpi_core_sub( da, la, da, limbs ), (mbedtls_mpi_uint) carry );
/* 3b) r = l - r => we should get the correct result */
ASSERT_COMPARE( da, bytes, Xa, bytes );
Add unit tests for the new function mbedtls_mpi_core_sub() in bignum_new.c The test cases use the following MPI values. The .data file includes two results, for the cases when sizeof(mbedtls_mpi_uint) == 4 or 8. 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-sub.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_sub() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @sub_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_sub(); } sub generate_mbedtls_mpi_core_sub { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@sub_mpis) { for my $bh (@sub_mpis) { my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my ($rh4, $rh8, $carry); if ($a >= $b) { my $r = $a - $b; $rh4 = $rh8 = $r->to_hex(); $carry = 0; } else { my $r4 = bound_mpi4($b) + $a - $b; my $r8 = bound_mpi8($b) + $a - $b; $rh4 = $r4->to_hex(); $rh8 = $r8->to_hex(); $carry = 1; } my $desc = "$test_name #NUMBER: 0x$ah - 0x$bh = 0x$rh4/${rh8}EXPLAIN, carry ${carry}"; my $case = output($test_name, str($ah), str($bh), str($rh4), str($rh8), $carry); push(@cases, [$case, $desc]); } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:43:54 +02:00
exit:
mbedtls_free( la );
mbedtls_free( ra );
mbedtls_free( Xa );
mbedtls_free( da );
mbedtls_mpi_free( &X4 );
mbedtls_mpi_free( &X8 );
mbedtls_mpi_free( &l );
mbedtls_mpi_free( &r );
}
/* END_CASE */
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
/* BEGIN_CASE */
void mpi_core_mla( char * input_d, char * input_s, char * input_b,
char * input_X4, char * input_cy4,
char * input_X8, char * input_cy8 )
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
{
/* We are testing d += s * b; d, s are MPIs, b is a scalar.
*
* However, we encode b as an MPI in the .data file for ease of handling.
*
* We also have the different results for sizeof(mbedtls_mpi_uint) == 4 or 8.
*/
mbedtls_mpi d, s, b, X4, X8, cy4, cy8;
mbedtls_mpi_uint *da = NULL;
mbedtls_mpi_uint *Xa = NULL;
mbedtls_mpi_init( &d );
mbedtls_mpi_init( &s );
mbedtls_mpi_init( &b );
mbedtls_mpi_init( &X4 );
mbedtls_mpi_init( &X8 );
mbedtls_mpi_init( &cy4 );
mbedtls_mpi_init( &cy8 );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &d, input_d ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &s, input_s ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &b, input_b ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &cy4, input_cy4 ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &cy8, input_cy8 ) );
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
/* The MPI encoding of scalar b must be only 1 limb */
TEST_EQUAL( 1, b.n );
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
/* We only need to work with X4 or X8, and cy4 or cy8, depending on sizeof(mbedtls_mpi_uint) */
mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8;
mbedtls_mpi *cy = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &cy4 : &cy8;
/* The carry should only have one limb */
TEST_EQUAL( 1, cy->n );
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
/* All of the inputs are +ve (or zero) */
TEST_EQUAL( 1, d.s );
TEST_EQUAL( 1, s.s );
TEST_EQUAL( 1, b.s );
TEST_EQUAL( 1, X->s );
TEST_EQUAL( 1, cy->s );
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
/* Get the (max) number of limbs we will need */
size_t limbs = ( d.n < s.n ) ? s.n : d.n;
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
/* The result shouldn't have more limbs than the longest input */
TEST_ASSERT( X->n <= limbs );
/* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */
da = mbedtls_calloc( limbs, sizeof(mbedtls_mpi_uint) );
Xa = mbedtls_calloc( limbs, sizeof(mbedtls_mpi_uint) );
TEST_ASSERT( da != NULL );
TEST_ASSERT( Xa != NULL );
/* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as
* processed by mbedtls_mpi_core_add_if()) are little endian, we can just
* copy what we have as long as MSBs are 0 (which they are from calloc())
*/
memcpy( da, d.p, d.n * sizeof(mbedtls_mpi_uint) );
memcpy( Xa, X->p, X->n * sizeof(mbedtls_mpi_uint) );
/* 1a) d += s * b => we should get the correct carry */
TEST_EQUAL( mbedtls_mpi_core_mla( da, limbs, s.p, s.n, *b.p ), *cy->p );
