mbedtls/tests/suites/test_suite_ssl.function

6004 lines
211 KiB
C
Raw Normal View History

2014-09-24 11:13:44 +02:00
/* BEGIN_HEADER */
2015-03-09 18:05:11 +01:00
#include <mbedtls/ssl.h>
#include <ssl_misc.h>
#include <mbedtls/timing.h>
#include <mbedtls/debug.h>
#include <ssl_tls13_keys.h>
#include <ssl_tls13_invasive.h>
#include "test/certs.h"
#if defined(MBEDTLS_SSL_CACHE_C)
#include "mbedtls/ssl_cache.h"
#endif
#include <mbedtls/legacy_or_psa.h>
#include "hash_info.h"
#include <constant_time_internal.h>
#include <test/constant_flow.h>
#if defined(MBEDTLS_KEY_EXCHANGE_DHE_RSA_ENABLED) || \
defined(MBEDTLS_KEY_EXCHANGE_ECDHE_RSA_ENABLED) || \
defined(MBEDTLS_KEY_EXCHANGE_RSA_ENABLED)
#define MBEDTLS_CAN_HANDLE_RSA_TEST_KEY
#endif
enum {
#define MBEDTLS_SSL_TLS1_3_LABEL(name, string) \
tls13_label_ ## name,
MBEDTLS_SSL_TLS1_3_LABEL_LIST
#undef MBEDTLS_SSL_TLS1_3_LABEL
};
typedef struct log_pattern {
const char *pattern;
size_t counter;
} log_pattern;
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED)
static int rng_seed = 0xBEEF;
static int rng_get(void *p_rng, unsigned char *output, size_t output_len)
{
(void) p_rng;
for (size_t i = 0; i < output_len; i++) {
output[i] = rand();
}
return 0;
}
#endif
/*
* This function can be passed to mbedtls to receive output logs from it. In
* this case, it will count the instances of a log_pattern in the received
* logged messages.
*/
void log_analyzer(void *ctx, int level,
const char *file, int line,
const char *str)
{
log_pattern *p = (log_pattern *) ctx;
(void) level;
(void) line;
(void) file;
if (NULL != p &&
NULL != p->pattern &&
NULL != strstr(str, p->pattern)) {
p->counter++;
}
}
typedef struct handshake_test_options {
const char *cipher;
mbedtls_ssl_protocol_version client_min_version;
mbedtls_ssl_protocol_version client_max_version;
mbedtls_ssl_protocol_version server_min_version;
mbedtls_ssl_protocol_version server_max_version;
mbedtls_ssl_protocol_version expected_negotiated_version;
int expected_handshake_result;
int expected_ciphersuite;
int pk_alg;
int opaque_alg;
int opaque_alg2;
int opaque_usage;
data_t *psk_str;
int dtls;
int srv_auth_mode;
int serialize;
int mfl;
int cli_msg_len;
int srv_msg_len;
int expected_cli_fragments;
int expected_srv_fragments;
int renegotiate;
int legacy_renegotiation;
void *srv_log_obj;
void *cli_log_obj;
void (*srv_log_fun)(void *, int, const char *, int, const char *);
void (*cli_log_fun)(void *, int, const char *, int, const char *);
int resize_buffers;
#if defined(MBEDTLS_SSL_CACHE_C)
mbedtls_ssl_cache_context *cache;
#endif
} handshake_test_options;
void init_handshake_options(handshake_test_options *opts)
{
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED)
srand(rng_seed);
rng_seed += 0xD0;
#endif
opts->cipher = "";
opts->client_min_version = MBEDTLS_SSL_VERSION_UNKNOWN;
opts->client_max_version = MBEDTLS_SSL_VERSION_UNKNOWN;
opts->server_min_version = MBEDTLS_SSL_VERSION_UNKNOWN;
opts->server_max_version = MBEDTLS_SSL_VERSION_UNKNOWN;
opts->expected_negotiated_version = MBEDTLS_SSL_VERSION_TLS1_2;
opts->expected_handshake_result = 0;
opts->expected_ciphersuite = 0;
opts->pk_alg = MBEDTLS_PK_RSA;
opts->opaque_alg = 0;
opts->opaque_alg2 = 0;
opts->opaque_usage = 0;
opts->psk_str = NULL;
opts->dtls = 0;
opts->srv_auth_mode = MBEDTLS_SSL_VERIFY_NONE;
opts->serialize = 0;
opts->mfl = MBEDTLS_SSL_MAX_FRAG_LEN_NONE;
opts->cli_msg_len = 100;
opts->srv_msg_len = 100;
opts->expected_cli_fragments = 1;
opts->expected_srv_fragments = 1;
opts->renegotiate = 0;
opts->legacy_renegotiation = MBEDTLS_SSL_LEGACY_NO_RENEGOTIATION;
opts->srv_log_obj = NULL;
opts->srv_log_obj = NULL;
opts->srv_log_fun = NULL;
opts->cli_log_fun = NULL;
opts->resize_buffers = 1;
#if defined(MBEDTLS_SSL_CACHE_C)
opts->cache = NULL;
ASSERT_ALLOC(opts->cache, 1);
mbedtls_ssl_cache_init(opts->cache);
exit:
return;
#endif
}
void free_handshake_options(handshake_test_options *opts)
{
#if defined(MBEDTLS_SSL_CACHE_C)
mbedtls_ssl_cache_free(opts->cache);
mbedtls_free(opts->cache);
#else
(void) opts;
#endif
}
#if defined(MBEDTLS_TEST_HOOKS)
static void set_chk_buf_ptr_args(
mbedtls_ssl_chk_buf_ptr_args *args,
unsigned char *cur, unsigned char *end, size_t need)
{
args->cur = cur;
args->end = end;
args->need = need;
}
static void reset_chk_buf_ptr_args(mbedtls_ssl_chk_buf_ptr_args *args)
{
memset(args, 0, sizeof(*args));
}
#endif /* MBEDTLS_TEST_HOOKS */
/*
* Buffer structure for custom I/O callbacks.
*/
typedef struct mbedtls_test_buffer {
size_t start;
size_t content_length;
size_t capacity;
unsigned char *buffer;
} mbedtls_test_buffer;
/*
* Initialises \p buf. After calling this function it is safe to call
* `mbedtls_test_buffer_free()` on \p buf.
*/
void mbedtls_test_buffer_init(mbedtls_test_buffer *buf)
{
memset(buf, 0, sizeof(*buf));
}
/*
* Sets up \p buf. After calling this function it is safe to call
* `mbedtls_test_buffer_put()` and `mbedtls_test_buffer_get()` on \p buf.
*/
int mbedtls_test_buffer_setup(mbedtls_test_buffer *buf, size_t capacity)
{
buf->buffer = (unsigned char *) mbedtls_calloc(capacity,
sizeof(unsigned char));
if (NULL == buf->buffer) {
return MBEDTLS_ERR_SSL_ALLOC_FAILED;
}
buf->capacity = capacity;
return 0;
}
void mbedtls_test_buffer_free(mbedtls_test_buffer *buf)
{
if (buf->buffer != NULL) {
mbedtls_free(buf->buffer);
}
memset(buf, 0, sizeof(*buf));
}
/*
* Puts \p input_len bytes from the \p input buffer into the ring buffer \p buf.
*
* \p buf must have been initialized and set up by calling
* `mbedtls_test_buffer_init()` and `mbedtls_test_buffer_setup()`.
*
* \retval \p input_len, if the data fits.
* \retval 0 <= value < \p input_len, if the data does not fit.
* \retval -1, if \p buf is NULL, it hasn't been set up or \p input_len is not
* zero and \p input is NULL.
*/
int mbedtls_test_buffer_put(mbedtls_test_buffer *buf,
const unsigned char *input, size_t input_len)
{
size_t overflow = 0;
if ((buf == NULL) || (buf->buffer == NULL)) {
return -1;
}
/* Reduce input_len to a number that fits in the buffer. */
if ((buf->content_length + input_len) > buf->capacity) {
input_len = buf->capacity - buf->content_length;
}
if (input == NULL) {
return (input_len == 0) ? 0 : -1;
}
/* Check if the buffer has not come full circle and free space is not in
* the middle */
if (buf->start + buf->content_length < buf->capacity) {
/* Calculate the number of bytes that need to be placed at lower memory
* address */
if (buf->start + buf->content_length + input_len
> buf->capacity) {
overflow = (buf->start + buf->content_length + input_len)
% buf->capacity;
}
memcpy(buf->buffer + buf->start + buf->content_length, input,
input_len - overflow);
memcpy(buf->buffer, input + input_len - overflow, overflow);
} else {
/* The buffer has come full circle and free space is in the middle */
memcpy(buf->buffer + buf->start + buf->content_length - buf->capacity,
input, input_len);
}
buf->content_length += input_len;
return input_len;
}
/*
* Gets \p output_len bytes from the ring buffer \p buf into the
* \p output buffer. The output buffer can be NULL, in this case a part of the
* ring buffer will be dropped, if the requested length is available.
*
* \p buf must have been initialized and set up by calling
* `mbedtls_test_buffer_init()` and `mbedtls_test_buffer_setup()`.
*
* \retval \p output_len, if the data is available.
* \retval 0 <= value < \p output_len, if the data is not available.
* \retval -1, if \buf is NULL or it hasn't been set up.
*/
int mbedtls_test_buffer_get(mbedtls_test_buffer *buf,
unsigned char *output, size_t output_len)
{
size_t overflow = 0;
if ((buf == NULL) || (buf->buffer == NULL)) {
return -1;
}
if (output == NULL && output_len == 0) {
return 0;
}
if (buf->content_length < output_len) {
output_len = buf->content_length;
}
/* Calculate the number of bytes that need to be drawn from lower memory
* address */
if (buf->start + output_len > buf->capacity) {
overflow = (buf->start + output_len) % buf->capacity;
}
if (output != NULL) {
memcpy(output, buf->buffer + buf->start, output_len - overflow);
memcpy(output + output_len - overflow, buf->buffer, overflow);
}
buf->content_length -= output_len;
buf->start = (buf->start + output_len) % buf->capacity;
return output_len;
}
/*
* Errors used in the message transport mock tests
*/
#define MBEDTLS_TEST_ERROR_ARG_NULL -11
#define MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED -44
/*
* Context for a message metadata queue (fifo) that is on top of the ring buffer.
*/
typedef struct mbedtls_test_message_queue {
size_t *messages;
int pos;
int num;
int capacity;
} mbedtls_test_message_queue;
/*
* Setup and free functions for the message metadata queue.
*
* \p capacity describes the number of message metadata chunks that can be held
* within the queue.
*
* \retval 0, if a metadata queue of a given length can be allocated.
* \retval MBEDTLS_ERR_SSL_ALLOC_FAILED, if allocation failed.
*/
int mbedtls_test_message_queue_setup(mbedtls_test_message_queue *queue,
size_t capacity)
{
queue->messages = (size_t *) mbedtls_calloc(capacity, sizeof(size_t));
if (NULL == queue->messages) {
return MBEDTLS_ERR_SSL_ALLOC_FAILED;
}
queue->capacity = capacity;
queue->pos = 0;
queue->num = 0;
return 0;
}
void mbedtls_test_message_queue_free(mbedtls_test_message_queue *queue)
{
if (queue == NULL) {
return;
}
if (queue->messages != NULL) {
mbedtls_free(queue->messages);
}
memset(queue, 0, sizeof(*queue));
}
/*
* Push message length information onto the message metadata queue.
* This will become the last element to leave it (fifo).
*
* \retval MBEDTLS_TEST_ERROR_ARG_NULL, if the queue is null.
* \retval MBEDTLS_ERR_SSL_WANT_WRITE, if the queue is full.
* \retval \p len, if the push was successful.
*/
int mbedtls_test_message_queue_push_info(mbedtls_test_message_queue *queue,
size_t len)
{
int place;
if (queue == NULL) {
return MBEDTLS_TEST_ERROR_ARG_NULL;
}
if (queue->num >= queue->capacity) {
return MBEDTLS_ERR_SSL_WANT_WRITE;
}
place = (queue->pos + queue->num) % queue->capacity;
queue->messages[place] = len;
queue->num++;
return len;
}
/*
* Pop information about the next message length from the queue. This will be
* the oldest inserted message length(fifo). \p msg_len can be null, in which
* case the data will be popped from the queue but not copied anywhere.
*
* \retval MBEDTLS_TEST_ERROR_ARG_NULL, if the queue is null.
* \retval MBEDTLS_ERR_SSL_WANT_READ, if the queue is empty.
* \retval message length, if the pop was successful, up to the given
\p buf_len.
*/
int mbedtls_test_message_queue_pop_info(mbedtls_test_message_queue *queue,
size_t buf_len)
{
size_t message_length;
if (queue == NULL) {
return MBEDTLS_TEST_ERROR_ARG_NULL;
}
if (queue->num == 0) {
return MBEDTLS_ERR_SSL_WANT_READ;
}
message_length = queue->messages[queue->pos];
queue->messages[queue->pos] = 0;
queue->num--;
queue->pos++;
queue->pos %= queue->capacity;
if (queue->pos < 0) {
queue->pos += queue->capacity;
}
return (message_length > buf_len) ? buf_len : message_length;
}
/*
* Take a peek on the info about the next message length from the queue.
* This will be the oldest inserted message length(fifo).
*
* \retval MBEDTLS_TEST_ERROR_ARG_NULL, if the queue is null.
* \retval MBEDTLS_ERR_SSL_WANT_READ, if the queue is empty.
* \retval 0, if the peek was successful.
* \retval MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED, if the given buffer length is
* too small to fit the message. In this case the \p msg_len will be
* set to the full message length so that the
* caller knows what portion of the message can be dropped.
*/
int mbedtls_test_message_queue_peek_info(mbedtls_test_message_queue *queue,
size_t buf_len, size_t *msg_len)
{
if (queue == NULL || msg_len == NULL) {
return MBEDTLS_TEST_ERROR_ARG_NULL;
}
if (queue->num == 0) {
return MBEDTLS_ERR_SSL_WANT_READ;
}
*msg_len = queue->messages[queue->pos];
return (*msg_len > buf_len) ? MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED : 0;
}
/*
* Context for the I/O callbacks simulating network connection.
*/
#define MBEDTLS_MOCK_SOCKET_CONNECTED 1
typedef struct mbedtls_mock_socket {
int status;
mbedtls_test_buffer *input;
mbedtls_test_buffer *output;
struct mbedtls_mock_socket *peer;
} mbedtls_mock_socket;
/*
* Setup and teardown functions for mock sockets.
*/
void mbedtls_mock_socket_init(mbedtls_mock_socket *socket)
{
memset(socket, 0, sizeof(*socket));
}
/*
* Closes the socket \p socket.
*
* \p socket must have been previously initialized by calling
* mbedtls_mock_socket_init().
*
* This function frees all allocated resources and both sockets are aware of the
* new connection state.
*
* That is, this function does not simulate half-open TCP connections and the
* phenomenon that when closing a UDP connection the peer is not aware of the
* connection having been closed.
*/
void mbedtls_mock_socket_close(mbedtls_mock_socket *socket)
{
if (socket == NULL) {
return;
}
if (socket->input != NULL) {
mbedtls_test_buffer_free(socket->input);
mbedtls_free(socket->input);
}
if (socket->output != NULL) {
mbedtls_test_buffer_free(socket->output);
mbedtls_free(socket->output);
}
if (socket->peer != NULL) {
memset(socket->peer, 0, sizeof(*socket->peer));
}
memset(socket, 0, sizeof(*socket));
}
/*
* Establishes a connection between \p peer1 and \p peer2.
*
* \p peer1 and \p peer2 must have been previously initialized by calling
* mbedtls_mock_socket_init().
*
* The capacities of the internal buffers are set to \p bufsize. Setting this to
* the correct value allows for simulation of MTU, sanity testing the mock
* implementation and mocking TCP connections with lower memory cost.
*/
int mbedtls_mock_socket_connect(mbedtls_mock_socket *peer1,
mbedtls_mock_socket *peer2,
size_t bufsize)
{
int ret = -1;
peer1->output =
(mbedtls_test_buffer *) mbedtls_calloc(1, sizeof(mbedtls_test_buffer));
if (peer1->output == NULL) {
ret = MBEDTLS_ERR_SSL_ALLOC_FAILED;
goto exit;
}
mbedtls_test_buffer_init(peer1->output);
if (0 != (ret = mbedtls_test_buffer_setup(peer1->output, bufsize))) {
goto exit;
}
peer2->output =
(mbedtls_test_buffer *) mbedtls_calloc(1, sizeof(mbedtls_test_buffer));
if (peer2->output == NULL) {
ret = MBEDTLS_ERR_SSL_ALLOC_FAILED;
goto exit;
}
mbedtls_test_buffer_init(peer2->output);
if (0 != (ret = mbedtls_test_buffer_setup(peer2->output, bufsize))) {
goto exit;
}
peer1->peer = peer2;
peer2->peer = peer1;
peer1->input = peer2->output;
peer2->input = peer1->output;
peer1->status = peer2->status = MBEDTLS_MOCK_SOCKET_CONNECTED;
ret = 0;
exit:
if (ret != 0) {
mbedtls_mock_socket_close(peer1);
mbedtls_mock_socket_close(peer2);
}
return ret;
}
/*
* Callbacks for simulating blocking I/O over connection-oriented transport.
