Use mbedtls_mpi_core_montmul() in mpi_montmul()

Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
This commit is contained in:
Tom Cosgrove 2022-08-05 16:59:43 +01:00
parent f334d9622b
commit 9384284530
3 changed files with 44 additions and 112 deletions

View file

@ -1553,65 +1553,39 @@ static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
*mm = mbedtls_mpi_montg_init( N->p[0] );
}
/* This would be static, but is tested */
void mbedtls_mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
const mbedtls_mpi *N, mbedtls_mpi_uint mm,
const mbedtls_mpi *T )
/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
*
* \param[in,out] A One of the numbers to multiply.
* It must have at least as many limbs as N
* (A->n >= N->n), and any limbs beyond n are ignored.
* On successful completion, A contains the result of
* the multiplication A * B * R^-1 mod N where
* R = (2^ciL)^n.
* \param[in] B One of the numbers to multiply.
* It must be nonzero and must not have more limbs than N
* (B->n <= N->n).
* \param[in] N The modulo. N must be odd.
* \param mm The value calculated by `mpi_montg_init(&mm, N)`.
* This is -N^-1 mod 2^ciL.
* \param[in,out] T A bignum for temporary storage.
* It must be at least twice the limb size of N plus 1
* (T->n >= 2 * N->n + 1).
* Its initial content is unused and
* its final content is indeterminate.
* Note that unlike the usual convention in the library
* for `const mbedtls_mpi*`, the content of T can change.
*/
static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
const mbedtls_mpi *N, mbedtls_mpi_uint mm,
const mbedtls_mpi *T )
{
size_t n, m;
mbedtls_mpi_uint *d;
memset( T->p, 0, T->n * ciL );
d = T->p;
n = N->n;
m = ( B->n < n ) ? B->n : n;
for( size_t i = 0; i < n; i++ )
{
mbedtls_mpi_uint u0, u1;
/*
* T = (T + u0*B + u1*N) / 2^biL
*/
u0 = A->p[i];
u1 = ( d[0] + u0 * B->p[0] ) * mm;
(void) mbedtls_mpi_core_mla( d, n + 2,
B->p, m,
u0 );
(void) mbedtls_mpi_core_mla( d, n + 2,
N->p, n,
u1 );
d++;
}
/* At this point, d is either the desired result or the desired result
* plus N. We now potentially subtract N, avoiding leaking whether the
* subtraction is performed through side channels. */
/* Copy the n least significant limbs of d to A, so that
* A = d if d < N (recall that N has n limbs). */
memcpy( A->p, d, n * ciL );
/* If d >= N then we want to set A to d - N. To prevent timing attacks,
* do the calculation without using conditional tests. */
/* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
d[n] += 1;
d[n] -= mbedtls_mpi_core_sub( d, d, N->p, n );
/* If d0 < N then d < (2^biL)^n
* so d[n] == 0 and we want to keep A as it is.
* If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
* so d[n] == 1 and we want to set A to the result of the subtraction
* which is d - (2^biL)^n, i.e. the n least significant limbs of d.
* This exactly corresponds to a conditional assignment. */
mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
}
/*
* Montgomery reduction: A = A * R^-1 mod N
*
* See the doc for mbedtls_mpi_montmul() regarding constraints and guarantees on
* the parameters.
* See mpi_montmul() regarding constraints and guarantees on the parameters.
*/
static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
mbedtls_mpi_uint mm, const mbedtls_mpi *T )
@ -1622,7 +1596,7 @@ static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
U.n = U.s = (int) z;
U.p = &z;
mbedtls_mpi_montmul( A, &U, N, mm, T );
mpi_montmul( A, &U, N, mm, T );
}
/**
@ -1704,7 +1678,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
#endif
j = N->n + 1;
/* All W[i] and X must have at least N->n limbs for the mbedtls_mpi_montmul()
/* All W[i] and X must have at least N->n limbs for the mpi_montmul()
* and mpi_montred() calls later. Here we ensure that W[1] and X are
* large enough, and later we'll grow other W[i] to the same length.
* They must not be shrunk midway through this function!
@ -1747,7 +1721,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
/* This should be a no-op because W[1] is already that large before
* mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
* in mbedtls_mpi_montmul() below, so let's make sure. */
* in mpi_montmul() below, so let's make sure. */
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
}
else
@ -1755,7 +1729,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
/* Note that this is safe because W[1] always has at least N->n limbs
* (it grew above and was preserved by mbedtls_mpi_copy()). */
mbedtls_mpi_montmul( &W[1], &RR, N, mm, &T );
mpi_montmul( &W[1], &RR, N, mm, &T );
/*
* X = R^2 * R^-1 mod N = R mod N
@ -1774,7 +1748,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
for( i = 0; i < wsize - 1; i++ )
mbedtls_mpi_montmul( &W[j], &W[j], N, mm, &T );
mpi_montmul( &W[j], &W[j], N, mm, &T );
/*
* W[i] = W[i - 1] * W[1]
@ -1784,7 +1758,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
mbedtls_mpi_montmul( &W[i], &W[1], N, mm, &T );
mpi_montmul( &W[i], &W[1], N, mm, &T );
}
}
@ -1821,7 +1795,7 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
/*
* out of window, square X
*/
mbedtls_mpi_montmul( X, X, N, mm, &T );
mpi_montmul( X, X, N, mm, &T );
continue;
}
@ -1839,13 +1813,13 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
* X = X^wsize R^-1 mod N
*/
for( i = 0; i < wsize; i++ )
mbedtls_mpi_montmul( X, X, N, mm, &T );
mpi_montmul( X, X, N, mm, &T );
/*
* X = X * W[wbits] R^-1 mod N
*/
MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
mbedtls_mpi_montmul( X, &WW, N, mm, &T );
mpi_montmul( X, &WW, N, mm, &T );
state--;
nbits = 0;
@ -1858,12 +1832,12 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
*/
for( i = 0; i < nbits; i++ )
{
mbedtls_mpi_montmul( X, X, N, mm, &T );
mpi_montmul( X, X, N, mm, &T );
wbits <<= 1;
if( ( wbits & ( one << wsize ) ) != 0 )
mbedtls_mpi_montmul( X, &W[1], N, mm, &T );
mpi_montmul( X, &W[1], N, mm, &T );
}
/*