/* 1b) d += s * b => we should get the correct result */
ASSERT_COMPARE( da, bytes, Xa, bytes );
Add unit tests for the new function mbedtls_mpi_core_mla() in bignum_new.c The test cases use the following MPI values: 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b and the following scalars. The .data files include two sets of results (final accumulator and carry) for the cases sizeof(mbedtls_mpi_uint) == 4 or 8. 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe The lines in the .data file were generated by the following script #!/usr/bin/env perl # # mpi-test-core-mla.pl - generate/run MPI tests in Perl for mbedtls_mpi_core_mla() # use strict; use warnings; use Math::BigInt; use sort 'stable'; my @mla_mpis = qw( 0 1 fffe ffffffff 100000000 20000000000000 ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_scalars = qw( 0 3 fe ff ffff 10000 ffffffff 100000000 7f7f7f7f7f7f7f7f 8000000000000000 fffffffffffffffe ); my @mla_full_mpis = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 1f7f7f7f7f7f7f 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff 10000000000000000 1234567890abcdef0 fffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffff 100000000000000000000000000000000 1234567890abcdef01234567890abcdef0 fffffffffffffffffffffffffffffffffffffffffffffffffefefefefefefefe fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 10000000000000000000000000000000000000000000000000000000000000000 1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0 4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b ); my @mla_full_scalars = qw( 0 1 3 f fe ff 100 ff00 fffe ffff 10000 fffffffe ffffffff 100000000 8000000000000000 fefefefefefefefe fffffffffffffffe ffffffffffffffff ); generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_mla(); } sub generate_mbedtls_mpi_core_mla { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); for my $ah (@mla_mpis) { for my $bh (@mla_mpis) { for my $ch (@mla_scalars) { # a += b * c (c is scalar) # a_len >= b_len. need carry out. my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $c = Math::BigInt->from_hex($ch); my $max = ($a > $b) ? $a : $b; my $bound4 = bound_mpi4($max); my $bound8 = bound_mpi8($max); my $r = $a + $b * $c; my ($r4, $cy4) = ($r->copy(), 0); my ($r8, $cy8) = ($r->copy(), 0); ($cy4, $r4) = $r4->bdiv($bound4); ($cy8, $r8) = $r8->bdiv($bound8); my $rh4 = $r4->to_hex(); my $rh8 = $r8->to_hex(); my $cyh4 = $cy4->to_hex(); my $cyh8 = $cy8->to_hex(); # If the scalar c is too big for 1 x 4-byte MPI, we can only run this test on a system with 8-byte MPIs my $depends = mpi4s($c) > 1 ? "MBEDTLS_HAVE_INT64" : ""; my $desc = "$test_name #NUMBER: 0x$ah + 0x$bh * 0x$ch = (0x$rh4, carry 0x$cyh4)/(0x$rh8, carry 0x$cyh8)EXPLAIN"; my $case = output($test_name, str($ah), str($bh), str($ch), str($rh4), str($cyh4), str($rh8), str($cyh8)); push(@cases, [$case, $desc, $depends]); } } } output_cases(" (for when sizeof(mbedtls_mpi_uint) == 4/8)", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 06:45:19 +02:00
exit:
mbedtls_free( da );
mbedtls_free( Xa );
mbedtls_mpi_free( &cy4 );
mbedtls_mpi_free( &cy8 );
mbedtls_mpi_free( &X4 );
mbedtls_mpi_free( &X8 );
mbedtls_mpi_free( &b );
mbedtls_mpi_free( &s );
mbedtls_mpi_free( &d );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_montg_init( char * input_N, char * input_mm )
{
mbedtls_mpi N, mm;
mbedtls_mpi_init( &N );
mbedtls_mpi_init( &mm );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &N, input_N ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &mm, input_mm ) );
/* The MPI encoding of mm should be 1 limb (sizeof(mbedtls_mpi_uint) == 8) or
* 2 limbs (sizeof(mbedtls_mpi_uint) == 4).
*
* The data file contains the expected result for sizeof(mbedtls_mpi_uint) == 8;
* for sizeof(mbedtls_mpi_uint) == 4 it's just the LSW of this.
*/
TEST_ASSERT( mm.n == 1 || mm.n == 2 );
/* All of the inputs are +ve (or zero) */
TEST_EQUAL( 1, N.s );
TEST_EQUAL( 1, mm.s );
/* mbedtls_mpi_montg_init() only returns a result, no error possible */
mbedtls_mpi_uint result = mbedtls_mpi_montg_init( N.p );
/* Check we got the correct result */
TEST_EQUAL( result, mm.p[0] );
exit:
mbedtls_mpi_free( &N );
mbedtls_mpi_free( &mm );
}
/* END_CASE */