*/
int mbedtls_mock_tcp_send_b(void *ctx, const unsigned char *buf, size_t len)
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket *) ctx;
if (socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED) {
return -1;
}
return mbedtls_test_buffer_put(socket->output, buf, len);
}
int mbedtls_mock_tcp_recv_b(void *ctx, unsigned char *buf, size_t len)
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket *) ctx;
if (socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED) {
return -1;
}
return mbedtls_test_buffer_get(socket->input, buf, len);
}
/*
* Callbacks for simulating non-blocking I/O over connection-oriented transport.
*/
int mbedtls_mock_tcp_send_nb(void *ctx, const unsigned char *buf, size_t len)
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket *) ctx;
if (socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED) {
return -1;
}
if (socket->output->capacity == socket->output->content_length) {
return MBEDTLS_ERR_SSL_WANT_WRITE;
}
return mbedtls_test_buffer_put(socket->output, buf, len);
}
int mbedtls_mock_tcp_recv_nb(void *ctx, unsigned char *buf, size_t len)
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket *) ctx;
if (socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED) {
return -1;
}
if (socket->input->content_length == 0) {
return MBEDTLS_ERR_SSL_WANT_READ;
}
return mbedtls_test_buffer_get(socket->input, buf, len);
}
/* Errors used in the message socket mocks */
#define MBEDTLS_TEST_ERROR_CONTEXT_ERROR -55
#define MBEDTLS_TEST_ERROR_SEND_FAILED -66
#define MBEDTLS_TEST_ERROR_RECV_FAILED -77
/*
* Structure used as an addon, or a wrapper, around the mocked sockets.
* Contains an input queue, to which the other socket pushes metadata,
* and an output queue, to which this one pushes metadata. This context is
* considered as an owner of the input queue only, which is initialized and
* freed in the respective setup and free calls.
*/
typedef struct mbedtls_test_message_socket_context {
mbedtls_test_message_queue *queue_input;
mbedtls_test_message_queue *queue_output;
mbedtls_mock_socket *socket;
} mbedtls_test_message_socket_context;
void mbedtls_message_socket_init(mbedtls_test_message_socket_context *ctx)
{
ctx->queue_input = NULL;
ctx->queue_output = NULL;
ctx->socket = NULL;
}
/*
* Setup a given message socket context including initialization of
* input/output queues to a chosen capacity of messages. Also set the
* corresponding mock socket.
*
* \retval 0, if everything succeeds.
* \retval MBEDTLS_ERR_SSL_ALLOC_FAILED, if allocation of a message
* queue failed.
*/
int mbedtls_message_socket_setup(mbedtls_test_message_queue *queue_input,
mbedtls_test_message_queue *queue_output,
size_t queue_capacity,
mbedtls_mock_socket *socket,
mbedtls_test_message_socket_context *ctx)
{
int ret = mbedtls_test_message_queue_setup(queue_input, queue_capacity);
if (ret != 0) {
return ret;
}
ctx->queue_input = queue_input;
ctx->queue_output = queue_output;
ctx->socket = socket;
mbedtls_mock_socket_init(socket);
return 0;
}
/*
* Close a given message socket context, along with the socket itself. Free the
* memory allocated by the input queue.
*/
void mbedtls_message_socket_close(mbedtls_test_message_socket_context *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_test_message_queue_free(ctx->queue_input);
mbedtls_mock_socket_close(ctx->socket);
memset(ctx, 0, sizeof(*ctx));
}
/*
* Send one message through a given message socket context.
*
* \retval \p len, if everything succeeds.
* \retval MBEDTLS_TEST_ERROR_CONTEXT_ERROR, if any of the needed context
* elements or the context itself is null.
* \retval MBEDTLS_TEST_ERROR_SEND_FAILED if mbedtls_mock_tcp_send_b failed.
* \retval MBEDTLS_ERR_SSL_WANT_WRITE, if the output queue is full.
*
* This function will also return any error from
* mbedtls_test_message_queue_push_info.
*/
int mbedtls_mock_tcp_send_msg(void *ctx, const unsigned char *buf, size_t len)
{
mbedtls_test_message_queue *queue;
mbedtls_mock_socket *socket;
mbedtls_test_message_socket_context *context = (mbedtls_test_message_socket_context *) ctx;
if (context == NULL || context->socket == NULL
|| context->queue_output == NULL) {
return MBEDTLS_TEST_ERROR_CONTEXT_ERROR;
}
queue = context->queue_output;
socket = context->socket;
if (queue->num >= queue->capacity) {
return MBEDTLS_ERR_SSL_WANT_WRITE;
}
if (mbedtls_mock_tcp_send_b(socket, buf, len) != (int) len) {
return MBEDTLS_TEST_ERROR_SEND_FAILED;
}
return mbedtls_test_message_queue_push_info(queue, len);
}
/*
* Receive one message from a given message socket context and return message
* length or an error.
*
* \retval message length, if everything succeeds.
* \retval MBEDTLS_TEST_ERROR_CONTEXT_ERROR, if any of the needed context
* elements or the context itself is null.
* \retval MBEDTLS_TEST_ERROR_RECV_FAILED if mbedtls_mock_tcp_recv_b failed.
*
* This function will also return any error other than
* MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED from mbedtls_test_message_queue_peek_info.
*/
int mbedtls_mock_tcp_recv_msg(void *ctx, unsigned char *buf, size_t buf_len)
{
mbedtls_test_message_queue *queue;
mbedtls_mock_socket *socket;
mbedtls_test_message_socket_context *context = (mbedtls_test_message_socket_context *) ctx;
size_t drop_len = 0;
size_t msg_len;
int ret;
if (context == NULL || context->socket == NULL
|| context->queue_input == NULL) {
return MBEDTLS_TEST_ERROR_CONTEXT_ERROR;
}
queue = context->queue_input;
socket = context->socket;
/* Peek first, so that in case of a socket error the data remains in
* the queue. */
ret = mbedtls_test_message_queue_peek_info(queue, buf_len, &msg_len);
if (ret == MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED) {
/* Calculate how much to drop */
drop_len = msg_len - buf_len;
/* Set the requested message len to be buffer length */
msg_len = buf_len;
} else if (ret != 0) {
return ret;
}
if (mbedtls_mock_tcp_recv_b(socket, buf, msg_len) != (int) msg_len) {
return MBEDTLS_TEST_ERROR_RECV_FAILED;
}
if (ret == MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED) {
/* Drop the remaining part of the message */
if (mbedtls_mock_tcp_recv_b(socket, NULL, drop_len) != (int) drop_len) {
/* Inconsistent state - part of the message was read,
* and a part couldn't. Not much we can do here, but it should not
* happen in test environment, unless forced manually. */
}
}
mbedtls_test_message_queue_pop_info(queue, buf_len);
return msg_len;
}
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED)
/*
* Structure with endpoint's certificates for SSL communication tests.
*/
typedef struct mbedtls_endpoint_certificate {
mbedtls_x509_crt *ca_cert;
mbedtls_x509_crt *cert;
mbedtls_pk_context *pkey;
} mbedtls_endpoint_certificate;
/*
* Endpoint structure for SSL communication tests.
*/
typedef struct mbedtls_endpoint {
const char *name;
mbedtls_ssl_context ssl;
mbedtls_ssl_config conf;
mbedtls_mock_socket socket;
mbedtls_endpoint_certificate cert;
} mbedtls_endpoint;
/*
* Deinitializes certificates from endpoint represented by \p ep.
*/
void mbedtls_endpoint_certificate_free(mbedtls_endpoint *ep)
{
mbedtls_endpoint_certificate *cert = &(ep->cert);
if (cert != NULL) {
if (cert->ca_cert != NULL) {
mbedtls_x509_crt_free(cert->ca_cert);
mbedtls_free(cert->ca_cert);
cert->ca_cert = NULL;
}
if (cert->cert != NULL) {
mbedtls_x509_crt_free(cert->cert);
mbedtls_free(cert->cert);
cert->cert = NULL;
}
if (cert->pkey != NULL) {
#if defined(MBEDTLS_USE_PSA_CRYPTO)
if (mbedtls_pk_get_type(cert->pkey) == MBEDTLS_PK_OPAQUE) {
mbedtls_svc_key_id_t *key_slot = cert->pkey->pk_ctx;
psa_destroy_key(*key_slot);
}
#endif
mbedtls_pk_free(cert->pkey);
mbedtls_free(cert->pkey);
cert->pkey = NULL;
}
}
}
/*
* Initializes \p ep_cert structure and assigns it to endpoint
* represented by \p ep.
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_endpoint_certificate_init(mbedtls_endpoint *ep, int pk_alg,
int opaque_alg, int opaque_alg2,
int opaque_usage)
{
int i = 0;
int ret = -1;
mbedtls_endpoint_certificate *cert = NULL;
#if defined(MBEDTLS_USE_PSA_CRYPTO)
mbedtls_svc_key_id_t key_slot = MBEDTLS_SVC_KEY_ID_INIT;
#endif
if (ep == NULL) {
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
}
cert = &(ep->cert);
ASSERT_ALLOC(cert->ca_cert, 1);
ASSERT_ALLOC(cert->cert, 1);
ASSERT_ALLOC(cert->pkey, 1);
mbedtls_x509_crt_init(cert->ca_cert);
mbedtls_x509_crt_init(cert->cert);
mbedtls_pk_init(cert->pkey);
/* Load the trusted CA */
for (i = 0; mbedtls_test_cas_der[i] != NULL; i++) {
ret = mbedtls_x509_crt_parse_der(cert->ca_cert,
(const unsigned char *) mbedtls_test_cas_der[i],
mbedtls_test_cas_der_len[i]);
TEST_ASSERT(ret == 0);
}
/* Load own certificate and private key */
if (ep->conf.endpoint == MBEDTLS_SSL_IS_SERVER) {
if (pk_alg == MBEDTLS_PK_RSA) {
ret = mbedtls_x509_crt_parse(cert->cert,
(const unsigned char *) mbedtls_test_srv_crt_rsa_sha256_der,
mbedtls_test_srv_crt_rsa_sha256_der_len);
TEST_ASSERT(ret == 0);
ret = mbedtls_pk_parse_key(cert->pkey,
(const unsigned char *) mbedtls_test_srv_key_rsa_der,
mbedtls_test_srv_key_rsa_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL);
TEST_ASSERT(ret == 0);
} else {
ret = mbedtls_x509_crt_parse(cert->cert,
(const unsigned char *) mbedtls_test_srv_crt_ec_der,
mbedtls_test_srv_crt_ec_der_len);
TEST_ASSERT(ret == 0);
ret = mbedtls_pk_parse_key(cert->pkey,
(const unsigned char *) mbedtls_test_srv_key_ec_der,
mbedtls_test_srv_key_ec_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL);
TEST_ASSERT(ret == 0);
}
} else {
if (pk_alg == MBEDTLS_PK_RSA) {
ret = mbedtls_x509_crt_parse(cert->cert,
(const unsigned char *) mbedtls_test_cli_crt_rsa_der,
mbedtls_test_cli_crt_rsa_der_len);
TEST_ASSERT(ret == 0);
ret = mbedtls_pk_parse_key(cert->pkey,
(const unsigned char *) mbedtls_test_cli_key_rsa_der,
mbedtls_test_cli_key_rsa_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL);
TEST_ASSERT(ret == 0);
} else {
ret = mbedtls_x509_crt_parse(cert->cert,
(const unsigned char *) mbedtls_test_cli_crt_ec_der,
mbedtls_test_cli_crt_ec_len);
TEST_ASSERT(ret == 0);
ret = mbedtls_pk_parse_key(cert->pkey,
(const unsigned char *) mbedtls_test_cli_key_ec_der,
mbedtls_test_cli_key_ec_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL);
TEST_ASSERT(ret == 0);
}
}
#if defined(MBEDTLS_USE_PSA_CRYPTO)
if (opaque_alg != 0) {
TEST_EQUAL(mbedtls_pk_wrap_as_opaque(cert->pkey, &key_slot,
opaque_alg, opaque_usage,
opaque_alg2), 0);
}
#else
(void) opaque_alg;
(void) opaque_alg2;
(void) opaque_usage;
#endif
mbedtls_ssl_conf_ca_chain(&(ep->conf), cert->ca_cert, NULL);
ret = mbedtls_ssl_conf_own_cert(&(ep->conf), cert->cert,
cert->pkey);
TEST_ASSERT(ret == 0);
TEST_ASSERT(ep->conf.key_cert != NULL);
ret = mbedtls_ssl_conf_own_cert(&(ep->conf), NULL, NULL);
TEST_ASSERT(ret == 0);
TEST_ASSERT(ep->conf.key_cert == NULL);
ret = mbedtls_ssl_conf_own_cert(&(ep->conf), cert->cert,
cert->pkey);
TEST_ASSERT(ret == 0);
exit:
if (ret != 0) {
mbedtls_endpoint_certificate_free(ep);
}
return ret;
}
/*
* Initializes \p ep structure. It is important to call `mbedtls_endpoint_free()`
* after calling this function even if it fails.
*
* \p endpoint_type must be set as MBEDTLS_SSL_IS_SERVER or
* MBEDTLS_SSL_IS_CLIENT.
* \p pk_alg the algorithm to use, currently only MBEDTLS_PK_RSA and
* MBEDTLS_PK_ECDSA are supported.
* \p dtls_context - in case of DTLS - this is the context handling metadata.
* \p input_queue - used only in case of DTLS.
* \p output_queue - used only in case of DTLS.
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_endpoint_init(mbedtls_endpoint *ep, int endpoint_type,
handshake_test_options *options,
mbedtls_test_message_socket_context *dtls_context,
mbedtls_test_message_queue *input_queue,
mbedtls_test_message_queue *output_queue,
uint16_t *group_list)
{
int ret = -1;
uintptr_t user_data_n;
if (dtls_context != NULL && (input_queue == NULL || output_queue == NULL)) {
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
}
if (ep == NULL) {
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
}
memset(ep, 0, sizeof(*ep));
ep->name = (endpoint_type == MBEDTLS_SSL_IS_SERVER) ? "Server" : "Client";
mbedtls_ssl_init(&(ep->ssl));
mbedtls_ssl_config_init(&(ep->conf));
mbedtls_ssl_conf_rng(&(ep->conf), rng_get, NULL);
TEST_ASSERT(mbedtls_ssl_conf_get_user_data_p(&ep->conf) == NULL);
TEST_EQUAL(mbedtls_ssl_conf_get_user_data_n(&ep->conf), 0);
TEST_ASSERT(mbedtls_ssl_get_user_data_p(&ep->ssl) == NULL);
TEST_EQUAL(mbedtls_ssl_get_user_data_n(&ep->ssl), 0);
(void) mbedtls_test_rnd_std_rand(NULL,
(void *) &user_data_n,
sizeof(user_data_n));
mbedtls_ssl_conf_set_user_data_n(&ep->conf, user_data_n);
mbedtls_ssl_set_user_data_n(&ep->ssl, user_data_n);
if (dtls_context != NULL) {
TEST_ASSERT(mbedtls_message_socket_setup(input_queue, output_queue,
100, &(ep->socket),
dtls_context) == 0);
} else {
mbedtls_mock_socket_init(&(ep->socket));
}
/* Non-blocking callbacks without timeout */
if (dtls_context != NULL) {
mbedtls_ssl_set_bio(&(ep->ssl), dtls_context,
mbedtls_mock_tcp_send_msg,
mbedtls_mock_tcp_recv_msg,
NULL);
} else {
mbedtls_ssl_set_bio(&(ep->ssl), &(ep->socket),
mbedtls_mock_tcp_send_nb,
mbedtls_mock_tcp_recv_nb,
NULL);
}
ret = mbedtls_ssl_config_defaults(&(ep->conf), endpoint_type,
(dtls_context != NULL) ?