View file

@ -263,32 +263,4 @@ mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *d,
size_t n,
unsigned cond );
/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
*
* This would be static, but is tested.
*
* \param[in,out] A One of the numbers to multiply.
* It must have at least as many limbs as N
* (A->n >= N->n), and any limbs beyond n are ignored.
* On successful completion, A contains the result of
* the multiplication A * B * R^-1 mod N where
* R = (2^ciL)^n.
* \param[in] B One of the numbers to multiply.
* It must be nonzero and must not have more limbs than N
* (B->n <= N->n).
* \param[in] N The modulo. N must be odd.
* \param mm The value calculated by `mpi_montg_init(&mm, N)`.
* This is -N^-1 mod 2^ciL.
* \param[in,out] T A bignum for temporary storage.
* It must be at least twice the limb size of N plus 1
* (T->n >= 2 * N->n + 1).
* Its initial content is unused and
* its final content is indeterminate.
* Note that unlike the usual convention in the library
* for `const mbedtls_mpi*`, the content of T can change.
*/
void mbedtls_mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
const mbedtls_mpi *N, mbedtls_mpi_uint mm,
const mbedtls_mpi *T );
#endif /* MBEDTLS_BIGNUM_CORE_H */

View file

@ -2035,7 +2035,7 @@ void mbedtls_mpi_core_montmul( int limbs_AN4, int limbs_B4,
char * input_X4,
char * input_X8 )
{
mbedtls_mpi A, B, N, X4, X8, T, CA;
mbedtls_mpi A, B, N, X4, X8, T, R;
mbedtls_mpi_init( &A );
mbedtls_mpi_init( &B );
@ -2043,7 +2043,7 @@ void mbedtls_mpi_core_montmul( int limbs_AN4, int limbs_B4,
mbedtls_mpi_init( &X4 ); /* expected result, sizeof(mbedtls_mpi_uint) == 4 */
mbedtls_mpi_init( &X8 ); /* expected result, sizeof(mbedtls_mpi_uint) == 8 */
mbedtls_mpi_init( &T );
mbedtls_mpi_init( &CA ); /* copy of A */
mbedtls_mpi_init( &R ); /* for the result */
TEST_EQUAL( mbedtls_test_read_mpi( &A, input_A ), 0 );
TEST_EQUAL( mbedtls_test_read_mpi( &B, input_B ), 0 );
@ -2076,24 +2076,10 @@ void mbedtls_mpi_core_montmul( int limbs_AN4, int limbs_B4,
/* Calculate the Montgomery constant (this is unit tested separately) */
mbedtls_mpi_uint mm = mbedtls_mpi_montg_init( N.p[0] );
TEST_EQUAL( mbedtls_mpi_copy( &CA, &A ), 0 ); /* take a copy */
TEST_EQUAL( mbedtls_mpi_grow( &CA, limbs_AN ), 0 ); /* ensure it's got the right number of limbs */
TEST_EQUAL( mbedtls_mpi_grow( &R, limbs_AN ), 0 ); /* ensure it's got the right number of limbs */
mbedtls_mpi_montmul( &A, &B, &N, mm, &T );
TEST_EQUAL( A.s, 1 ); /* ensure still positive */
/* Could use mbedtls_mpi_cmp_mpi(), but this gives finer detail if not the same */
TEST_EQUAL( A.n, X->n );
TEST_EQUAL( memcmp( A.p, X->p, A.n * sizeof(mbedtls_mpi_uint) ), 0 );
/* First overwrite A so we ensure mbedtls_mpi_core_montmul() does something */
memset( A.p, 0xAA, A.n * sizeof(mbedtls_mpi_uint) );
/* Now test the new function: use the copy CA we took earlier of A as the
* LHS, and use A as the destination
*/
mbedtls_mpi_core_montmul( A.p, CA.p, B.p, B.n, N.p, N.n, mm, T.p );
TEST_EQUAL( memcmp( A.p, X->p, A.n * sizeof(mbedtls_mpi_uint) ), 0 );
mbedtls_mpi_core_montmul( R.p, A.p, B.p, B.n, N.p, N.n, mm, T.p );
TEST_EQUAL( memcmp( R.p, X->p, N.n * sizeof(mbedtls_mpi_uint) ), 0 );
exit:
mbedtls_mpi_free( &A );
@ -2102,7 +2088,7 @@ exit:
mbedtls_mpi_free( &X4 );
mbedtls_mpi_free( &X8 );
mbedtls_mpi_free( &T );
mbedtls_mpi_free( &CA );
mbedtls_mpi_free( &R );
}
/* END_CASE */