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
/* BEGIN_CASE */
void mpi_core_montmul( int limbs_AN4, int limbs_B4,
int limbs_AN8, int limbs_B8,
char * input_A,
char * input_B,
char * input_N,
char * input_X4,
char * input_X8 )
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
{
mbedtls_mpi A, B, N, X4, X8, T, R;
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
mbedtls_mpi_init( &A );
mbedtls_mpi_init( &B );
mbedtls_mpi_init( &N );
mbedtls_mpi_init( &X4 ); /* expected result, sizeof(mbedtls_mpi_uint) == 4 */
mbedtls_mpi_init( &X8 ); /* expected result, sizeof(mbedtls_mpi_uint) == 8 */
mbedtls_mpi_init( &T );
mbedtls_mpi_init( &R ); /* for the result */
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &N, input_N ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8;
int limbs_AN = ( sizeof(mbedtls_mpi_uint) == 4 ) ? limbs_AN4 : limbs_AN8;
int limbs_B = ( sizeof(mbedtls_mpi_uint) == 4 ) ? limbs_B4 : limbs_B8;
TEST_ASSERT( (size_t)limbs_AN >= A.n && (size_t)limbs_AN >= X->n );
TEST_ASSERT( (size_t)limbs_B >= B.n );
TEST_ASSERT( limbs_B <= limbs_AN );
/* All of the inputs are +ve (or zero) */
TEST_EQUAL( 1, A.s );
TEST_EQUAL( 1, B.s );
TEST_EQUAL( 1, N.s );
TEST_EQUAL( 1, X->s );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
TEST_EQUAL( 0, mbedtls_mpi_grow( &A, limbs_AN ) );
TEST_EQUAL( 0, mbedtls_mpi_grow( &N, limbs_AN ) );
TEST_EQUAL( 0, mbedtls_mpi_grow( X, limbs_AN ) );
TEST_EQUAL( 0, mbedtls_mpi_grow( &B, limbs_B ) );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
TEST_EQUAL( 0, mbedtls_mpi_grow( &T, limbs_AN * 2 + 1 ) );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
/* Calculate the Montgomery constant (this is unit tested separately) */
mbedtls_mpi_uint mm = mbedtls_mpi_montg_init( N.p );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
TEST_EQUAL( 0, mbedtls_mpi_grow( &R, limbs_AN ) ); /* ensure it's got the right number of limbs */
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
mbedtls_mpi_core_montmul( R.p, A.p, B.p, B.n, N.p, N.n, mm, T.p );
size_t bytes = N.n * sizeof(mbedtls_mpi_uint);
ASSERT_COMPARE( R.p, bytes, X->p, bytes );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
exit:
mbedtls_mpi_free( &A );
mbedtls_mpi_free( &B );
mbedtls_mpi_free( &N );
mbedtls_mpi_free( &X4 );
mbedtls_mpi_free( &X8 );
mbedtls_mpi_free( &T );
mbedtls_mpi_free( &R );
Add unit tests for bignum_new.c:mbedtls_mpi_core_montmul() These tests are also used to test the existing mpi_montmul() function (which too is renamed with mbedtls_ prefix). Some of these are replays of captured invocations during unit test runs. Others are generated. They use a mixture of primes and odd numbers for N, with four randomly-generated cases for each N. The lines in the .data file were generated by the following script ``` #!/usr/bin/env perl # # mpi-test-core-montmul.pl - generate MPI tests in Perl for mbedtls_mpi_core_montmul() # use strict; use warnings; use Math::BigInt; use sort 'stable'; generate_tests(); sub generate_tests { generate_mbedtls_mpi_core_montmul(); } # XXX mbedtls_mpi_grow() and mbedtls_mpi_shrink() work in little-endian manner # \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36) # # \param[out] X The destination MPI, as a big endian array of length \p n. # On successful completion, X contains the result of # the multiplication A * B * R^-1 mod N where # R = (2^ciL)^n. # \param[in] A Big endian presentation of first operand. # Must have exactly \p n limbs. # \param[in] B Big endian presentation of second operand. # \param[in] B_len The number of limbs in \p B. # \param[in] N Big endian presentation of the modulus. # This must be odd and have exactly \p n limbs. # \param[in] n The number of limbs in \p X, \p A, \p N. # \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL. # This can be calculated by `mbedtls_mpi_montg_init()`. # \param[in,out] T Temporary storage of size at least 2*n+1 limbs. # Its initial content is unused and # its final content is indeterminate. # # void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X, # const mbedtls_mpi_uint *A, # const mbedtls_mpi_uint *B, size_t B_len, # const mbedtls_mpi_uint *N, size_t n, # mbedtls_mpi_uint mm, mbedtls_mpi_uint *T ); sub