MBEDTLS_SSL_TRANSPORT_DATAGRAM :
MBEDTLS_SSL_TRANSPORT_STREAM,
MBEDTLS_SSL_PRESET_DEFAULT);
TEST_ASSERT(ret == 0);
if (group_list != NULL) {
mbedtls_ssl_conf_groups(&(ep->conf), group_list);
}
mbedtls_ssl_conf_authmode(&(ep->conf), MBEDTLS_SSL_VERIFY_REQUIRED);
#if defined(MBEDTLS_SSL_CACHE_C) && defined(MBEDTLS_SSL_SRV_C)
if (endpoint_type == MBEDTLS_SSL_IS_SERVER && options->cache != NULL) {
mbedtls_ssl_conf_session_cache(&(ep->conf), options->cache,
mbedtls_ssl_cache_get,
mbedtls_ssl_cache_set);
}
#endif
ret = mbedtls_ssl_setup(&(ep->ssl), &(ep->conf));
TEST_ASSERT(ret == 0);
#if defined(MBEDTLS_SSL_PROTO_DTLS) && defined(MBEDTLS_SSL_SRV_C)
if (endpoint_type == MBEDTLS_SSL_IS_SERVER && dtls_context != NULL) {
mbedtls_ssl_conf_dtls_cookies(&(ep->conf), NULL, NULL, NULL);
}
#endif
ret = mbedtls_endpoint_certificate_init(ep, options->pk_alg,
options->opaque_alg,
options->opaque_alg2,
options->opaque_usage);
TEST_ASSERT(ret == 0);
TEST_EQUAL(mbedtls_ssl_conf_get_user_data_n(&ep->conf), user_data_n);
mbedtls_ssl_conf_set_user_data_p(&ep->conf, ep);
TEST_EQUAL(mbedtls_ssl_get_user_data_n(&ep->ssl), user_data_n);
mbedtls_ssl_set_user_data_p(&ep->ssl, ep);
exit:
return ret;
}
/*
* Deinitializes endpoint represented by \p ep.
*/
void mbedtls_endpoint_free(mbedtls_endpoint *ep,
mbedtls_test_message_socket_context *context)
{
mbedtls_endpoint_certificate_free(ep);
mbedtls_ssl_free(&(ep->ssl));
mbedtls_ssl_config_free(&(ep->conf));
if (context != NULL) {
mbedtls_message_socket_close(context);
} else {
mbedtls_mock_socket_close(&(ep->socket));
}
}
/*
* This function moves ssl handshake from \p ssl to prescribed \p state.
* /p second_ssl is used as second endpoint and their sockets have to be
* connected before calling this function.
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_move_handshake_to_state(mbedtls_ssl_context *ssl,
mbedtls_ssl_context *second_ssl,
int state)
{
enum { BUFFSIZE = 1024 };
int max_steps = 1000;
int ret = 0;
if (ssl == NULL || second_ssl == NULL) {
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
}
/* Perform communication via connected sockets */
while ((ssl->state != state) && (--max_steps >= 0)) {
/* If /p second_ssl ends the handshake procedure before /p ssl then
* there is no need to call the next step */
if (!mbedtls_ssl_is_handshake_over(second_ssl)) {
ret = mbedtls_ssl_handshake_step(second_ssl);
if (ret != 0 && ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE) {
return ret;
}
}
/* We only care about the \p ssl state and returns, so we call it last,
* to leave the iteration as soon as the state is as expected. */
ret = mbedtls_ssl_handshake_step(ssl);
if (ret != 0 && ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE) {
return ret;
}
}
return (max_steps >= 0) ? ret : -1;
}
#endif /* MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED */
/*
* Write application data. Increase write counter if necessary.
*/
int mbedtls_ssl_write_fragment(mbedtls_ssl_context *ssl, unsigned char *buf,
int buf_len, int *written,
const int expected_fragments)
{
int ret = mbedtls_ssl_write(ssl, buf + *written, buf_len - *written);
if (ret > 0) {
*written += ret;
}
if (expected_fragments == 0) {
/* Used for DTLS and the message size larger than MFL. In that case
* the message can not be fragmented and the library should return
* MBEDTLS_ERR_SSL_BAD_INPUT_DATA error. This error must be returned
* to prevent a dead loop inside mbedtls_exchange_data(). */
return ret;
} else if (expected_fragments == 1) {
/* Used for TLS/DTLS and the message size lower than MFL */
TEST_ASSERT(ret == buf_len ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE);
} else {
/* Used for TLS and the message size larger than MFL */
TEST_ASSERT(expected_fragments > 1);
TEST_ASSERT((ret >= 0 && ret <= buf_len) ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE);
}
return 0;
exit:
/* Some of the tests failed */
return -1;
}
/*
* Read application data and increase read counter and fragments counter if necessary.
*/
int mbedtls_ssl_read_fragment(mbedtls_ssl_context *ssl, unsigned char *buf,
int buf_len, int *read,
int *fragments, const int expected_fragments)
{
int ret = mbedtls_ssl_read(ssl, buf + *read, buf_len - *read);
if (ret > 0) {
(*fragments)++;
*read += ret;
}
if (expected_fragments == 0) {
TEST_ASSERT(ret == 0);
} else if (expected_fragments == 1) {
TEST_ASSERT(ret == buf_len ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE);
} else {
TEST_ASSERT(expected_fragments > 1);
TEST_ASSERT((ret >= 0 && ret <= buf_len) ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE);
}
return 0;
exit:
/* Some of the tests failed */
return -1;
}
/*
* Helper function setting up inverse record transformations
* using given cipher, hash, EtM mode, authentication tag length,
* and version.
*/
#define CHK(x) \
do \
{ \
if (!(x)) \
{ \
ret = -1; \
goto cleanup; \
} \
} while (0)
void set_ciphersuite(mbedtls_ssl_config *conf, const char *cipher,
int *forced_ciphersuite)
{
const mbedtls_ssl_ciphersuite_t *ciphersuite_info;
forced_ciphersuite[0] = mbedtls_ssl_get_ciphersuite_id(cipher);
forced_ciphersuite[1] = 0;
ciphersuite_info =
mbedtls_ssl_ciphersuite_from_id(forced_ciphersuite[0]);
TEST_ASSERT(ciphersuite_info != NULL);
TEST_ASSERT(ciphersuite_info->min_tls_version <= conf->max_tls_version);
TEST_ASSERT(ciphersuite_info->max_tls_version >= conf->min_tls_version);
if (conf->max_tls_version > ciphersuite_info->max_tls_version) {
conf->max_tls_version = ciphersuite_info->max_tls_version;
}
if (conf->min_tls_version < ciphersuite_info->min_tls_version) {
conf->min_tls_version = ciphersuite_info->min_tls_version;
}
mbedtls_ssl_conf_ciphersuites(conf, forced_ciphersuite);
exit:
return;
}
int psk_dummy_callback(void *p_info, mbedtls_ssl_context *ssl,
const unsigned char *name, size_t name_len)
{
(void) p_info;
(void) ssl;
(void) name;
(void) name_len;
return 0;
}
#if MBEDTLS_SSL_CID_OUT_LEN_MAX > MBEDTLS_SSL_CID_IN_LEN_MAX
#define SSL_CID_LEN_MIN MBEDTLS_SSL_CID_IN_LEN_MAX
#else
#define SSL_CID_LEN_MIN MBEDTLS_SSL_CID_OUT_LEN_MAX
#endif
#if defined(MBEDTLS_SSL_PROTO_TLS1_2) && \
defined(MBEDTLS_CIPHER_MODE_CBC) && defined(MBEDTLS_AES_C)
static int psa_cipher_encrypt_helper(mbedtls_ssl_transform *transform,
const unsigned char *iv, size_t iv_len,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen)
{
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_cipher_operation_t cipher_op = PSA_CIPHER_OPERATION_INIT;
size_t part_len;
status = psa_cipher_encrypt_setup(&cipher_op,
transform->psa_key_enc, transform->psa_alg);
if (status != PSA_SUCCESS) {
return psa_ssl_status_to_mbedtls(status);
}
status = psa_cipher_set_iv(&cipher_op, iv, iv_len);
if (status != PSA_SUCCESS) {
return psa_ssl_status_to_mbedtls(status);
}
status = psa_cipher_update(&cipher_op,
input, ilen, output, ilen, olen);
if (status != PSA_SUCCESS) {
return psa_ssl_status_to_mbedtls(status);
}
status = psa_cipher_finish(&cipher_op,
output + *olen, ilen - *olen, &part_len);
if (status != PSA_SUCCESS) {
return psa_ssl_status_to_mbedtls(status);
}
*olen += part_len;
return 0;
#else
return mbedtls_cipher_crypt(&transform->cipher_ctx_enc,
iv, iv_len, input, ilen, output, olen);
#endif /* MBEDTLS_USE_PSA_CRYPTO */
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_2 && MBEDTLS_CIPHER_MODE_CBC && MBEDTLS_AES_C */
static int build_transforms(mbedtls_ssl_transform *t_in,
mbedtls_ssl_transform *t_out,
int cipher_type, int hash_id,
int etm, int tag_mode,
mbedtls_ssl_protocol_version tls_version,
size_t cid0_len,
size_t cid1_len)
{
mbedtls_cipher_info_t const *cipher_info;
int ret = 0;
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_key_type_t key_type;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_algorithm_t alg;
size_t key_bits;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
#endif
size_t keylen, maclen, ivlen;
unsigned char *key0 = NULL, *key1 = NULL;
unsigned char *md0 = NULL, *md1 = NULL;
unsigned char iv_enc[16], iv_dec[16];
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
unsigned char cid0[SSL_CID_LEN_MIN];
unsigned char cid1[SSL_CID_LEN_MIN];
mbedtls_test_rnd_std_rand(NULL, cid0, sizeof(cid0));
mbedtls_test_rnd_std_rand(NULL, cid1, sizeof(cid1));
#else
((void) cid0_len);
((void) cid1_len);
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
maclen = 0;
/* Pick cipher */
cipher_info = mbedtls_cipher_info_from_type(cipher_type);
CHK(cipher_info != NULL);
CHK(cipher_info->iv_size <= 16);
CHK(cipher_info->key_bitlen % 8 == 0);
/* Pick keys */
keylen = cipher_info->key_bitlen / 8;
/* Allocate `keylen + 1` bytes to ensure that we get
* a non-NULL pointers from `mbedtls_calloc` even if
* `keylen == 0` in the case of the NULL cipher. */
CHK((key0 = mbedtls_calloc(1, keylen + 1)) != NULL);
CHK((key1 = mbedtls_calloc(1, keylen + 1)) != NULL);
memset(key0, 0x1, keylen);
memset(key1, 0x2, keylen);
#if !defined(MBEDTLS_USE_PSA_CRYPTO)
/* Setup cipher contexts */
CHK(mbedtls_cipher_setup(&t_in->cipher_ctx_enc, cipher_info) == 0);
CHK(mbedtls_cipher_setup(&t_in->cipher_ctx_dec, cipher_info) == 0);
CHK(mbedtls_cipher_setup(&t_out->cipher_ctx_enc, cipher_info) == 0);
CHK(mbedtls_cipher_setup(&t_out->cipher_ctx_dec, cipher_info) == 0);
#if defined(MBEDTLS_CIPHER_MODE_CBC)
if (cipher_info->mode == MBEDTLS_MODE_CBC) {
CHK(mbedtls_cipher_set_padding_mode(&t_in->cipher_ctx_enc,
MBEDTLS_PADDING_NONE) == 0);
CHK(mbedtls_cipher_set_padding_mode(&t_in->cipher_ctx_dec,
MBEDTLS_PADDING_NONE) == 0);
CHK(mbedtls_cipher_set_padding_mode(&t_out->cipher_ctx_enc,
MBEDTLS_PADDING_NONE) == 0);
CHK(mbedtls_cipher_set_padding_mode(&t_out->cipher_ctx_dec,
MBEDTLS_PADDING_NONE) == 0);
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
CHK(mbedtls_cipher_setkey(&t_in->cipher_ctx_enc, key0,
keylen << 3, MBEDTLS_ENCRYPT) == 0);
CHK(mbedtls_cipher_setkey(&t_in->cipher_ctx_dec, key1,
keylen << 3, MBEDTLS_DECRYPT) == 0);
CHK(mbedtls_cipher_setkey(&t_out->cipher_ctx_enc, key1,
keylen << 3, MBEDTLS_ENCRYPT) == 0);
CHK(mbedtls_cipher_setkey(&t_out->cipher_ctx_dec, key0,
keylen << 3, MBEDTLS_DECRYPT) == 0);
#endif
/* Setup MAC contexts */
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
if (cipher_info->mode == MBEDTLS_MODE_CBC ||
cipher_info->mode == MBEDTLS_MODE_STREAM) {
#if !defined(MBEDTLS_USE_PSA_CRYPTO)
mbedtls_md_info_t const *md_info = mbedtls_md_info_from_type(hash_id);
CHK(md_info != NULL);
#endif
maclen = mbedtls_hash_info_get_size(hash_id);
CHK(maclen != 0);
/* Pick hash keys */
CHK((md0 = mbedtls_calloc(1, maclen)) != NULL);
CHK((md1 = mbedtls_calloc(1, maclen)) != NULL);
memset(md0, 0x5, maclen);
memset(md1, 0x6, maclen);
#if defined(MBEDTLS_USE_PSA_CRYPTO)
alg = mbedtls_hash_info_psa_from_md(hash_id);
CHK(alg != 0);
t_out->psa_mac_alg = PSA_ALG_HMAC(alg);
t_in->psa_mac_alg = PSA_ALG_HMAC(alg);
t_in->psa_mac_enc = MBEDTLS_SVC_KEY_ID_INIT;
t_out->psa_mac_enc = MBEDTLS_SVC_KEY_ID_INIT;
t_in->psa_mac_dec = MBEDTLS_SVC_KEY_ID_INIT;
t_out->psa_mac_dec = MBEDTLS_SVC_KEY_ID_INIT;
psa_reset_key_attributes(&attributes);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE);
psa_set_key_algorithm(&attributes, PSA_ALG_HMAC(alg));
psa_set_key_type(&attributes, PSA_KEY_TYPE_HMAC);
CHK(psa_import_key(&attributes,
md0, maclen,
&t_in->psa_mac_enc) == PSA_SUCCESS);
CHK(psa_import_key(&attributes,
md1, maclen,
&t_out->psa_mac_enc) == PSA_SUCCESS);
if (cipher_info->mode == MBEDTLS_MODE_STREAM ||
etm == MBEDTLS_SSL_ETM_DISABLED) {
/* mbedtls_ct_hmac() requires the key to be exportable */
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT |
PSA_KEY_USAGE_VERIFY_HASH);
} else {
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
}
CHK(psa_import_key(&attributes,
md1, maclen,
&t_in->psa_mac_dec) == PSA_SUCCESS);
CHK(psa_import_key(&attributes,
md0, maclen,
&t_out->psa_mac_dec) == PSA_SUCCESS);
#else
CHK(mbedtls_md_setup(&t_out->md_ctx_enc, md_info, 1) == 0);
CHK(mbedtls_md_setup(&t_out->md_ctx_dec, md_info, 1) == 0);
CHK(mbedtls_md_setup(&t_in->md_ctx_enc, md_info, 1) == 0);
CHK(mbedtls_md_setup(&t_in->md_ctx_dec, md_info, 1) == 0);
CHK(mbedtls_md_hmac_starts(&t_in->md_ctx_enc,
md0, maclen) == 0);
CHK(mbedtls_md_hmac_starts(&t_in->md_ctx_dec,
md1, maclen) == 0);
CHK(mbedtls_md_hmac_starts(&t_out->md_ctx_enc,
md1, maclen) == 0);
CHK(mbedtls_md_hmac_starts(&t_out->md_ctx_dec,
md0, maclen) == 0);
#endif
}
#else
((void) hash_id);
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
/* Pick IV's (regardless of whether they
* are being used by the transform). */
ivlen = cipher_info->iv_size;
memset(iv_enc, 0x3, sizeof(iv_enc));
memset(iv_dec, 0x4, sizeof(iv_dec));
/*
* Setup transforms
*/
#if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC) && \
defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
t_out->encrypt_then_mac = etm;
t_in->encrypt_then_mac = etm;
#else
((void) etm);
#endif
t_out->tls_version = tls_version;
t_in->tls_version = tls_version;
t_out->ivlen = ivlen;
t_in->ivlen = ivlen;
switch (cipher_info->mode) {
case MBEDTLS_MODE_GCM:
case MBEDTLS_MODE_CCM:
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
t_out->fixed_ivlen = 12;
t_in->fixed_ivlen = 12;
} else
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
{
t_out->fixed_ivlen = 4;
t_in->fixed_ivlen = 4;
}
t_out->maclen = 0;
t_in->maclen = 0;
switch (tag_mode) {
case 0: /* Full tag */
t_out->taglen = 16;
t_in->taglen = 16;
break;
case 1: /* Partial tag */
t_out->taglen = 8;
t_in->taglen = 8;
break;
default:
ret = 1;
goto cleanup;
}
break;
case MBEDTLS_MODE_CHACHAPOLY:
t_out->fixed_ivlen = 12;
t_in->fixed_ivlen = 12;
t_out->maclen = 0;
t_in->maclen = 0;
switch (tag_mode) {
case 0: /* Full tag */
t_out->taglen = 16;
t_in->taglen = 16;
break;
case 1: /* Partial tag */
t_out->taglen = 8;
t_in->taglen = 8;
break;
default:
ret = 1;
goto cleanup;
}
break;
case MBEDTLS_MODE_STREAM:
case MBEDTLS_MODE_CBC:
t_out->fixed_ivlen = 0; /* redundant, must be 0 */
t_in->fixed_ivlen = 0; /* redundant, must be 0 */
t_out->taglen = 0;
t_in->taglen = 0;
switch (tag_mode) {
case 0: /* Full tag */
t_out->maclen = maclen;
t_in->maclen = maclen;
break;
default:
ret = 1;
goto cleanup;
}
break;
default:
ret = 1;
goto cleanup;
break;
}
/* Setup IV's */
memcpy(&t_in->iv_dec, iv_dec, sizeof(iv_dec));
memcpy(&t_in->iv_enc, iv_enc, sizeof(iv_enc));
memcpy(&t_out->iv_dec, iv_enc, sizeof(iv_enc));
memcpy(&t_out->iv_enc, iv_dec, sizeof(iv_dec));
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
/* Add CID */
memcpy(&t_in->in_cid, cid0, cid0_len);
memcpy(&t_in->out_cid, cid1, cid1_len);
t_in->in_cid_len = cid0_len;
t_in->out_cid_len = cid1_len;
memcpy(&t_out->in_cid, cid1, cid1_len);
memcpy(&t_out->out_cid, cid0, cid0_len);
t_out->in_cid_len = cid1_len;
t_out->out_cid_len = cid0_len;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
status = mbedtls_ssl_cipher_to_psa(cipher_type,
t_in->taglen,
&alg,
&key_type,
&key_bits);
if (status != PSA_SUCCESS) {
ret = psa_ssl_status_to_mbedtls(status);
goto cleanup;
}
t_in->psa_alg = alg;
t_out->psa_alg = alg;
if (alg != MBEDTLS_SSL_NULL_CIPHER) {
psa_reset_key_attributes(&attributes);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
status = psa_import_key(&attributes,
key0,
PSA_BITS_TO_BYTES(key_bits),
&t_in->psa_key_enc);
if (status != PSA_SUCCESS) {
ret = psa_ssl_status_to_mbedtls(status);
goto cleanup;
}
status = psa_import_key(&attributes,
key1,
PSA_BITS_TO_BYTES(key_bits),
&t_out->psa_key_enc);
if (status != PSA_SUCCESS) {
ret = psa_ssl_status_to_mbedtls(status);
goto cleanup;
}
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
status = psa_import_key(&attributes,
key1,
PSA_BITS_TO_BYTES(key_bits),
&t_in->psa_key_dec);
if (status != PSA_SUCCESS) {
ret = psa_ssl_status_to_mbedtls(status);
goto cleanup;
}
status = psa_import_key(&attributes,
key0,
PSA_BITS_TO_BYTES(key_bits),
&t_out->psa_key_dec);
if (status != PSA_SUCCESS) {
ret = psa_ssl_status_to_mbedtls(status);
goto cleanup;
}
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
cleanup:
mbedtls_free(key0);
mbedtls_free(key1);
mbedtls_free(md0);
mbedtls_free(md1);
return ret;
}
/*
* Populate a session structure for serialization tests.
* Choose dummy values, mostly non-0 to distinguish from the init default.
*/
static int ssl_tls12_populate_session(mbedtls_ssl_session *session,
int ticket_len,
const char *crt_file)
{
#if defined(MBEDTLS_HAVE_TIME)
session->start = mbedtls_time(NULL) - 42;
#endif
session->tls_version = MBEDTLS_SSL_VERSION_TLS1_2;
session->ciphersuite = 0xabcd;
session->id_len = sizeof(session->id);
memset(session->id, 66, session->id_len);
memset(session->master, 17, sizeof(session->master));
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED) && defined(MBEDTLS_FS_IO)
if (crt_file != NULL && strlen(crt_file) != 0) {
mbedtls_x509_crt tmp_crt;
int ret;
mbedtls_x509_crt_init(&tmp_crt);
ret = mbedtls_x509_crt_parse_file(&tmp_crt, crt_file);
if (ret != 0) {
return ret;
}
#if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE)
/* Move temporary CRT. */
session->peer_cert = mbedtls_calloc(1, sizeof(*session->peer_cert));
if (session->peer_cert == NULL) {
return -1;
}
*session->peer_cert = tmp_crt;
memset(&tmp_crt, 0, sizeof(tmp_crt));
#else /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
/* Calculate digest of temporary CRT. */
session->peer_cert_digest =
mbedtls_calloc(1, MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN);
if (session->peer_cert_digest == NULL) {
return -1;
}
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_algorithm_t psa_alg = mbedtls_hash_info_psa_from_md(
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE);
size_t hash_size = 0;
psa_status_t status = psa_hash_compute(psa_alg, tmp_crt.raw.p,
tmp_crt.raw.len,
session->peer_cert_digest,
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN,
&hash_size);
ret = psa_ssl_status_to_mbedtls(status);
#else
ret = mbedtls_md(mbedtls_md_info_from_type(
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE),
tmp_crt.raw.p, tmp_crt.raw.len,
session->peer_cert_digest);
#endif /* MBEDTLS_USE_PSA_CRYPTO */
if (ret != 0) {
return ret;
}
session->peer_cert_digest_type =
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE;
session->peer_cert_digest_len =
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN;
#endif /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
mbedtls_x509_crt_free(&tmp_crt);
}
#else /* MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED && MBEDTLS_FS_IO */
(void) crt_file;
#endif /* MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED && MBEDTLS_FS_IO */
session->verify_result = 0xdeadbeef;
#if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C)
if (ticket_len != 0) {
session->ticket = mbedtls_calloc(1, ticket_len);
if (session->ticket == NULL) {
return -1;
}
memset(session->ticket, 33, ticket_len);
}
session->ticket_len = ticket_len;
session->ticket_lifetime = 86401;
#else
(void) ticket_len;
#endif
#if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)
session->mfl_code = 1;
#endif
#if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC)
session->encrypt_then_mac = 1;
#endif
return 0;
}
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
static int ssl_tls13_populate_session(mbedtls_ssl_session *session,
int ticket_len,
int endpoint_type)
{
((void) ticket_len);
session->tls_version = MBEDTLS_SSL_VERSION_TLS1_3;
session->endpoint = endpoint_type == MBEDTLS_SSL_IS_CLIENT ?
MBEDTLS_SSL_IS_CLIENT : MBEDTLS_SSL_IS_SERVER;
session->ciphersuite = 0xabcd;
session->ticket_age_add = 0x87654321;
session->ticket_flags = 0x7;
session->resumption_key_len = 32;
memset(session->resumption_key, 0x99, sizeof(session->resumption_key));
#if defined(MBEDTLS_HAVE_TIME)
if (session->endpoint == MBEDTLS_SSL_IS_SERVER) {
session->start = mbedtls_time(NULL) - 42;
}
#endif
#if defined(MBEDTLS_SSL_CLI_C)
if (session->endpoint == MBEDTLS_SSL_IS_CLIENT) {
#if defined(MBEDTLS_HAVE_TIME)
session->ticket_received = mbedtls_time(NULL) - 40;
#endif
session->ticket_lifetime = 0xfedcba98;
session->ticket_len = ticket_len;
if (ticket_len != 0) {
session->ticket = mbedtls_calloc(1, ticket_len);
if (session->ticket == NULL) {
return -1;
}
memset(session->ticket, 33, ticket_len);
}
}
#endif /* MBEDTLS_SSL_CLI_C */
return 0;
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
/*
* Perform data exchanging between \p ssl_1 and \p ssl_2 and check if the
* message was sent in the correct number of fragments.
*
* /p ssl_1 and /p ssl_2 Endpoints represented by mbedtls_ssl_context. Both
* of them must be initialized and connected beforehand.
* /p msg_len_1 and /p msg_len_2 specify the size of the message to send.
* /p expected_fragments_1 and /p expected_fragments_2 determine in how many
* fragments the message should be sent.
* expected_fragments is 0: can be used for DTLS testing while the message
* size is larger than MFL. In that case the message
* cannot be fragmented and sent to the second endpoint.
* This value can be used for negative tests.
* expected_fragments is 1: can be used for TLS/DTLS testing while the
* message size is below MFL
* expected_fragments > 1: can be used for TLS testing while the message
* size is larger than MFL
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_exchange_data(mbedtls_ssl_context *ssl_1,
int msg_len_1, const int expected_fragments_1,
mbedtls_ssl_context *ssl_2,
int msg_len_2, const int expected_fragments_2)
{
unsigned char *msg_buf_1 = malloc(msg_len_1);
unsigned char *msg_buf_2 = malloc(msg_len_2);
unsigned char *in_buf_1 = malloc(msg_len_2);
unsigned char *in_buf_2 = malloc(msg_len_1);
int msg_type, ret = -1;
/* Perform this test with two message types. At first use a message
* consisting of only 0x00 for the client and only 0xFF for the server.
* At the second time use message with generated data */
for (msg_type = 0; msg_type < 2; msg_type++) {
int written_1 = 0;
int written_2 = 0;
int read_1 = 0;
int read_2 = 0;
int fragments_1 = 0;
int fragments_2 = 0;
if (msg_type == 0) {
memset(msg_buf_1, 0x00, msg_len_1);
memset(msg_buf_2, 0xff, msg_len_2);
} else {
int i, j = 0;
for (i = 0; i < msg_len_1; i++) {
msg_buf_1[i] = j++ & 0xFF;
}
for (i = 0; i < msg_len_2; i++) {
msg_buf_2[i] = (j -= 5) & 0xFF;
}
}
while (read_1 < msg_len_2 || read_2 < msg_len_1) {
/* ssl_1 sending */
if (msg_len_1 > written_1) {
ret = mbedtls_ssl_write_fragment(ssl_1, msg_buf_1,
msg_len_1, &written_1,
expected_fragments_1);
if (expected_fragments_1 == 0) {
/* This error is expected when the message is too large and
* cannot be fragmented */
TEST_ASSERT(ret == MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
msg_len_1 = 0;
} else {
TEST_ASSERT(ret == 0);
}
}
/* ssl_2 sending */
if (msg_len_2 > written_2) {
ret = mbedtls_ssl_write_fragment(ssl_2, msg_buf_2,
msg_len_2, &written_2,
expected_fragments_2);
if (expected_fragments_2 == 0) {
/* This error is expected when the message is too large and
* cannot be fragmented */
TEST_ASSERT(ret == MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
msg_len_2 = 0;
} else {
TEST_ASSERT(ret == 0);
}
}
/* ssl_1 reading */
if (read_1 < msg_len_2) {
ret = mbedtls_ssl_read_fragment(ssl_1, in_buf_1,
msg_len_2, &read_1,
&fragments_2,
expected_fragments_2);
TEST_ASSERT(ret == 0);
}
/* ssl_2 reading */
if (read_2 < msg_len_1) {
ret = mbedtls_ssl_read_fragment(ssl_2, in_buf_2,
msg_len_1, &read_2,
&fragments_1,
expected_fragments_1);
TEST_ASSERT(ret == 0);
}
}
ret = -1;
TEST_ASSERT(0 == memcmp(msg_buf_1, in_buf_2, msg_len_1));
TEST_ASSERT(0 == memcmp(msg_buf_2, in_buf_1, msg_len_2));
TEST_ASSERT(fragments_1 == expected_fragments_1);
TEST_ASSERT(fragments_2 == expected_fragments_2);
}
ret = 0;
exit:
free(msg_buf_1);
free(in_buf_1);
free(msg_buf_2);
free(in_buf_2);
return ret;
}
/*
* Perform data exchanging between \p ssl_1 and \p ssl_2. Both of endpoints
* must be initialized and connected beforehand.
*
* \retval 0 on success, otherwise error code.