generate_mbedtls_mpi_core_montmul { my $sub_name = (caller(0))[3]; # e.g. main::generate_mbedtls_mpi_sub_mpi my ($ignore, $test_name) = split("main::generate_", $sub_name); my @cases = (); my @replay = ( # [ limbsAN_4, limbsB_4, limbsAN_8, limbsB_8, hexA, hexB, hexN, hexExpected ] [ 2, 1, 1, 1, "19", "1", "1D", "18" ], [ 2, 1, 1, 1, "7", "1", "9", "1" ], [ 2, 1, 1, 1, "4", "1", "9", "7" ], #montmul: #A.n = 3 #A.p = FFFE000000008004 # 0000000000007FFC # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 3 #N.p = 0000000000000001 # 0000000000008000 # 0000000000000000 #mm = FFFFFFFFFFFFFFFF #res.n = 3 #res.p = EFFF9FFF3FFF8001 # 0000000000007FFF # 0000000000000000 #[ "MBEDTLS_HAVE_INT32", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "2000C001800100000000" ], #[ "MBEDTLS_HAVE_INT64", 3, 1, 3, "7FFCFFFE000000008004", "1", "80000000000000000001", "7FFFEFFF9FFF3FFF8001" ], [ 12, 1, 6, 1, "3C246D0E059A93A266288A7718419EC741661B474C58C032C5EDAF92709402B07CC8C7CE0B781C641A1EA8DB2F4343", "1", "66A198186C18C10B2F5ED9B522752A9830B69916E535C8F047518A889A43A594B6BED27A168D31D4A52F88925AA8F5", "36E139AEA55215609D2816998ED020BBBD96C37890F65171D948E9BC7CBAA4D9325D24D6A3C12710F10A09FA08AB87" ], #A.n = 5 #A.p = 340E918CE03C6211 # 9888165CB75BFA1F # FCCE74B999E470CA # 1E442976B0E63D64 # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 4 #N.p = 8054B3D124D0E561 # 92A338655DCE4CA8 # E28581ECD892E0F5 # B3A119602EE213CD #mm = E41CFB909805815F #res.n = 5 #res.p = 0E65383B59F8CA5B # B103B17A2EEF84E6 # F23BC08FD0801C55 # 38EB7749F4A5DA80 # 0000000000000000 [ 8, 1, 4, 1, "1E442976B0E63D64FCCE74B999E470CA9888165CB75BFA1F340E918CE03C6211", "1", "B3A119602EE213CDE28581ECD892E0F592A338655DCE4CA88054B3D124D0E561", "38EB7749F4A5DA80F23BC08FD0801C55B103B17A2EEF84E60E65383B59F8CA5B" ], #A.n = 12 #A.p = 542306BCA7A2366E # D2780B2B4968F8D8 # CBDFC696104353E4 # 7776839B0AC9DB23 # B7E125BE407E7415 # D711917FD7537E13 # 82392870D6D08F87 # D83ED5FA38560FFB # 9994B0FED1D2A8D3 # 63C65413F57249F5 # 007CF5AC97304E0B # 0000000000000000 #B.n = 1 #B.p = 0000000000000001 #N.n = 11 #N.p = E1AD22CEB7BA0123 # 32B2A6AA42ADA923 # C56C62082912B661 # C6F0EAD752500A32 # DBC8D651793E93C9 # 0B2F60D99CC1950C # 5B4CDCB5734C58F9 # 09D3CB5BC5585472 # 9A2C2BE12ED487A8 # BE09A8111926AAA3 # 0284139EA19C139E #mm = C02E2164B293C975 #res.n = 12 #res.p = F6B14471839D8D31 # FF843ED3B17C44D7 # 1C3D52C7CB9E0BA6 # 82F3590C866BF9F8 # 49C371DB2A4FB164 # 964ECA2527A031ED # FAACEC6982E0E5BE # 1F70C4CB2426AEE1 # 2C92B02886267AB4 # 0630B14113BEAD74 # 01E4426A3D6C425F # 0000000000000000 [ 22, 1, 11, 1, "7CF5AC97304E0B63C65413F57249F59994B0FED1D2A8D3D83ED5FA38560FFB82392870D6D08F87D711917FD7537E13B7E125BE407E74157776839B0AC9DB23CBDFC696104353E4D2780B2B4968F8D8542306BCA7A2366E", "1", "284139EA19C139EBE09A8111926AAA39A2C2BE12ED487A809D3CB5BC55854725B4CDCB5734C58F90B2F60D99CC1950CDBC8D651793E93C9C6F0EAD752500A32C56C62082912B66132B2A6AA42ADA923E1AD22CEB7BA0123", "1E4426A3D6C425F0630B14113BEAD742C92B02886267AB41F70C4CB2426AEE1FAACEC6982E0E5BE964ECA2527A031ED49C371DB2A4FB16482F3590C866BF9F81C3D52C7CB9E0BA6FF843ED3B17C44D7F6B14471839D8D31" ], ); for my $c (@replay) { # For all of these, la4 = 2 * la8, so $xh4 == $xh8 (so we just have $xh) my ($la4, $lb4, $la8, $lb8, $ah, $bh, $nh, $xh) = @$c; # limbs(A), limbs(B), limbs(N), (A, B, N, expected) hex my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $desc = "$test_name #NUMBER (replay)"; # mbedtls_mpi_core_montmul:mpiSize:limbs(A,N):limbs(B):<A>:<B>:<N>:<expected4>:<expected8> # (just repeat $xh, as la4 = 2 * la8, so $xh4 == $xh8) my $case = output($test_name, $la4, $lb4, $la8, $lb8, str($ah), str($bh), str($nh), str($xh), str($xh)); push(@cases, [$case, $desc]); } # see mpi-modmul-gen.pl for the source of these test cases my @generate = ( # [ hexN, hexA, hexB, info ] [ "3", "2", "2", "" ], [ "3", "1", "2", "" ], [ "3", "2", "1", "" ], [ "7", "6", "5", "" ], [ "7", "3", "4", "" ], [ "7", "1", "6", "" ], [ "7", "5", "6", "" ], [ "B", "3", "4", "" ], [ "B", "7", "4", "" ], [ "B", "9", "7", "" ], [ "B", "2", "a", "" ], [ "29", "25", "16", "(0x29 is prime)" ], [ "29", "8", "28", "" ], [ "29", "18", "21", "" ], [ "29", "15", "f", "" ], [ "FF", "e2", "ea", "" ], [ "FF", "43", "72", "" ], [ "FF", "d8", "70", "" ], [ "FF", "3c", "7c", "" ], [ "101", "99", "b9", "(0x101 is prime)" ], [ "101", "65", "b2", "" ], [ "101", "81", "32", "" ], [ "101", "51", "dd", "" ], [ "38B", "d5", "143", "(0x38B is prime)" ], [ "38B", "3d", "387", "" ], [ "38B", "160", "2e5", "" ], [ "38B", "10f", "137", "" ], [ "8003", "7dac", "25a", "(0x8003 is prime)" ], [ "8003", "6f1c", "3286", "" ], [ "8003", "59ed", "2f3f", "" ], [ "8003", "6893", "736d", "" ], [ "10001", "d199", "2832", "(0x10001 is prime)" ], [ "10001", "c3b2", "3e5b", "" ], [ "10001", "abe4", "214e", "" ], [ "10001", "4360", "a05d", "" ], [ "7F7F7", "3f5a1", "165b2", "" ], [ "7F7F7", "3bd29", "37863", "" ], [ "7F7F7", "60c47", "64819", "" ], [ "7F7F7", "16584", "12c49", "" ], [ "800009", "1ff03f", "610347", "(0x800009 is prime)" ], [ "800009", "340fd5", "19812e", "" ], [ "800009", "3fe2e8", "4d0dc7", "" ], [ "800009", "40356", "e6392", "" ], [ "100002B", "dd8a1d", "266c0e", "(0x100002B is prime)" ], [ "100002B", "3fa1cb", "847fd6", "" ], [ "100002B", "5f439d", "5c3196", "" ], [ "100002B", "18d645", "f72dc6", "" ], [ "37EEE9D", "20051ad", "37def6e", "(0x37EEE9D is prime)" ], [ "37EEE9D", "2ec140b", "3580dbf", "" ], [ "37EEE9D", "1d91b46", "190d4fc", "" ], [ "37EEE9D", "34e488d", "1224d24", "" ], [ "8000000B", "2a4fe2cb", "263466a9", "(0x8000000B is prime)" ], [ "8000000B", "5643fe94", "29a1aefa", "" ], [ "8000000B", "29633513", "7b007ac4", "" ], [ "8000000B", "2439cef5", "5c9d5a47", "" ], [ "8CD626B9", "4de3cfaa", "50dea178", "(0x8CD626B9 is prime)" ], [ "8CD626B9", "b8b8563", "10dbbbac", "" ], [ "8CD626B9", "4e8a6151", "5574ec19", "" ], [ "8CD626B9", "69224878", "309cfc23", "" ], [ "10000000F", "fb6f7fb6", "afb05423", "(0x10000000F is prime)" ], [ "10000000F", "8391a243", "26034dcd", "" ], [ "10000000F", "d26b98c", "14b2d6aa", "" ], [ "10000000F", "6b9f1371", "a21daf1d", "" ], [ "174876E7E9", "9f49435ad", "c8264ade8", "0x174876E7E9 is prime (dec) 99999999977" ], [ "174876E7E9", "c402da434", "1fb427acf", "" ], [ "174876E7E9", "f6ebc2bb1", "1096d39f2a", "" ], [ "174876E7E9", "153b7f7b6b", "878fda8ff", "" ], [ "8000000017", "2c1adbb8d6", "4384d2d3c6", "(0x8000000017 is prime)" ], [ "8000000017", "2e4f9cf5fb", "794f3443d9", "" ], [ "8000000017", "149e495582", "3802b8f7b7", "" ], [ "8000000017", "7b9d49df82", "69c68a442a", "" ], [ "864CB9076D", "683a134600", "6dd80ea9f6", "(0x864CB9076D is prime)" ], [ "864CB9076D", "13a870ff0d", "59b099694a", "" ], [ "864CB9076D", "37d06b0e63", "4d2147e46f", "" ], [ "864CB9076D", "661714f8f4", "22e55df507", "" ], [ "F7F7F7F7F7", "2f0a96363", "52693307b4", "" ], [ "F7F7F7F7F7", "3c85078e64", "f2275ecb6d", "" ], [ "F7F7F7F7F7", "352dae68d1", "707775b4c6", "" ], [ "F7F7F7F7F7", "37ae0f3e0b", "912113040f", "" ], [ "1000000000F", "6dada15e31", "f58ed9eff7", "(0x1000000000F is prime)" ], [ "1000000000F", "69627a7c89", "cfb5ebd13d", "" ], [ "1000000000F", "a5e1ad239b", "afc030c731", "" ], [ "1000000000F", "f1cc45f4c5", "c64ad607c8", "" ], [ "800000000005", "2ebad87d2e31", "4c72d90bca78", "(0x800000000005 is prime)" ], [ "800000000005", "a30b3cc50d", "29ac4fe59490", "" ], [ "800000000005", "33674e9647b4", "5ec7ee7e72d3", "" ], [ "800000000005", "3d956f474f61", "74070040257d", "" ], [ "800795D9BA47", "48348e3717d6", "43fcb4399571", "(0x800795D9BA47 is prime)" ], [ "800795D9BA47", "5234c03cc99b", "2f3cccb87803", "" ], [ "800795D9BA47", "3ed13db194ab", "44b8f4ba7030", "" ], [ "800795D9BA47", "1c11e843bfdb", "95bd1b47b08", "" ], [ "1000000000015", "a81d11cb81fd", "1e5753a3f33d", "(0x1000000000015 is prime)" ], [ "1000000000015", "688c4db99232", "36fc0cf7ed", "" ], [ "1000000000015", "f0720cc07e07", "fc76140ed903", "" ], [ "1000000000015", "2ec61f8d17d1", "d270c85e36d2", "" ], [ "100000000000051", "6a24cd3ab63820", "ed4aad55e5e348", "(0x100000000000051 is prime)" ], [ "100000000000051", "e680c160d3b248", "31e0d8840ed510", "" ], [ "100000000000051", "a80637e9aebc38", "bb81decc4e1738", "" ], [ "100000000000051", "9afa5a59e9d630", "be9e65a6d42938", "" ], [ "ABCDEF0123456789", "ab5e104eeb71c000", "2cffbd639e9fea00", "" ], [ "ABCDEF0123456789", "197b867547f68a00", "44b796cf94654800", "" ], [ "ABCDEF0123456789", "329f9483a04f2c00", "9892f76961d0f000", "" ], [ "ABCDEF0123456789", "4a2e12dfb4545000", "1aa3e89a69794500", "" ], [ "25A55A46E5DA99C71C7", "8b9acdf013d140f000", "12e4ceaefabdf2b2f00", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "25A55A46E5DA99C71C7", "1b8d960ea277e3f5500", "14418aa980e37dd000", "" ], [ "25A55A46E5DA99C71C7", "7314524977e8075980", "8172fa45618ccd0d80", "" ], [ "25A55A46E5DA99C71C7", "ca14f031769be63580", "147a2f3cf2964ca9400", "" ], [ "314DC643FB763F2B8C0E2DE00879", "18532ba119d5cd0cf39735c0000", "25f9838e31634844924733000000", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "314DC643FB763F2B8C0E2DE00879", "a56e2d2517519e3970e70c40000", "ec27428d4bb380458588fa80000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "1cb5e8257710e8653fff33a00000", "15fdd42fe440fd3a1d121380000", "" ], [ "314DC643FB763F2B8C0E2DE00879", "e50d07a65fc6f93e538ce040000", "1f4b059ca609f3ce597f61240000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "1ea3ade786a095d978d387f30df9f20000000", "127c448575f04af5a367a7be06c7da0000000", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "16e15b0ca82764e72e38357b1f10a20000000", "43e2355d8514bbe22b0838fdc3983a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "be39332529d93f25c3d116c004c620000000", "5cccec42370a0a2c89c6772da801a0000000", "" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "ecaa468d90de0eeda474d39b3e1fc0000000", "1e714554018de6dc0fe576bfd3b5660000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "32298816711c5dce46f9ba06e775c4bedfc770e6700000000000000", "8ee751fd5fb24f0b4a653cb3a0c8b7d9e724574d168000000000000", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "29213b9df3cfd15f4b428645b67b677c29d1378d810000000000000", "6cbb732c65e10a28872394dfdd1936d5171c3c3aac0000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "6f18db06ad4abc52c0c50643dd13098abccd4a232f0000000000000", "7e6bf41f2a86098ad51f98dfc10490ba3e8081bc830000000000000", "" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "62d3286cd706ad9d73caff63f1722775d7e8c731208000000000000", "530f7ba02ae2b04c2fe3e3d27ec095925631a6c2528000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "a6c6503e3c031fdbf6009a89ed60582b7233c5a85de28b16000000000000000", "75c8ed18270b583f16d442a467d32bf95c5e491e9b8523798000000000000000", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "bf84d1f85cf6b51e04d2c8f4ffd03532d852053cf99b387d4000000000000000", "397ba5a743c349f4f28bc583ecd5f06e0a25f9c6d98f09134000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "6db11c3a4152ed1a2aa6fa34b0903ec82ea1b88908dcb482000000000000000", "ac8ac576a74ad6ca48f201bf89f77350ce86e821358d85920000000000000000", "" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "3001d96d7fe8b733f33687646fc3017e3ac417eb32e0ec708000000000000000", "925ddbdac4174e8321a48a32f79640e8cf7ec6f46ea235a80000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1029048755f2e60dd98c8de6d9989226b6bb4f0db8e46bd1939de560000000000000000000", "51bb7270b2e25cec0301a03e8275213bb6c2f6e6ec93d4d46d36ca0000000000000000000", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "1c5337ff982b3ad6611257dbff5bbd7a9920ba2d4f5838a0cc681ce000000000000000000", "520c5d049ca4702031ba728591b665c4d4ccd3b2b86864d4c160fd2000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "57074dfa00e42f6555bae624b7f0209f218adf57f73ed34ab0ff90c000000000000000000", "41eb14b6c07bfd3d1fe4f4a610c17cc44fcfcda695db040e011065000000000000000000", "" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "d8ed7feed2fe855e6997ad6397f776158573d425031bf085a615784000000000000000000", "6f121dcd18c578ab5e229881006007bb6d319b179f11015fe958b9c000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "2a462b156180ea5fe550d3758c764e06fae54e626b5f503265a09df76edbdfbfa1e6000000000000000000000000", "1136f41d1879fd4fb9e49e0943a46b6704d77c068ee237c3121f9071cfd3e6a00315800000000000000000000000", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "c1ac3800dfb3c6954dea391d206200cf3c47f795bf4a5603b4cb88ae7e574de4740800000000000000000000000", "c0d16eda0549ede42fa0deb4635f7b7ce061fadea02ee4d85cba4c4f7096034193c800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "19e45bb7633094d272588ad2e43bcb3ee341991c6731b6fa9d47c4018d7ce7bba5ee800000000000000000000000", "1e4f83166ae59f6b9cc8fd3e7677ed8bfc01bb99c98bd3eb084246b64c1e18c3365