*/
int exchange_data(mbedtls_ssl_context *ssl_1,
mbedtls_ssl_context *ssl_2)
{
return mbedtls_exchange_data(ssl_1, 256, 1,
ssl_2, 256, 1);
}
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED)
static int check_ssl_version(mbedtls_ssl_protocol_version expected_negotiated_version,
const mbedtls_ssl_context *ssl)
{
const char *version_string = mbedtls_ssl_get_version(ssl);
mbedtls_ssl_protocol_version version_number =
mbedtls_ssl_get_version_number(ssl);
TEST_EQUAL(ssl->tls_version, expected_negotiated_version);
if (ssl->conf->transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM) {
TEST_EQUAL(version_string[0], 'D');
++version_string;
}
switch (expected_negotiated_version) {
case MBEDTLS_SSL_VERSION_TLS1_2:
TEST_EQUAL(version_number, MBEDTLS_SSL_VERSION_TLS1_2);
TEST_ASSERT(strcmp(version_string, "TLSv1.2") == 0);
break;
case MBEDTLS_SSL_VERSION_TLS1_3:
TEST_EQUAL(version_number, MBEDTLS_SSL_VERSION_TLS1_3);
TEST_ASSERT(strcmp(version_string, "TLSv1.3") == 0);
break;
default:
TEST_ASSERT(!"Version check not implemented for this protocol version");
}
return 1;
exit:
return 0;
}
#endif /* MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED */
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED)
void perform_handshake(handshake_test_options *options)
{
/* forced_ciphersuite needs to last until the end of the handshake */
int forced_ciphersuite[2];
enum { BUFFSIZE = 17000 };
mbedtls_endpoint client, server;
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_PSK_ENABLED)
const char *psk_identity = "foo";
#endif
#if defined(MBEDTLS_TIMING_C)
mbedtls_timing_delay_context timer_client, timer_server;
#endif
#if defined(MBEDTLS_SSL_CONTEXT_SERIALIZATION)
unsigned char *context_buf = NULL;
size_t context_buf_len;
#endif
#if defined(MBEDTLS_SSL_RENEGOTIATION)
int ret = -1;
#endif
int expected_handshake_result = options->expected_handshake_result;
USE_PSA_INIT();
mbedtls_platform_zeroize(&client, sizeof(client));
mbedtls_platform_zeroize(&server, sizeof(server));
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
/* Client side */
if (options->dtls != 0) {
TEST_ASSERT(mbedtls_endpoint_init(&client, MBEDTLS_SSL_IS_CLIENT,
options, &client_context,
&client_queue,
&server_queue, NULL) == 0);
#if defined(MBEDTLS_TIMING_C)
mbedtls_ssl_set_timer_cb(&client.ssl, &timer_client,
mbedtls_timing_set_delay,
mbedtls_timing_get_delay);
#endif
} else {
TEST_ASSERT(mbedtls_endpoint_init(&client, MBEDTLS_SSL_IS_CLIENT,
options, NULL, NULL,
NULL, NULL) == 0);
}
if (options->client_min_version != MBEDTLS_SSL_VERSION_UNKNOWN) {
mbedtls_ssl_conf_min_tls_version(&client.conf,
options->client_min_version);
}
if (options->client_max_version != MBEDTLS_SSL_VERSION_UNKNOWN) {
mbedtls_ssl_conf_max_tls_version(&client.conf,
options->client_max_version);
}
if (strlen(options->cipher) > 0) {
set_ciphersuite(&client.conf, options->cipher, forced_ciphersuite);
}
#if defined(MBEDTLS_DEBUG_C)
if (options->cli_log_fun) {
mbedtls_debug_set_threshold(4);
mbedtls_ssl_conf_dbg(&client.conf, options->cli_log_fun,
options->cli_log_obj);
}
#endif
/* Server side */
if (options->dtls != 0) {
TEST_ASSERT(mbedtls_endpoint_init(&server, MBEDTLS_SSL_IS_SERVER,
options, &server_context,
&server_queue,
&client_queue, NULL) == 0);
#if defined(MBEDTLS_TIMING_C)
mbedtls_ssl_set_timer_cb(&server.ssl, &timer_server,
mbedtls_timing_set_delay,
mbedtls_timing_get_delay);
#endif
} else {
TEST_ASSERT(mbedtls_endpoint_init(&server, MBEDTLS_SSL_IS_SERVER,
options, NULL, NULL, NULL,
NULL) == 0);
}
mbedtls_ssl_conf_authmode(&server.conf, options->srv_auth_mode);
if (options->server_min_version != MBEDTLS_SSL_VERSION_UNKNOWN) {
mbedtls_ssl_conf_min_tls_version(&server.conf,
options->server_min_version);
}
if (options->server_max_version != MBEDTLS_SSL_VERSION_UNKNOWN) {
mbedtls_ssl_conf_max_tls_version(&server.conf,
options->server_max_version);
}
#if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)
TEST_ASSERT(mbedtls_ssl_conf_max_frag_len(&(server.conf),
(unsigned char) options->mfl) == 0);
TEST_ASSERT(mbedtls_ssl_conf_max_frag_len(&(client.conf),
(unsigned char) options->mfl) == 0);
#else
TEST_ASSERT(MBEDTLS_SSL_MAX_FRAG_LEN_NONE == options->mfl);
#endif /* MBEDTLS_SSL_MAX_FRAGMENT_LENGTH */
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_PSK_ENABLED)
if (options->psk_str != NULL && options->psk_str->len > 0) {
TEST_ASSERT(mbedtls_ssl_conf_psk(&client.conf, options->psk_str->x,
options->psk_str->len,
(const unsigned char *) psk_identity,
strlen(psk_identity)) == 0);
TEST_ASSERT(mbedtls_ssl_conf_psk(&server.conf, options->psk_str->x,
options->psk_str->len,
(const unsigned char *) psk_identity,
strlen(psk_identity)) == 0);
#if defined(MBEDTLS_SSL_SRV_C)
mbedtls_ssl_conf_psk_cb(&server.conf, psk_dummy_callback, NULL);
#endif
}
#endif
#if defined(MBEDTLS_SSL_RENEGOTIATION)
if (options->renegotiate) {
mbedtls_ssl_conf_renegotiation(&(server.conf),
MBEDTLS_SSL_RENEGOTIATION_ENABLED);
mbedtls_ssl_conf_renegotiation(&(client.conf),
MBEDTLS_SSL_RENEGOTIATION_ENABLED);
mbedtls_ssl_conf_legacy_renegotiation(&(server.conf),
options->legacy_renegotiation);
mbedtls_ssl_conf_legacy_renegotiation(&(client.conf),
options->legacy_renegotiation);
}
#endif /* MBEDTLS_SSL_RENEGOTIATION */
#if defined(MBEDTLS_DEBUG_C)
if (options->srv_log_fun) {
mbedtls_debug_set_threshold(4);
mbedtls_ssl_conf_dbg(&server.conf, options->srv_log_fun,
options->srv_log_obj);
}
#endif
TEST_ASSERT(mbedtls_mock_socket_connect(&(client.socket),
&(server.socket),
BUFFSIZE) == 0);
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if (options->resize_buffers != 0) {
/* Ensure that the buffer sizes are appropriate before resizes */
TEST_ASSERT(client.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN);
TEST_ASSERT(client.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN);
TEST_ASSERT(server.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN);
TEST_ASSERT(server.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN);
}
#endif
if (options->expected_negotiated_version == MBEDTLS_SSL_VERSION_UNKNOWN) {
expected_handshake_result = MBEDTLS_ERR_SSL_BAD_PROTOCOL_VERSION;
}
TEST_ASSERT(mbedtls_move_handshake_to_state(&(client.ssl),
&(server.ssl),
MBEDTLS_SSL_HANDSHAKE_OVER)
== expected_handshake_result);
if (expected_handshake_result != 0) {
/* Connection will have failed by this point, skip to cleanup */
goto exit;
}
TEST_ASSERT(mbedtls_ssl_is_handshake_over(&client.ssl) == 1);
/* Make sure server state is moved to HANDSHAKE_OVER also. */
TEST_EQUAL(mbedtls_move_handshake_to_state(&(server.ssl),
&(client.ssl),
MBEDTLS_SSL_HANDSHAKE_OVER), 0);
TEST_ASSERT(mbedtls_ssl_is_handshake_over(&server.ssl) == 1);
/* Check that both sides have negotiated the expected version. */
mbedtls_test_set_step(0);
if (!check_ssl_version(options->expected_negotiated_version,
&client.ssl)) {
goto exit;
}
mbedtls_test_set_step(1);
if (!check_ssl_version(options->expected_negotiated_version,
&server.ssl)) {
goto exit;
}
if (options->expected_ciphersuite != 0) {
TEST_EQUAL(server.ssl.session->ciphersuite,
options->expected_ciphersuite);
}
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if (options->resize_buffers != 0) {
/* A server, when using DTLS, might delay a buffer resize to happen
* after it receives a message, so we force it. */
TEST_ASSERT(exchange_data(&(client.ssl), &(server.ssl)) == 0);
TEST_ASSERT(client.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen(&client.ssl));
TEST_ASSERT(client.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen(&client.ssl));
TEST_ASSERT(server.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen(&server.ssl));
TEST_ASSERT(server.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen(&server.ssl));
}
#endif
if (options->cli_msg_len != 0 || options->srv_msg_len != 0) {
/* Start data exchanging test */
TEST_ASSERT(mbedtls_exchange_data(&(client.ssl), options->cli_msg_len,
options->expected_cli_fragments,
&(server.ssl), options->srv_msg_len,
options->expected_srv_fragments)
== 0);
}
#if defined(MBEDTLS_SSL_CONTEXT_SERIALIZATION)
if (options->serialize == 1) {
TEST_ASSERT(options->dtls == 1);
TEST_ASSERT(mbedtls_ssl_context_save(&(server.ssl), NULL,
0, &context_buf_len)
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
context_buf = mbedtls_calloc(1, context_buf_len);
TEST_ASSERT(context_buf != NULL);
TEST_ASSERT(mbedtls_ssl_context_save(&(server.ssl), context_buf,
context_buf_len,
&context_buf_len) == 0);
mbedtls_ssl_free(&(server.ssl));
mbedtls_ssl_init(&(server.ssl));
TEST_ASSERT(mbedtls_ssl_setup(&(server.ssl), &(server.conf)) == 0);
mbedtls_ssl_set_bio(&(server.ssl), &server_context,
mbedtls_mock_tcp_send_msg,
mbedtls_mock_tcp_recv_msg,
NULL);
mbedtls_ssl_set_user_data_p(&server.ssl, &server);
#if defined(MBEDTLS_TIMING_C)
mbedtls_ssl_set_timer_cb(&server.ssl, &timer_server,
mbedtls_timing_set_delay,
mbedtls_timing_get_delay);
#endif
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if (options->resize_buffers != 0) {
/* Ensure that the buffer sizes are appropriate before resizes */
TEST_ASSERT(server.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN);
TEST_ASSERT(server.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN);
}
#endif
TEST_ASSERT(mbedtls_ssl_context_load(&(server.ssl), context_buf,
context_buf_len) == 0);
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
/* Validate buffer sizes after context deserialization */
if (options->resize_buffers != 0) {
TEST_ASSERT(server.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen(&server.ssl));
TEST_ASSERT(server.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen(&server.ssl));
}
#endif
/* Retest writing/reading */
if (options->cli_msg_len != 0 || options->srv_msg_len != 0) {
TEST_ASSERT(mbedtls_exchange_data(&(client.ssl),
options->cli_msg_len,
options->expected_cli_fragments,
&(server.ssl),
options->srv_msg_len,
options->expected_srv_fragments)
== 0);
}
}
#endif /* MBEDTLS_SSL_CONTEXT_SERIALIZATION */
#if defined(MBEDTLS_SSL_RENEGOTIATION)
if (options->renegotiate) {
/* Start test with renegotiation */
TEST_ASSERT(server.ssl.renego_status ==
MBEDTLS_SSL_INITIAL_HANDSHAKE);
TEST_ASSERT(client.ssl.renego_status ==
MBEDTLS_SSL_INITIAL_HANDSHAKE);
/* After calling this function for the server, it only sends a handshake
* request. All renegotiation should happen during data exchanging */
TEST_ASSERT(mbedtls_ssl_renegotiate(&(server.ssl)) == 0);
TEST_ASSERT(server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_PENDING);
TEST_ASSERT(client.ssl.renego_status ==
MBEDTLS_SSL_INITIAL_HANDSHAKE);
TEST_ASSERT(exchange_data(&(client.ssl), &(server.ssl)) == 0);
TEST_ASSERT(server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE);
TEST_ASSERT(client.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE);
/* After calling mbedtls_ssl_renegotiate for the client all renegotiation
* should happen inside this function. However in this test, we cannot
* perform simultaneous communication between client and server so this
* function will return waiting error on the socket. All rest of
* renegotiation should happen during data exchanging */
ret = mbedtls_ssl_renegotiate(&(client.ssl));
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if (options->resize_buffers != 0) {
/* Ensure that the buffer sizes are appropriate before resizes */
TEST_ASSERT(client.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN);
TEST_ASSERT(client.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN);
}
#endif
TEST_ASSERT(ret == 0 ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE);
TEST_ASSERT(server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE);
TEST_ASSERT(client.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_IN_PROGRESS);
TEST_ASSERT(exchange_data(&(client.ssl), &(server.ssl)) == 0);
TEST_ASSERT(server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE);
TEST_ASSERT(client.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE);
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
/* Validate buffer sizes after renegotiation */
if (options->resize_buffers != 0) {
TEST_ASSERT(client.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen(&client.ssl));
TEST_ASSERT(client.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen(&client.ssl));
TEST_ASSERT(server.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen(&server.ssl));
TEST_ASSERT(server.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen(&server.ssl));
}
#endif /* MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH */
}
#endif /* MBEDTLS_SSL_RENEGOTIATION */
TEST_ASSERT(mbedtls_ssl_conf_get_user_data_p(&client.conf) == &client);
TEST_ASSERT(mbedtls_ssl_get_user_data_p(&client.ssl) == &client);
TEST_ASSERT(mbedtls_ssl_conf_get_user_data_p(&server.conf) == &server);
TEST_ASSERT(mbedtls_ssl_get_user_data_p(&server.ssl) == &server);
exit:
mbedtls_endpoint_free(&client, options->dtls != 0 ? &client_context : NULL);
mbedtls_endpoint_free(&server, options->dtls != 0 ? &server_context : NULL);
#if defined(MBEDTLS_DEBUG_C)
if (options->cli_log_fun || options->srv_log_fun) {
mbedtls_debug_set_threshold(0);
}
#endif
#if defined(MBEDTLS_SSL_CONTEXT_SERIALIZATION)
if (context_buf != NULL) {
mbedtls_free(context_buf);
}
#endif
USE_PSA_DONE();
}
#endif /* MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED */
#if defined(MBEDTLS_TEST_HOOKS)
/*
* Tweak vector lengths in a TLS 1.3 Certificate message
*
* \param[in] buf Buffer containing the Certificate message to tweak
* \param[in]]out] end End of the buffer to parse
* \param tweak Tweak identifier (from 1 to the number of tweaks).
* \param[out] expected_result Error code expected from the parsing function
* \param[out] args Arguments of the MBEDTLS_SSL_CHK_BUF_READ_PTR call that
* is expected to fail. All zeroes if no
* MBEDTLS_SSL_CHK_BUF_READ_PTR failure is expected.
*/
int tweak_tls13_certificate_msg_vector_len(
unsigned char *buf, unsigned char **end, int tweak,
int *expected_result, mbedtls_ssl_chk_buf_ptr_args *args)
{
/*
* The definition of the tweaks assume that the certificate list contains only
* one certificate.
*/
/*
* struct {
* opaque cert_data<1..2^24-1>;
* Extension extensions<0..2^16-1>;
* } CertificateEntry;
*
* struct {
* opaque certificate_request_context<0..2^8-1>;
* CertificateEntry certificate_list<0..2^24-1>;
* } Certificate;
*/
unsigned char *p_certificate_request_context_len = buf;
size_t certificate_request_context_len = buf[0];
unsigned char *p_certificate_list_len = buf + 1 + certificate_request_context_len;
unsigned char *certificate_list = p_certificate_list_len + 3;
size_t certificate_list_len = MBEDTLS_GET_UINT24_BE(p_certificate_list_len, 0);
unsigned char *p_cert_data_len = certificate_list;
unsigned char *cert_data = p_cert_data_len + 3;
size_t cert_data_len = MBEDTLS_GET_UINT24_BE(p_cert_data_len, 0);
unsigned char *p_extensions_len = cert_data + cert_data_len;
unsigned char *extensions = p_extensions_len + 2;
size_t extensions_len = MBEDTLS_GET_UINT16_BE(p_extensions_len, 0);
*expected_result = MBEDTLS_ERR_SSL_DECODE_ERROR;
switch (tweak) {
case 1:
/* Failure when checking if the certificate request context length and
* certificate list length can be read
*/
*end = buf + 3;
set_chk_buf_ptr_args(args, buf, *end, 4);
break;
case 2:
/* Invalid certificate request context length.
*/
*p_certificate_request_context_len =
certificate_request_context_len + 1;
reset_chk_buf_ptr_args(args);
break;
case 3:
/* Failure when checking if certificate_list data can be read. */
MBEDTLS_PUT_UINT24_BE(certificate_list_len + 1,
p_certificate_list_len, 0);
set_chk_buf_ptr_args(args, certificate_list, *end,
certificate_list_len + 1);
break;
case 4:
/* Failure when checking if the cert_data length can be read. */
MBEDTLS_PUT_UINT24_BE(2, p_certificate_list_len, 0);
set_chk_buf_ptr_args(args, p_cert_data_len, certificate_list + 2, 3);
break;
case 5:
/* Failure when checking if cert_data data can be read. */
MBEDTLS_PUT_UINT24_BE(certificate_list_len - 3 + 1,
p_cert_data_len, 0);
set_chk_buf_ptr_args(args, cert_data,
certificate_list + certificate_list_len,
certificate_list_len - 3 + 1);
break;
case 6:
/* Failure when checking if the extensions length can be read. */
MBEDTLS_PUT_UINT24_BE(certificate_list_len - extensions_len - 1,
p_certificate_list_len, 0);
set_chk_buf_ptr_args(args, p_extensions_len,
certificate_list + certificate_list_len - extensions_len - 1, 2);
break;
case 7:
/* Failure when checking if extensions data can be read. */
MBEDTLS_PUT_UINT16_BE(extensions_len + 1, p_extensions_len, 0);
set_chk_buf_ptr_args(args, extensions,
certificate_list + certificate_list_len, extensions_len + 1);
break;
default:
return -1;
}
return 0;
}
#endif /* MBEDTLS_TEST_HOOKS */
#define ECJPAKE_TEST_PWD "bla"
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#define ECJPAKE_TEST_SET_PASSWORD(exp_ret_val) \
ret = (use_opaque_arg) ? \
mbedtls_ssl_set_hs_ecjpake_password_opaque(&ssl, pwd_slot) : \
mbedtls_ssl_set_hs_ecjpake_password(&ssl, pwd_string, pwd_len); \
TEST_EQUAL(ret, exp_ret_val)
#else
#define ECJPAKE_TEST_SET_PASSWORD(exp_ret_val) \
ret = mbedtls_ssl_set_hs_ecjpake_password(&ssl, \
pwd_string, pwd_len); \
TEST_EQUAL(ret, exp_ret_val)
#endif
#define TEST_AVAILABLE_ECC(tls_id_, group_id_, psa_family_, psa_bits_) \
TEST_EQUAL(mbedtls_ssl_get_ecp_group_id_from_tls_id(tls_id_), \
group_id_); \
TEST_EQUAL(mbedtls_ssl_get_tls_id_from_ecp_group_id(group_id_), \
tls_id_); \
TEST_EQUAL(mbedtls_ssl_get_psa_curve_info_from_tls_id(tls_id_, \
&psa_family, &psa_bits), PSA_SUCCESS); \
TEST_EQUAL(psa_family_, psa_family); \
TEST_EQUAL(psa_bits_, psa_bits);
#define TEST_UNAVAILABLE_ECC(tls_id_, group_id_, psa_family_, psa_bits_) \
TEST_EQUAL(mbedtls_ssl_get_ecp_group_id_from_tls_id(tls_id_), \
MBEDTLS_ECP_DP_NONE); \
TEST_EQUAL(mbedtls_ssl_get_tls_id_from_ecp_group_id(group_id_), \
0); \
TEST_EQUAL(mbedtls_ssl_get_psa_curve_info_from_tls_id(tls_id_, \
&psa_family, &psa_bits), \
PSA_ERROR_NOT_SUPPORTED);
2014-09-24 11:13:44 +02:00
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_SSL_TLS_C
2014-09-24 11:13:44 +02:00
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void test_callback_buffer_sanity()
{
enum { MSGLEN = 10 };
mbedtls_test_buffer buf;
unsigned char input[MSGLEN];
unsigned char output[MSGLEN];
memset(input, 0, sizeof(input));
/* Make sure calling put and get on NULL buffer results in error. */
TEST_ASSERT(mbedtls_test_buffer_put(NULL, input, sizeof(input))
== -1);
TEST_ASSERT(mbedtls_test_buffer_get(NULL, output, sizeof(output))
== -1);
TEST_ASSERT(mbedtls_test_buffer_put(NULL, NULL, sizeof(input)) == -1);
TEST_ASSERT(mbedtls_test_buffer_put(NULL, NULL, 0) == -1);
TEST_ASSERT(mbedtls_test_buffer_get(NULL, NULL, 0) == -1);
/* Make sure calling put and get on a buffer that hasn't been set up results
* in error. */
mbedtls_test_buffer_init(&buf);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, input, sizeof(input)) == -1);
TEST_ASSERT(mbedtls_test_buffer_get(&buf, output, sizeof(output))
== -1);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, NULL, sizeof(input)) == -1);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, NULL, 0) == -1);
TEST_ASSERT(mbedtls_test_buffer_get(&buf, NULL, 0) == -1);
/* Make sure calling put and get on NULL input only results in
* error if the length is not zero, and that a NULL output is valid for data
* dropping.
*/
TEST_ASSERT(mbedtls_test_buffer_setup(&buf, sizeof(input)) == 0);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, NULL, sizeof(input)) == -1);
TEST_ASSERT(mbedtls_test_buffer_get(&buf, NULL, sizeof(output))
== 0);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, NULL, 0) == 0);
TEST_ASSERT(mbedtls_test_buffer_get(&buf, NULL, 0) == 0);
/* Make sure calling put several times in the row is safe */
TEST_ASSERT(mbedtls_test_buffer_put(&buf, input, sizeof(input))
== sizeof(input));
TEST_ASSERT(mbedtls_test_buffer_get(&buf, output, 2) == 2);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, input, 1) == 1);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, input, 2) == 1);
TEST_ASSERT(mbedtls_test_buffer_put(&buf, input, 2) == 0);
exit:
mbedtls_test_buffer_free(&buf);
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_test_buffer` related functions is
* correct and works as expected.
*
* That is
* - If we try to put in \p put1 bytes then we can put in \p put1_ret bytes.
* - Afterwards if we try to get \p get1 bytes then we can get \get1_ret bytes.
* - Next, if we try to put in \p put1 bytes then we can put in \p put1_ret
* bytes.
* - Afterwards if we try to get \p get1 bytes then we can get \get1_ret bytes.
* - All of the bytes we got match the bytes we put in in a FIFO manner.
*/
/* BEGIN_CASE */
void test_callback_buffer(int size, int put1, int put1_ret,
int get1, int get1_ret, int put2, int put2_ret,
int get2, int get2_ret)
{
enum { ROUNDS = 2 };
size_t put[ROUNDS];
int put_ret[ROUNDS];
size_t get[ROUNDS];
int get_ret[ROUNDS];
mbedtls_test_buffer buf;
unsigned char *input = NULL;
size_t input_len;
unsigned char *output = NULL;
size_t output_len;
size_t i, j, written, read;
mbedtls_test_buffer_init(&buf);
TEST_ASSERT(mbedtls_test_buffer_setup(&buf, size) == 0);
/* Check the sanity of input parameters and initialise local variables. That
* is, ensure that the amount of data is not negative and that we are not
* expecting more to put or get than we actually asked for. */
TEST_ASSERT(put1 >= 0);
put[0] = put1;
put_ret[0] = put1_ret;
TEST_ASSERT(put1_ret <= put1);
TEST_ASSERT(put2 >= 0);
put[1] = put2;
put_ret[1] = put2_ret;
TEST_ASSERT(put2_ret <= put2);
TEST_ASSERT(get1 >= 0);
get[0] = get1;
get_ret[0] = get1_ret;
TEST_ASSERT(get1_ret <= get1);
TEST_ASSERT(get2 >= 0);
get[1] = get2;
get_ret[1] = get2_ret;
TEST_ASSERT(get2_ret <= get2);
input_len = 0;
/* Calculate actual input and output lengths */
for (j = 0; j < ROUNDS; j++) {
if (put_ret[j] > 0) {
input_len += put_ret[j];
}
}
/* In order to always have a valid pointer we always allocate at least 1
* byte. */
if (input_len == 0) {
input_len = 1;
}
ASSERT_ALLOC(input, input_len);
output_len = 0;
for (j = 0; j < ROUNDS; j++) {
if (get_ret[j] > 0) {
output_len += get_ret[j];
}
}
TEST_ASSERT(output_len <= input_len);
/* In order to always have a valid pointer we always allocate at least 1
* byte. */
if (output_len == 0) {
output_len = 1;
}
ASSERT_ALLOC(output, output_len);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < input_len; i++) {
input[i] = i & 0xFF;
}
written = read = 0;
for (j = 0; j < ROUNDS; j++) {
TEST_ASSERT(put_ret[j] == mbedtls_test_buffer_put(&buf,
input + written, put[j]));
written += put_ret[j];
TEST_ASSERT(get_ret[j] == mbedtls_test_buffer_get(&buf,
output + read, get[j]));
read += get_ret[j];
TEST_ASSERT(read <= written);
if (get_ret[j] > 0) {
TEST_ASSERT(memcmp(output + read - get_ret[j],
input + read - get_ret[j], get_ret[j])
== 0);
}
}
exit:
mbedtls_free(input);
mbedtls_free(output);
mbedtls_test_buffer_free(&buf);
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_mock_socket` related I/O functions is
* correct and works as expected on unconnected sockets.
*/
/* BEGIN_CASE */
void ssl_mock_sanity()
{
enum { MSGLEN = 105 };
unsigned char message[MSGLEN] = { 0 };
unsigned char received[MSGLEN] = { 0 };
mbedtls_mock_socket socket;
mbedtls_mock_socket_init(&socket);
TEST_ASSERT(mbedtls_mock_tcp_send_b(&socket, message, MSGLEN) < 0);
mbedtls_mock_socket_close(&socket);
mbedtls_mock_socket_init(&socket);
TEST_ASSERT(mbedtls_mock_tcp_recv_b(&socket, received, MSGLEN) < 0);
mbedtls_mock_socket_close(&socket);
mbedtls_mock_socket_init(&socket);
TEST_ASSERT(mbedtls_mock_tcp_send_nb(&socket, message, MSGLEN) < 0);
mbedtls_mock_socket_close(&socket);
mbedtls_mock_socket_init(&socket);
TEST_ASSERT(mbedtls_mock_tcp_recv_nb(&socket, received, MSGLEN) < 0);
mbedtls_mock_socket_close(&socket);
exit:
mbedtls_mock_socket_close(&socket);
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_mock_socket` related functions can
* send a single message from the client to the server.
*/
/* BEGIN_CASE */
void ssl_mock_tcp(int blocking)
{
enum { MSGLEN = 105 };
enum { BUFLEN = MSGLEN / 5 };
unsigned char message[MSGLEN];
unsigned char received[MSGLEN];
mbedtls_mock_socket client;
mbedtls_mock_socket server;
size_t written, read;
int send_ret, recv_ret;
mbedtls_ssl_send_t *send;
mbedtls_ssl_recv_t *recv;
unsigned i;
if (blocking == 0) {
send = mbedtls_mock_tcp_send_nb;
recv = mbedtls_mock_tcp_recv_nb;
} else {
send = mbedtls_mock_tcp_send_b;
recv = mbedtls_mock_tcp_recv_b;
}
mbedtls_mock_socket_init(&client);
mbedtls_mock_socket_init(&server);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
/* Make sure that sending a message takes a few iterations. */
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server, BUFLEN));
/* Send the message to the server */
send_ret = recv_ret = 1;
written = read = 0;
while (send_ret != 0 || recv_ret != 0) {
send_ret = send(&client, message + written, MSGLEN - written);
TEST_ASSERT(send_ret >= 0);
TEST_ASSERT(send_ret <= BUFLEN);
written += send_ret;
/* If the buffer is full we can test blocking and non-blocking send */
if (send_ret == BUFLEN) {
int blocking_ret = send(&client, message, 1);
if (blocking) {
TEST_ASSERT(blocking_ret == 0);
} else {
TEST_ASSERT(blocking_ret == MBEDTLS_ERR_SSL_WANT_WRITE);
}
}
recv_ret = recv(&server, received + read, MSGLEN - read);
/* The result depends on whether any data was sent */
if (send_ret > 0) {
TEST_ASSERT(recv_ret > 0);
TEST_ASSERT(recv_ret <= BUFLEN);
read += recv_ret;
} else if (blocking) {
TEST_ASSERT(recv_ret == 0);
} else {
TEST_ASSERT(recv_ret == MBEDTLS_ERR_SSL_WANT_READ);
recv_ret = 0;
}
/* If the buffer is empty we can test blocking and non-blocking read */
if (recv_ret == BUFLEN) {
int blocking_ret = recv(&server, received, 1);
if (blocking) {
TEST_ASSERT(blocking_ret == 0);
} else {
TEST_ASSERT(blocking_ret == MBEDTLS_ERR_SSL_WANT_READ);
}
}
}
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
exit:
mbedtls_mock_socket_close(&client);
mbedtls_mock_socket_close(&server);
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_mock_socket` related functions can
* send messages in both direction at the same time (with the I/O calls
* interleaving).
*/
/* BEGIN_CASE */
void ssl_mock_tcp_interleaving(int blocking)
{
enum { ROUNDS = 2 };
enum { MSGLEN = 105 };
enum { BUFLEN = MSGLEN / 5 };
unsigned char message[ROUNDS][MSGLEN];
unsigned char received[ROUNDS][MSGLEN];
mbedtls_mock_socket client;
mbedtls_mock_socket server;
size_t written[ROUNDS];
size_t read[ROUNDS];
int send_ret[ROUNDS];
int recv_ret[ROUNDS];
unsigned i, j, progress;
mbedtls_ssl_send_t *send;
mbedtls_ssl_recv_t *recv;
if (blocking == 0) {
send = mbedtls_mock_tcp_send_nb;
recv = mbedtls_mock_tcp_recv_nb;
} else {
send = mbedtls_mock_tcp_send_b;
recv = mbedtls_mock_tcp_recv_b;
}
mbedtls_mock_socket_init(&client);
mbedtls_mock_socket_init(&server);
/* Fill up the buffers with structured data so that unwanted changes
* can be detected */
for (i = 0; i < ROUNDS; i++) {
for (j = 0; j < MSGLEN; j++) {
message[i][j] = (i * MSGLEN + j) & 0xFF;
}
}
/* Make sure that sending a message takes a few iterations. */
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server, BUFLEN));
/* Send the message from both sides, interleaving. */
progress = 1;
for (i = 0; i < ROUNDS; i++) {
written[i] = 0;
read[i] = 0;
}
/* This loop does not stop as long as there was a successful write or read
* of at least one byte on either side. */
while (progress != 0) {
mbedtls_mock_socket *socket;
for (i = 0; i < ROUNDS; i++) {
/* First sending is from the client */
socket = (i % 2 == 0) ? (&client) : (&server);
send_ret[i] = send(socket, message[i] + written[i],
MSGLEN - written[i]);
TEST_ASSERT(send_ret[i] >= 0);
TEST_ASSERT(send_ret[i] <= BUFLEN);
written[i] += send_ret[i];
/* If the buffer is full we can test blocking and non-blocking
* send */
if (send_ret[i] == BUFLEN) {
int blocking_ret = send(socket, message[i], 1);
if (blocking) {
TEST_ASSERT(blocking_ret == 0);
} else {
TEST_ASSERT(blocking_ret == MBEDTLS_ERR_SSL_WANT_WRITE);
}
}
}
for (i = 0; i < ROUNDS; i++) {
/* First receiving is from the server */
socket = (i % 2 == 0) ? (&server) : (&client);
recv_ret[i] = recv(socket, received[i] + read[i],
MSGLEN - read[i]);
/* The result depends on whether any data was sent */
if (send_ret[i] > 0) {
TEST_ASSERT(recv_ret[i] > 0);
TEST_ASSERT(recv_ret[i] <= BUFLEN);
read[i] += recv_ret[i];
} else if (blocking) {
TEST_ASSERT(recv_ret[i] == 0);
} else {
TEST_ASSERT(recv_ret[i] == MBEDTLS_ERR_SSL_WANT_READ);
recv_ret[i] = 0;
}
/* If the buffer is empty we can test blocking and non-blocking
* read */
if (recv_ret[i] == BUFLEN) {
int blocking_ret = recv(socket, received[i], 1);
if (blocking) {
TEST_ASSERT(blocking_ret == 0);
} else {
TEST_ASSERT(blocking_ret == MBEDTLS_ERR_SSL_WANT_READ);
}
}
}
progress = 0;
for (i = 0; i < ROUNDS; i++) {
progress += send_ret[i] + recv_ret[i];
}
}
for (i = 0; i < ROUNDS; i++) {
TEST_ASSERT(memcmp(message[i], received[i], MSGLEN) == 0);
}
exit:
mbedtls_mock_socket_close(&client);
mbedtls_mock_socket_close(&server);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_sanity()
{
mbedtls_test_message_queue queue;
/* Trying to push/pull to an empty queue */
TEST_ASSERT(mbedtls_test_message_queue_push_info(NULL, 1)
== MBEDTLS_TEST_ERROR_ARG_NULL);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(NULL, 1)
== MBEDTLS_TEST_ERROR_ARG_NULL);
TEST_ASSERT(mbedtls_test_message_queue_setup(&queue, 3) == 0);
TEST_ASSERT(queue.capacity == 3);
TEST_ASSERT(queue.num == 0);
exit:
mbedtls_test_message_queue_free(&queue);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_basic()
{
mbedtls_test_message_queue queue;
TEST_ASSERT(mbedtls_test_message_queue_setup(&queue, 3) == 0);
/* Sanity test - 3 pushes and 3 pops with sufficient space */
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 1) == 1);
TEST_ASSERT(queue.capacity == 3);
TEST_ASSERT(queue.num == 1);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 1) == 1);
TEST_ASSERT(queue.capacity == 3);
TEST_ASSERT(queue.num == 2);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 2) == 2);
TEST_ASSERT(queue.capacity == 3);
TEST_ASSERT(queue.num == 3);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 2) == 2);
exit:
mbedtls_test_message_queue_free(&queue);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_overflow_underflow()
{
mbedtls_test_message_queue queue;
TEST_ASSERT(mbedtls_test_message_queue_setup(&queue, 3) == 0);
/* 4 pushes (last one with an error), 4 pops (last one with an error) */
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 2) == 2);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 3)
== MBEDTLS_ERR_SSL_WANT_WRITE);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 2) == 2);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1)
== MBEDTLS_ERR_SSL_WANT_READ);
exit:
mbedtls_test_message_queue_free(&queue);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_interleaved()
{
mbedtls_test_message_queue queue;
TEST_ASSERT(mbedtls_test_message_queue_setup(&queue, 3) == 0);
/* Interleaved test - [2 pushes, 1 pop] twice, and then two pops
* (to wrap around the buffer) */
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 2) == 2);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 3) == 3);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 1) == 1);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 2) == 2);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 5) == 5);
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, 8) == 8);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 3) == 3);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 5) == 5);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, 8) == 8);
exit:
mbedtls_test_message_queue_free(&queue);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_insufficient_buffer()
{
mbedtls_test_message_queue queue;
size_t message_len = 10;
size_t buffer_len = 5;
TEST_ASSERT(mbedtls_test_message_queue_setup(&queue, 1) == 0);
/* Popping without a sufficient buffer */
TEST_ASSERT(mbedtls_test_message_queue_push_info(&queue, message_len)
== (int) message_len);
TEST_ASSERT(mbedtls_test_message_queue_pop_info(&queue, buffer_len)
== (int) buffer_len);
exit:
mbedtls_test_message_queue_free(&queue);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_uninitialized()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN] = { 0 }, received[MSGLEN];
mbedtls_mock_socket client, server;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
/* Send with a NULL context */
TEST_ASSERT(mbedtls_mock_tcp_send_msg(NULL, message, MSGLEN)
== MBEDTLS_TEST_ERROR_CONTEXT_ERROR);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(NULL, message, MSGLEN)
== MBEDTLS_TEST_ERROR_CONTEXT_ERROR);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 1,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 1,
&client,
&client_context) == 0);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message, MSGLEN)
== MBEDTLS_TEST_ERROR_SEND_FAILED);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MBEDTLS_ERR_SSL_WANT_READ);
/* Push directly to a queue to later simulate a disconnected behavior */
TEST_ASSERT(mbedtls_test_message_queue_push_info(&server_queue, MSGLEN)
== MSGLEN);
/* Test if there's an error when trying to read from a disconnected
* socket */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MBEDTLS_TEST_ERROR_RECV_FAILED);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_basic()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 1,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 1,
&client,
&client_context) == 0);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
MSGLEN));
/* Send the message to the server */
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
/* Read from the server */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
memset(received, 0, MSGLEN);
/* Send the message to the client */
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&server_context, message,
MSGLEN) == MSGLEN);
/* Read from the client */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&client_context, received, MSGLEN)
== MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_queue_overflow_underflow()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 2,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 2,
&client,
&client_context) == 0);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
MSGLEN*2));
/* Send three message to the server, last one with an error */
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN - 1) == MSGLEN - 1);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN)
== MBEDTLS_ERR_SSL_WANT_WRITE);
/* Read three messages from the server, last one with an error */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received,
MSGLEN - 1) == MSGLEN - 1);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MBEDTLS_ERR_SSL_WANT_READ);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_socket_overflow()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 2,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 2,
&client,
&client_context) == 0);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
MSGLEN));
/* Send two message to the server, second one with an error */
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN)
== MBEDTLS_TEST_ERROR_SEND_FAILED);