b800000000000000000000000", "" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "1aa93395fad5f9b7f20b8f9028a054c0bb7c11bb8520e6a95e5a34f06cb70bcdd01a800000000000000000000000", "54b45afa5d4310192f8d224634242dd7dcfb342318df3d9bd37b4c614788ba13b8b000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "544f2628a28cfb5ce0a1b7180ee66b49716f1d9476c466c57f0c4b2308991784306d48f78686115ee19e25400000000000000000000000000000000", "677eb31ef8d66c120fa872a60cd47f6e10cbfdf94f90501bd7883cba03d185be0a0148d1625745e9c4c827300000000000000000000000000000000", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "76bb3470985174915e9993522aec989666908f9e8cf5cb9f037bf4aee33d8865cb6464174795d07e30015b80000000000000000000000000000000", "6aaaf60d5784dcef612d133613b179a317532ecca0eed40b8ad0c01e6d4a6d8c79a52af190abd51739009a900000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "6cfdd6e60912e441d2d1fc88f421b533f0103a5322ccd3f4db84861643ad63fd63d1d8cfbc1d498162786ba00000000000000000000000000000000", "1177246ec5e93814816465e7f8f248b350d954439d35b2b5d75d917218e7fd5fb4c2f6d0667f9467fdcf33400000000000000000000000000000000", "" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "7a09a0b0f8bbf8057116fb0277a9bdf3a91b5eaa8830d448081510d8973888be5a9f0ad04facb69aa3715f00000000000000000000000000000000", "764dec6c05a1c0d87b649efa5fd94c91ea28bffb4725d4ab4b33f1a3e8e3b314d799020e244a835a145ec9800000000000000000000000000000000", "" ], ); my %described = (); for my $g (@generate) { my ($nh, $ah, $bh, $info) = @$g; my $a = Math::BigInt->from_hex($ah); my $b = Math::BigInt->from_hex($bh); my $n = Math::BigInt->from_hex($nh); my $ln4 = mpi4s($n); my $la4 = mpi4s($a); my $lb4 = mpi4s($b); my $ln8 = mpi8s($n); my $la8 = mpi8s($a); my $lb8 = mpi8s($b); my $r4 = bound_mpi4($n->copy()); my $i4 = $r4->copy()->bmodinv($n); my $x4 = $a * $b * $i4; $x4->bmod($n); my $xh4 = Math::BigInt->new($x4)->to_hex(); my $r8 = bound_mpi8($n->copy()); my $i8 = $r8->copy()->bmodinv($n); my $x8 = $a * $b * $i8; $x8->bmod($n); my $xh8 = Math::BigInt->new($x8)->to_hex(); die("") if $la4 > $ln4 || $la8 > $ln8; my $desc = "$test_name #NUMBER (gen)"; if ($ln4 > 1) { if (!$described{"2-MPI4"}) { $desc .= " (start of 2-MPI 4-byte bignums)"; $described{"2-MPI4"} = 1; } } if ($ln8 > 1) { if (!$described{"2-MPI8"}) { $desc .= " (start of 2-MPI 8-byte bignums)"; $described{"2-MPI8"} = 1; } } if (length($info) && !$described{$info}) { $desc .= " " . $info; $described{$info} = 1; } my $case = output($test_name, $ln4, $lb4, $ln8, $lb8, str($ah), str($bh), str($nh), str($xh4), str($xh8)); #push(@cases, [$case, $desc, "MBEDTLS_HAVE_INT64"]); -- now doing it differently push(@cases, [$case, $desc]); } output_cases("", @cases); } sub output_cases { my ($explain, @cases) = @_; my $count = 1; for my $c (@cases) { my ($case, $desc, $dep) = @$c; $desc =~ s/NUMBER/$count/; $count++; if (defined($explain) && $desc =~ /EXPLAIN/) { $desc =~ s/EXPLAIN/$explain/; $explain = ""; } my $depends = ""; $depends = "depends_on:$dep\n" if defined($dep) && length($dep); print <<EOF; $desc $depends$case EOF } } # The first number (a power of 2) that won't fit in the number of MPIs # needed for the given number sub bound_mpi4 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi4($_[0])); } sub bound_mpi8 { my $one = Math::BigInt->new(1); # blsft modifies caller return $one->blsft(bits_mpi8($_[0])); } # How many bits (a multiple of 32) needed to store the specified number # when using 4-byte MPIs sub bits_mpi4 { return 32 * mpi4s($_[0]); } # How many bits (a multiple of 64) needed to store the specified number # when using 8-byte MPIs sub bits_mpi8 { return 64 * mpi8s($_[0]); } # How many 4-byte MPIs needed to store the specified number sub mpi4s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 7) / 8); } # How many 8-byte MPIs needed to store the specified number sub mpi8s { my ($n) = @_; my $h = $n->to_hex(); return int((length($h) + 15) / 16); } sub output { #run_test(@_); return join(":", @_); } sub str { return '"' . $_[0] . '"'; } ``` The data for the generated test cases (@generate) for mpi-test-core-montmul.pl was created by ``` #!