/* Read the only message from the server */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_truncated()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 2,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 2,
&client,
&client_context) == 0);
memset(received, 0, MSGLEN);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
2 * MSGLEN));
/* Send two messages to the server, the second one small enough to fit in the
* receiver's buffer. */
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN / 2) == MSGLEN / 2);
/* Read a truncated message from the server */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN/2)
== MSGLEN/2);
/* Test that the first half of the message is valid, and second one isn't */
TEST_ASSERT(memcmp(message, received, MSGLEN/2) == 0);
TEST_ASSERT(memcmp(message + MSGLEN/2, received + MSGLEN/2, MSGLEN/2)
!= 0);
memset(received, 0, MSGLEN);
/* Read a full message from the server */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN/2)
== MSGLEN / 2);
/* Test that the first half of the message is valid */
TEST_ASSERT(memcmp(message, received, MSGLEN/2) == 0);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_socket_read_error()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 1,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 1,
&client,
&client_context) == 0);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
MSGLEN));
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
/* Force a read error by disconnecting the socket by hand */
server.status = 0;
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MBEDTLS_TEST_ERROR_RECV_FAILED);
/* Return to a valid state */
server.status = MBEDTLS_MOCK_SOCKET_CONNECTED;
memset(received, 0, sizeof(received));
/* Test that even though the server tried to read once disconnected, the
* continuity is preserved */
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_interleaved_one_way()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 3,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 3,
&client,
&client_context) == 0);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
MSGLEN*3));
/* Interleaved test - [2 sends, 1 read] twice, and then two reads
* (to wrap around the buffer) */
for (i = 0; i < 2; i++) {
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received,
MSGLEN) == MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
memset(received, 0, sizeof(received));
}
for (i = 0; i < 2; i++) {
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received,
MSGLEN) == MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
}
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MBEDTLS_ERR_SSL_WANT_READ);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_interleaved_two_ways()
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_message_socket_setup(&server_queue, &client_queue, 3,
&server,
&server_context) == 0);
TEST_ASSERT(mbedtls_message_socket_setup(&client_queue, &server_queue, 3,
&client,
&client_context) == 0);
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for (i = 0; i < MSGLEN; i++) {
message[i] = i & 0xFF;
}
TEST_ASSERT(0 == mbedtls_mock_socket_connect(&client, &server,
MSGLEN*3));
/* Interleaved test - [2 sends, 1 read] twice, both ways, and then two reads
* (to wrap around the buffer) both ways. */
for (i = 0; i < 2; i++) {
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&client_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&server_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_send_msg(&server_context, message,
MSGLEN) == MSGLEN);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received,
MSGLEN) == MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
memset(received, 0, sizeof(received));
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&client_context, received,
MSGLEN) == MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
memset(received, 0, sizeof(received));
}
for (i = 0; i < 2; i++) {
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received,
MSGLEN) == MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
memset(received, 0, sizeof(received));
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&client_context, received,
MSGLEN) == MSGLEN);
TEST_ASSERT(memcmp(message, received, MSGLEN) == 0);
memset(received, 0, sizeof(received));
}
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&server_context, received, MSGLEN)
== MBEDTLS_ERR_SSL_WANT_READ);
TEST_ASSERT(mbedtls_mock_tcp_recv_msg(&client_context, received, MSGLEN)
== MBEDTLS_ERR_SSL_WANT_READ);
exit:
mbedtls_message_socket_close(&server_context);
mbedtls_message_socket_close(&client_context);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_DTLS_ANTI_REPLAY */
void ssl_dtls_replay(data_t *prevs, data_t *new, int ret)
2014-09-24 11:13:44 +02:00
{
2017-06-09 05:32:58 +02:00
uint32_t len = 0;
mbedtls_ssl_context ssl;
2015-05-04 14:56:36 +02:00
mbedtls_ssl_config conf;
2014-09-24 11:13:44 +02:00
mbedtls_ssl_init(&ssl);
mbedtls_ssl_config_init(&conf);
2015-04-29 00:48:22 +02:00
TEST_ASSERT(mbedtls_ssl_config_defaults(&conf,
MBEDTLS_SSL_IS_CLIENT,
MBEDTLS_SSL_TRANSPORT_DATAGRAM,
MBEDTLS_SSL_PRESET_DEFAULT) == 0);
TEST_ASSERT(mbedtls_ssl_setup(&ssl, &conf) == 0);
2014-09-24 11:13:44 +02:00
/* Read previous record numbers */
for (len = 0; len < prevs->len; len += 6) {
memcpy(ssl.in_ctr + 2, prevs->x + len, 6);
mbedtls_ssl_dtls_replay_update(&ssl);
2014-09-24 11:13:44 +02:00
}
/* Check new number */
memcpy(ssl.in_ctr + 2, new->x, 6);
TEST_ASSERT(mbedtls_ssl_dtls_replay_check(&ssl) == ret);
2014-09-24 11:13:44 +02:00
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
2014-09-24 11:13:44 +02:00
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED */
void ssl_set_hostname_twice(char *hostname0, char *hostname1)
{
mbedtls_ssl_context ssl;
mbedtls_ssl_init(&ssl);
TEST_ASSERT(mbedtls_ssl_set_hostname(&ssl, hostname0) == 0);
TEST_ASSERT(mbedtls_ssl_set_hostname(&ssl, hostname1) == 0);
mbedtls_ssl_free(&ssl);
}
2018-03-13 16:22:58 +01:00
/* END_CASE */
/* BEGIN_CASE */
void ssl_crypt_record(int cipher_type, int hash_id,
int etm, int tag_mode, int ver,
int cid0_len, int cid1_len)
{
/*
* Test several record encryptions and decryptions
* with plenty of space before and after the data
* within the record buffer.
*/
int ret;
int num_records = 16;
mbedtls_ssl_context ssl; /* ONLY for debugging */
mbedtls_ssl_transform t0, t1;
unsigned char *buf = NULL;
size_t const buflen = 512;
mbedtls_record rec, rec_backup;
USE_PSA_INIT();
mbedtls_ssl_init(&ssl);
mbedtls_ssl_transform_init(&t0);
mbedtls_ssl_transform_init(&t1);
ret = build_transforms(&t0, &t1, cipher_type, hash_id,
etm, tag_mode, ver,
(size_t) cid0_len,
(size_t) cid1_len);
TEST_ASSERT(ret == 0);
TEST_ASSERT((buf = mbedtls_calloc(1, buflen)) != NULL);
while (num_records-- > 0) {
mbedtls_ssl_transform *t_dec, *t_enc;
/* Take turns in who's sending and who's receiving. */
if (num_records % 3 == 0) {
t_dec = &t0;
t_enc = &t1;
} else {
t_dec = &t1;
t_enc = &t0;
}
/*
* The record header affects the transformation in two ways:
* 1) It determines the AEAD additional data
* 2) The record counter sometimes determines the IV.
*
* Apart from that, the fields don't have influence.
* In particular, it is currently not the responsibility
* of ssl_encrypt/decrypt_buf to check if the transform
* version matches the record version, or that the
* type is sensible.
*/
memset(rec.ctr, num_records, sizeof(rec.ctr));
rec.type = 42;
rec.ver[0] = num_records;
rec.ver[1] = num_records;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
rec.buf = buf;
rec.buf_len = buflen;
rec.data_offset = 16;
/* Make sure to vary the length to exercise different
* paddings. */
rec.data_len = 1 + num_records;
memset(rec.buf + rec.data_offset, 42, rec.data_len);
/* Make a copy for later comparison */
rec_backup = rec;
/* Encrypt record */
ret = mbedtls_ssl_encrypt_buf(&ssl, t_enc, &rec,
mbedtls_test_rnd_std_rand, NULL);
TEST_ASSERT(ret == 0 || ret == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
if (ret != 0) {
continue;
}
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
if (rec.cid_len != 0) {
/* DTLS 1.2 + CID hides the real content type and
* uses a special CID content type in the protected
* record. Double-check this. */
TEST_ASSERT(rec.type == MBEDTLS_SSL_MSG_CID);
}
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (t_enc->tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
/* TLS 1.3 hides the real content type and
* always uses Application Data as the content type
* for protected records. Double-check this. */
TEST_ASSERT(rec.type == MBEDTLS_SSL_MSG_APPLICATION_DATA);
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
/* Decrypt record with t_dec */
ret = mbedtls_ssl_decrypt_buf(&ssl, t_dec, &rec);
TEST_ASSERT(ret == 0);
/* Compare results */
TEST_ASSERT(rec.type == rec_backup.type);
TEST_ASSERT(memcmp(rec.ctr, rec_backup.ctr, 8) == 0);
TEST_ASSERT(rec.ver[0] == rec_backup.ver[0]);
TEST_ASSERT(rec.ver[1] == rec_backup.ver[1]);
TEST_ASSERT(rec.data_len == rec_backup.data_len);
TEST_ASSERT(rec.data_offset == rec_backup.data_offset);
TEST_ASSERT(memcmp(rec.buf + rec.data_offset,
rec_backup.buf + rec_backup.data_offset,
rec.data_len) == 0);
}
exit:
/* Cleanup */
mbedtls_ssl_free(&ssl);
mbedtls_ssl_transform_free(&t0);
mbedtls_ssl_transform_free(&t1);
mbedtls_free(buf);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_crypt_record_small(int cipher_type, int hash_id,
int etm, int tag_mode, int ver,
int cid0_len, int cid1_len)
{
/*
* Test pairs of encryption and decryption with an increasing
* amount of space in the record buffer - in more detail:
* 1) Try to encrypt with 0, 1, 2, ... bytes available
* in front of the plaintext, and expect the encryption
* to succeed starting from some offset. Always keep
* enough space in the end of the buffer.
* 2) Try to encrypt with 0, 1, 2, ... bytes available
* at the end of the plaintext, and expect the encryption
* to succeed starting from some offset. Always keep
* enough space at the beginning of the buffer.
* 3) Try to encrypt with 0, 1, 2, ... bytes available
* both at the front and end of the plaintext,
* and expect the encryption to succeed starting from
* some offset.
*
* If encryption succeeds, check that decryption succeeds
* and yields the original record.
*/
mbedtls_ssl_context ssl; /* ONLY for debugging */
mbedtls_ssl_transform t0, t1;
unsigned char *buf = NULL;
size_t const buflen = 256;
mbedtls_record rec, rec_backup;
int ret;
int mode; /* Mode 1, 2 or 3 as explained above */
size_t offset; /* Available space at beginning/end/both */
size_t threshold = 96; /* Maximum offset to test against */
size_t default_pre_padding = 64; /* Pre-padding to use in mode 2 */
size_t default_post_padding = 128; /* Post-padding to use in mode 1 */
int seen_success; /* Indicates if in the current mode we've
* already seen a successful test. */
USE_PSA_INIT();
mbedtls_ssl_init(&ssl);
mbedtls_ssl_transform_init(&t0);
mbedtls_ssl_transform_init(&t1);
ret = build_transforms(&t0, &t1, cipher_type, hash_id,
etm, tag_mode, ver,
(size_t) cid0_len,
(size_t) cid1_len);
TEST_ASSERT(ret == 0);
TEST_ASSERT((buf = mbedtls_calloc(1, buflen)) != NULL);
for (mode = 1; mode <= 3; mode++) {
seen_success = 0;
for (offset = 0; offset <= threshold; offset++) {
mbedtls_ssl_transform *t_dec, *t_enc;
t_dec = &t0;
t_enc = &t1;
memset(rec.ctr, offset, sizeof(rec.ctr));
rec.type = 42;
rec.ver[0] = offset;
rec.ver[1] = offset;
rec.buf = buf;
rec.buf_len = buflen;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
switch (mode) {
case 1: /* Space in the beginning */
rec.data_offset = offset;
rec.data_len = buflen - offset - default_post_padding;
break;
case 2: /* Space in the end */
rec.data_offset = default_pre_padding;
rec.data_len = buflen - default_pre_padding - offset;
break;
case 3: /* Space in the beginning and end */
rec.data_offset = offset;
rec.data_len = buflen - 2 * offset;
break;
default:
TEST_ASSERT(0);
break;
}
memset(rec.buf + rec.data_offset, 42, rec.data_len);
/* Make a copy for later comparison */
rec_backup = rec;
/* Encrypt record */
ret = mbedtls_ssl_encrypt_buf(&ssl, t_enc, &rec,
mbedtls_test_rnd_std_rand, NULL);
if ((mode == 1 || mode == 2) && seen_success) {
TEST_ASSERT(ret == 0);
} else {
TEST_ASSERT(ret == 0 || ret == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
if (ret == 0) {
seen_success = 1;
}
}
if (ret != 0) {
continue;
}
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
if (rec.cid_len != 0) {
/* DTLS 1.2 + CID hides the real content type and
* uses a special CID content type in the protected
* record. Double-check this. */
TEST_ASSERT(rec.type == MBEDTLS_SSL_MSG_CID);
}
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (t_enc->tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
/* TLS 1.3 hides the real content type and
* always uses Application Data as the content type
* for protected records. Double-check this. */
TEST_ASSERT(rec.type == MBEDTLS_SSL_MSG_APPLICATION_DATA);
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
/* Decrypt record with t_dec */
TEST_ASSERT(mbedtls_ssl_decrypt_buf(&ssl, t_dec, &rec) == 0);
/* Compare results */
TEST_ASSERT(rec.type == rec_backup.type);
TEST_ASSERT(memcmp(rec.ctr, rec_backup.ctr, 8) == 0);
TEST_ASSERT(rec.ver[0] == rec_backup.ver[0]);
TEST_ASSERT(rec.ver[1] == rec_backup.ver[1]);
TEST_ASSERT(rec.data_len == rec_backup.data_len);
TEST_ASSERT(rec.data_offset == rec_backup.data_offset);
TEST_ASSERT(memcmp(rec.buf + rec.data_offset,
rec_backup.buf + rec_backup.data_offset,
rec.data_len) == 0);
}
TEST_ASSERT(seen_success == 1);
}
exit:
/* Cleanup */
mbedtls_ssl_free(&ssl);
mbedtls_ssl_transform_free(&t0);
mbedtls_ssl_transform_free(&t1);
mbedtls_free(buf);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CIPHER_MODE_CBC:MBEDTLS_AES_C:MBEDTLS_SSL_PROTO_TLS1_2 */
void ssl_decrypt_non_etm_cbc(int cipher_type, int hash_id, int trunc_hmac,
int length_selector)
{
/*
* Test record decryption for CBC without EtM, focused on the verification
* of padding and MAC.
*
* Actually depends on TLS 1.2 and either AES, ARIA or Camellia, but since
* the test framework doesn't support alternation in dependency statements,
* just depend on AES.
*
* The length_selector argument is interpreted as follows:
* - if it's -1, the plaintext length is 0 and minimal padding is applied
* - if it's -2, the plaintext length is 0 and maximal padding is applied
* - otherwise it must be in [0, 255] and is padding_length from RFC 5246:
* it's the length of the rest of the padding, that is, excluding the
* byte that encodes the length. The minimal non-zero plaintext length
* that gives this padding_length is automatically selected.
*/
mbedtls_ssl_context ssl; /* ONLY for debugging */
mbedtls_ssl_transform t0, t1;
mbedtls_record rec, rec_save;
unsigned char *buf = NULL, *buf_save = NULL;
size_t buflen, olen = 0;
size_t plaintext_len, block_size, i;
unsigned char padlen; /* excluding the padding_length byte */
unsigned char add_data[13];
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
size_t sign_mac_length = 0;
unsigned char mac[PSA_HASH_MAX_SIZE];
#else
unsigned char mac[MBEDTLS_MD_MAX_SIZE];
#endif
int exp_ret;
int ret;
const unsigned char pad_max_len = 255; /* Per the standard */
USE_PSA_INIT();
mbedtls_ssl_init(&ssl);
mbedtls_ssl_transform_init(&t0);
mbedtls_ssl_transform_init(&t1);
/* Set up transforms with dummy keys */
ret = build_transforms(&t0, &t1, cipher_type, hash_id,
0, trunc_hmac,
MBEDTLS_SSL_VERSION_TLS1_2,
0, 0);
TEST_ASSERT(ret == 0);
/* Determine padding/plaintext length */
TEST_ASSERT(length_selector >= -2 && length_selector <= 255);
block_size = t0.ivlen;
if (length_selector < 0) {
plaintext_len = 0;
/* Minimal padding
* The +1 is for the padding_length byte, not counted in padlen. */
padlen = block_size - (t0.maclen + 1) % block_size;
/* Maximal padding? */
if (length_selector == -2) {
padlen += block_size * ((pad_max_len - padlen) / block_size);
}
} else {
padlen = length_selector;
/* Minimal non-zero plaintext_length giving desired padding.