/usr/bin/env perl # # mpi-modmul-gen.pl - randomly generate test cases for mpi-test-core-montmul.pl # use strict; use warnings; use Math::BigInt; use sort 'stable'; my %seen = (); my @primes = ( "3", "7", "B", "29", "101", "38B", "8003", "10001", "800009", "100002B", "37EEE9D", "8000000B", "8CD626B9", # From here they require > 1 4-byte MPI "10000000F", "174876E7E9", "8000000017", "864CB9076D", "1000000000F", "800000000005", "800795D9BA47", "1000000000015", "100000000000051", # From here they require > 1 8-byte MPI "25A55A46E5DA99C71C7", # this is 11111111111111111111111 decimal # 10^143 + 3^4: (which is prime) # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", ); my %prime = map { $_ => 1 } @primes; my @moduli = ( [ "3", "" ], [ "7", "" ], [ "B", "" ], [ "29", "" ], [ "FF", "" ], [ "101", "" ], [ "38B", "" ], [ "8003", "" ], [ "10001", "" ], [ "7F7F7", "" ], [ "800009", "" ], [ "100002B", "" ], [ "37EEE9D", "" ], [ "8000000B", "" ], [ "8CD626B9", "" ], [ "10000000F", "" ], [ "174876E7E9", "0x174876E7E9 is prime (dec) 99999999977" ], [ "8000000017", "" ], [ "864CB9076D", "" ], [ "F7F7F7F7F7", "" ], [ "1000000000F", "" ], [ "800000000005", "" ], [ "800795D9BA47", "" ], [ "1000000000015", "" ], [ "100000000000051", "" ], [ "ABCDEF0123456789", "" ], [ "25A55A46E5DA99C71C7", "0x25A55A46E5DA99C71C7 is the 3rd repunit prime (dec) 11111111111111111111111" ], [ "314DC643FB763F2B8C0E2DE00879", "0x314DC643FB763F2B8C0E2DE00879 is (dec)99999999977^3" ], [ "47BF19662275FA2F6845C74942ED1D852E521", "0x47BF19662275FA2F6845C74942ED1D852E521 is (dec) 99999999977^4" ], [ "97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931", "0x97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 is (dec) 99999999977^6" ], [ "DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499", "0xDD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 is (dec) 99999999977^7" ], [ "141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41", "0x141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 is 99999999977^8" ], [ "2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451", "0x2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 is (dec) 99999999977^10" ], [ "8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051", "0x8335616AED761F1F7F44E6BD49E807B82E3BF2BF11BFA6AF813C808DBF33DBFA11DABD6E6144BEF37C6800000000000000000000000000000000051 is prime, (dec) 10^143 + 3^4" ], # 100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000081 ); #99999999977^2: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9 #99999999977^3: #ibase=16 ; obase=10 ; 174876E7E9*174876E7E9*174876E7E9 #99999999977^2: 21E19E0C58BACE25211 #99999999977^3: 314DC643FB763F2B8C0E2DE00879 #99999999977^4: 47BF19662275FA2F6845C74942ED1D852E521 #99999999977^5: 6867A5A664437D20ED7941408583AADA2193CE95695209 #99999999977^6: 97EDD86E4B5C4592C6D32064AC55C888A7245F07CA3CC455E07C931 #99999999977^7: DD15FE80B731872AC104DB37832F7E75A244AA2631BC87885B861E8F20375499 #99999999977^8: 141B8EBD9009F84C241879A1F680FACCED355DA36C498F73E96E880CF78EA5F96146380E41 #99999999977^9: 1D42AEA1837AA78C6339224E9B39A483E4AAAF12CE7752E1EA1681082CBC8AB056A36B6299557D7A029 #99999999977^10: 2A94608DE88B6D5E9F8920F5ABB06B24CC35AE1FBACC87D075C621C3E2833EC902713E40F51E3B3C214EDFABC451 my %mentioned = (); for my $mod (@moduli) { my ($nh, $info) = @$mod; my $n = Math::BigInt->from_hex($nh); my $xxx = $n->to_hex(); die("$xxx != $nh") unless lc($xxx) eq lc($nh); my $cases = ($n < 5) ? 3 : 4; for (my $case = 0; $case < $cases; $case++) { my ($a, $b); for ($a = 0; $a == 0; ) { $a = int(rand($n)); } for ($b = 0; $b == 0; ) { $b = int(rand($n)); } my $cstr = "$a|$b|$n"; if (exists($seen{$cstr})) { # don't repeat ourselves $case--; next; } $seen{$cstr} = 1; my $ah = Math::BigInt->new($a)->to_hex(); my $bh = Math::BigInt->new($b)->to_hex(); my $desc = ""; if (length($info)) { $desc = $info if !$mentioned{$info}; $mentioned{$info} = 1; } elsif (length($nh) > 1 && $prime{$nh} && !$mentioned{$nh}) { $desc = "(0x$nh is prime)"; $mentioned{$nh} = 1; } print <<EOF; [ "$nh", "$ah", "$bh", "$desc" ], EOF } } ``` Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-08-17 07:29:32 +02:00
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */
2017-05-30 15:23:15 +02:00
void mpi_selftest( )
{
TEST_ASSERT( mbedtls_mpi_self_test( 1 ) == 0 );
}
/* END_CASE */