* The +1 is for the padding_length byte, not counted in padlen. */
plaintext_len = block_size - (padlen + t0.maclen + 1) % block_size;
}
/* Prepare a buffer for record data */
buflen = block_size
+ plaintext_len
+ t0.maclen
+ padlen + 1;
ASSERT_ALLOC(buf, buflen);
ASSERT_ALLOC(buf_save, buflen);
/* Prepare a dummy record header */
memset(rec.ctr, 0, sizeof(rec.ctr));
rec.type = MBEDTLS_SSL_MSG_APPLICATION_DATA;
mbedtls_ssl_write_version(rec.ver, MBEDTLS_SSL_TRANSPORT_STREAM,
MBEDTLS_SSL_VERSION_TLS1_2);
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
/* Prepare dummy record content */
rec.buf = buf;
rec.buf_len = buflen;
rec.data_offset = block_size;
rec.data_len = plaintext_len;
memset(rec.buf + rec.data_offset, 42, rec.data_len);
/* Serialized version of record header for MAC purposes */
memcpy(add_data, rec.ctr, 8);
add_data[8] = rec.type;
add_data[9] = rec.ver[0];
add_data[10] = rec.ver[1];
add_data[11] = (rec.data_len >> 8) & 0xff;
add_data[12] = (rec.data_len >> 0) & 0xff;
/* Set dummy IV */
memset(t0.iv_enc, 0x55, t0.ivlen);
memcpy(rec.buf, t0.iv_enc, t0.ivlen);
/*
* Prepare a pre-encryption record (with MAC and padding), and save it.
*/
/* MAC with additional data */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
TEST_EQUAL(PSA_SUCCESS, psa_mac_sign_setup(&operation,
t0.psa_mac_enc,
t0.psa_mac_alg));
TEST_EQUAL(PSA_SUCCESS, psa_mac_update(&operation, add_data, 13));
TEST_EQUAL(PSA_SUCCESS, psa_mac_update(&operation,
rec.buf + rec.data_offset,
rec.data_len));
TEST_EQUAL(PSA_SUCCESS, psa_mac_sign_finish(&operation,
mac, sizeof(mac),
&sign_mac_length));
#else
TEST_EQUAL(0, mbedtls_md_hmac_update(&t0.md_ctx_enc, add_data, 13));
TEST_EQUAL(0, mbedtls_md_hmac_update(&t0.md_ctx_enc,
rec.buf + rec.data_offset,
rec.data_len));
TEST_EQUAL(0, mbedtls_md_hmac_finish(&t0.md_ctx_enc, mac));
#endif
memcpy(rec.buf + rec.data_offset + rec.data_len, mac, t0.maclen);
rec.data_len += t0.maclen;
/* Pad */
memset(rec.buf + rec.data_offset + rec.data_len, padlen, padlen + 1);
rec.data_len += padlen + 1;
/* Save correct pre-encryption record */
rec_save = rec;
rec_save.buf = buf_save;
memcpy(buf_save, buf, buflen);
/*
* Encrypt and decrypt the correct record, expecting success
*/
TEST_EQUAL(0, psa_cipher_encrypt_helper(&t0, t0.iv_enc, t0.ivlen,
rec.buf + rec.data_offset, rec.data_len,
rec.buf + rec.data_offset, &olen));
rec.data_offset -= t0.ivlen;
rec.data_len += t0.ivlen;
TEST_EQUAL(0, mbedtls_ssl_decrypt_buf(&ssl, &t1, &rec));
/*
* Modify each byte of the pre-encryption record before encrypting and
* decrypting it, expecting failure every time.
*/
for (i = block_size; i < buflen; i++) {
mbedtls_test_set_step(i);
/* Restore correct pre-encryption record */
rec = rec_save;
rec.buf = buf;
memcpy(buf, buf_save, buflen);
/* Corrupt one byte of the data (could be plaintext, MAC or padding) */
rec.buf[i] ^= 0x01;
/* Encrypt */
TEST_EQUAL(0, psa_cipher_encrypt_helper(&t0, t0.iv_enc, t0.ivlen,
rec.buf + rec.data_offset, rec.data_len,
rec.buf + rec.data_offset, &olen));
rec.data_offset -= t0.ivlen;
rec.data_len += t0.ivlen;
/* Decrypt and expect failure */
TEST_EQUAL(MBEDTLS_ERR_SSL_INVALID_MAC,
mbedtls_ssl_decrypt_buf(&ssl, &t1, &rec));
}
/*
* Use larger values of the padding bytes - with small buffers, this tests
* the case where the announced padlen would be larger than the buffer
* (and before that, than the buffer minus the size of the MAC), to make
* sure our padding checking code does not perform any out-of-bounds reads
* in this case. (With larger buffers, ie when the plaintext is long or
* maximal length padding is used, this is less relevant but still doesn't
* hurt to test.)
*
* (Start the loop with correct padding, just to double-check that record
* saving did work, and that we're overwriting the correct bytes.)
*/
for (i = padlen; i <= pad_max_len; i++) {
mbedtls_test_set_step(i);
/* Restore correct pre-encryption record */
rec = rec_save;
rec.buf = buf;
memcpy(buf, buf_save, buflen);
/* Set padding bytes to new value */
memset(buf + buflen - padlen - 1, i, padlen + 1);
/* Encrypt */
TEST_EQUAL(0, psa_cipher_encrypt_helper(&t0, t0.iv_enc, t0.ivlen,
rec.buf + rec.data_offset, rec.data_len,
rec.buf + rec.data_offset, &olen));
rec.data_offset -= t0.ivlen;
rec.data_len += t0.ivlen;
/* Decrypt and expect failure except the first time */
exp_ret = (i == padlen) ? 0 : MBEDTLS_ERR_SSL_INVALID_MAC;
TEST_EQUAL(exp_ret, mbedtls_ssl_decrypt_buf(&ssl, &t1, &rec));
}
exit:
mbedtls_ssl_free(&ssl);
mbedtls_ssl_transform_free(&t0);
mbedtls_ssl_transform_free(&t1);
mbedtls_free(buf);
mbedtls_free(buf_save);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_hkdf_expand_label(int hash_alg,
data_t *secret,
int label_idx,
data_t *ctx,
int desired_length,
data_t *expected)
{
unsigned char dst[100];
unsigned char const *lbl = NULL;
size_t lbl_len;
#define MBEDTLS_SSL_TLS1_3_LABEL(name, string) \
if (label_idx == (int) tls13_label_ ## name) \
{ \
lbl = mbedtls_ssl_tls13_labels.name; \
lbl_len = sizeof(mbedtls_ssl_tls13_labels.name); \
}
MBEDTLS_SSL_TLS1_3_LABEL_LIST
#undef MBEDTLS_SSL_TLS1_3_LABEL
TEST_ASSERT(lbl != NULL);
/* Check sanity of test parameters. */
TEST_ASSERT((size_t) desired_length <= sizeof(dst));
TEST_ASSERT((size_t) desired_length == expected->len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_hkdf_expand_label(
(psa_algorithm_t) hash_alg,
secret->x, secret->len,
lbl, lbl_len,
ctx->x, ctx->len,
dst, desired_length) == 0);
ASSERT_COMPARE(dst, (size_t) desired_length,
expected->x, (size_t) expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_traffic_key_generation(int hash_alg,
data_t *server_secret,
data_t *client_secret,
int desired_iv_len,
int desired_key_len,
data_t *expected_server_write_key,
data_t *expected_server_write_iv,
data_t *expected_client_write_key,
data_t *expected_client_write_iv)
{
mbedtls_ssl_key_set keys;
/* Check sanity of test parameters. */
TEST_ASSERT(client_secret->len == server_secret->len);
TEST_ASSERT(expected_client_write_iv->len == expected_server_write_iv->len &&
expected_client_write_iv->len == (size_t) desired_iv_len);
TEST_ASSERT(expected_client_write_key->len == expected_server_write_key->len &&
expected_client_write_key->len == (size_t) desired_key_len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_make_traffic_keys(
(psa_algorithm_t) hash_alg,
client_secret->x,
server_secret->x,
client_secret->len /* == server_secret->len */,
desired_key_len, desired_iv_len,
&keys) == 0);
ASSERT_COMPARE(keys.client_write_key,
keys.key_len,
expected_client_write_key->x,
(size_t) desired_key_len);
ASSERT_COMPARE(keys.server_write_key,
keys.key_len,
expected_server_write_key->x,
(size_t) desired_key_len);
ASSERT_COMPARE(keys.client_write_iv,
keys.iv_len,
expected_client_write_iv->x,
(size_t) desired_iv_len);
ASSERT_COMPARE(keys.server_write_iv,
keys.iv_len,
expected_server_write_iv->x,
(size_t) desired_iv_len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_secret(int hash_alg,
data_t *secret,
int label_idx,
data_t *ctx,
int desired_length,
int already_hashed,
data_t *expected)
{
unsigned char dst[100];
unsigned char const *lbl = NULL;
size_t lbl_len;
#define MBEDTLS_SSL_TLS1_3_LABEL(name, string) \
if (label_idx == (int) tls13_label_ ## name) \
{ \
lbl = mbedtls_ssl_tls13_labels.name; \
lbl_len = sizeof(mbedtls_ssl_tls13_labels.name); \
}
MBEDTLS_SSL_TLS1_3_LABEL_LIST
#undef MBEDTLS_SSL_TLS1_3_LABEL
TEST_ASSERT(lbl != NULL);
/* Check sanity of test parameters. */
TEST_ASSERT((size_t) desired_length <= sizeof(dst));
TEST_ASSERT((size_t) desired_length == expected->len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_derive_secret(
(psa_algorithm_t) hash_alg,
secret->x, secret->len,
lbl, lbl_len,
ctx->x, ctx->len,
already_hashed,
dst, desired_length) == 0);
ASSERT_COMPARE(dst, desired_length,
expected->x, desired_length);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_early_secrets(int hash_alg,
data_t *secret,
data_t *transcript,
data_t *traffic_expected,
data_t *exporter_expected)
{
mbedtls_ssl_tls13_early_secrets secrets;
/* Double-check that we've passed sane parameters. */
psa_algorithm_t alg = (psa_algorithm_t) hash_alg;
size_t const hash_len = PSA_HASH_LENGTH(alg);
TEST_ASSERT(PSA_ALG_IS_HASH(alg) &&
secret->len == hash_len &&
transcript->len == hash_len &&
traffic_expected->len == hash_len &&
exporter_expected->len == hash_len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_derive_early_secrets(
alg, secret->x, transcript->x, transcript->len,
&secrets) == 0);
ASSERT_COMPARE(secrets.client_early_traffic_secret, hash_len,
traffic_expected->x, traffic_expected->len);
ASSERT_COMPARE(secrets.early_exporter_master_secret, hash_len,
exporter_expected->x, exporter_expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_handshake_secrets(int hash_alg,
data_t *secret,
data_t *transcript,
data_t *client_expected,
data_t *server_expected)
{
mbedtls_ssl_tls13_handshake_secrets secrets;
/* Double-check that we've passed sane parameters. */
psa_algorithm_t alg = (psa_algorithm_t) hash_alg;
size_t const hash_len = PSA_HASH_LENGTH(alg);
TEST_ASSERT(PSA_ALG_IS_HASH(alg) &&
secret->len == hash_len &&
transcript->len == hash_len &&
client_expected->len == hash_len &&
server_expected->len == hash_len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_derive_handshake_secrets(
alg, secret->x, transcript->x, transcript->len,
&secrets) == 0);
ASSERT_COMPARE(secrets.client_handshake_traffic_secret, hash_len,
client_expected->x, client_expected->len);
ASSERT_COMPARE(secrets.server_handshake_traffic_secret, hash_len,
server_expected->x, server_expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_application_secrets(int hash_alg,
data_t *secret,
data_t *transcript,
data_t *client_expected,
data_t *server_expected,
data_t *exporter_expected)
{
mbedtls_ssl_tls13_application_secrets secrets;
/* Double-check that we've passed sane parameters. */
psa_algorithm_t alg = (psa_algorithm_t) hash_alg;
size_t const hash_len = PSA_HASH_LENGTH(alg);
TEST_ASSERT(PSA_ALG_IS_HASH(alg) &&
secret->len == hash_len &&
transcript->len == hash_len &&
client_expected->len == hash_len &&
server_expected->len == hash_len &&
exporter_expected->len == hash_len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_derive_application_secrets(
alg, secret->x, transcript->x, transcript->len,
&secrets) == 0);
ASSERT_COMPARE(secrets.client_application_traffic_secret_N, hash_len,
client_expected->x, client_expected->len);
ASSERT_COMPARE(secrets.server_application_traffic_secret_N, hash_len,
server_expected->x, server_expected->len);
ASSERT_COMPARE(secrets.exporter_master_secret, hash_len,
exporter_expected->x, exporter_expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_resumption_secrets(int hash_alg,
data_t *secret,
data_t *transcript,
data_t *resumption_expected)
{
mbedtls_ssl_tls13_application_secrets secrets;
/* Double-check that we've passed sane parameters. */
psa_algorithm_t alg = (psa_algorithm_t) hash_alg;
size_t const hash_len = PSA_HASH_LENGTH(alg);
TEST_ASSERT(PSA_ALG_IS_HASH(alg) &&
secret->len == hash_len &&
transcript->len == hash_len &&
resumption_expected->len == hash_len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_derive_resumption_master_secret(
alg, secret->x, transcript->x, transcript->len,
&secrets) == 0);
ASSERT_COMPARE(secrets.resumption_master_secret, hash_len,
resumption_expected->x, resumption_expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_create_psk_binder(int hash_alg,
data_t *psk,
int psk_type,
data_t *transcript,
data_t *binder_expected)
{
unsigned char binder[MBEDTLS_HASH_MAX_SIZE];
/* Double-check that we've passed sane parameters. */
psa_algorithm_t alg = (psa_algorithm_t) hash_alg;
size_t const hash_len = PSA_HASH_LENGTH(alg);
TEST_ASSERT(PSA_ALG_IS_HASH(alg) &&
transcript->len == hash_len &&
binder_expected->len == hash_len);
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_create_psk_binder(
NULL, /* SSL context for debugging only */
alg,
psk->x, psk->len,
psk_type,
transcript->x,
binder) == 0);
ASSERT_COMPARE(binder, hash_len,
binder_expected->x, binder_expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void ssl_tls13_record_protection(int ciphersuite,
int endpoint,
int ctr,
int padding_used,
data_t *server_write_key,
data_t *server_write_iv,
data_t *client_write_key,
data_t *client_write_iv,
data_t *plaintext,
data_t *ciphertext)
{
mbedtls_ssl_key_set keys;
mbedtls_ssl_transform transform_send;
mbedtls_ssl_transform transform_recv;
mbedtls_record rec;
unsigned char *buf = NULL;
size_t buf_len;
int other_endpoint;
USE_PSA_INIT();
TEST_ASSERT(endpoint == MBEDTLS_SSL_IS_CLIENT ||
endpoint == MBEDTLS_SSL_IS_SERVER);
if (endpoint == MBEDTLS_SSL_IS_SERVER) {
other_endpoint = MBEDTLS_SSL_IS_CLIENT;
}
if (endpoint == MBEDTLS_SSL_IS_CLIENT) {
other_endpoint = MBEDTLS_SSL_IS_SERVER;
}
TEST_ASSERT(server_write_key->len == client_write_key->len);
TEST_ASSERT(server_write_iv->len == client_write_iv->len);
memcpy(keys.client_write_key,
client_write_key->x, client_write_key->len);
memcpy(keys.client_write_iv,
client_write_iv->x, client_write_iv->len);
memcpy(keys.server_write_key,
server_write_key->x, server_write_key->len);
memcpy(keys.server_write_iv,
server_write_iv->x, server_write_iv->len);
keys.key_len = server_write_key->len;
keys.iv_len = server_write_iv->len;
mbedtls_ssl_transform_init(&transform_recv);
mbedtls_ssl_transform_init(&transform_send);
TEST_ASSERT(mbedtls_ssl_tls13_populate_transform(
&transform_send, endpoint,
ciphersuite, &keys, NULL) == 0);
TEST_ASSERT(mbedtls_ssl_tls13_populate_transform(
&transform_recv, other_endpoint,
ciphersuite, &keys, NULL) == 0);
/* Make sure we have enough space in the buffer even if
* we use more padding than the KAT. */
buf_len = ciphertext->len + MBEDTLS_SSL_CID_TLS1_3_PADDING_GRANULARITY;
ASSERT_ALLOC(buf, buf_len);
rec.type = MBEDTLS_SSL_MSG_APPLICATION_DATA;
/* TLS 1.3 uses the version identifier from TLS 1.2 on the wire. */
mbedtls_ssl_write_version(rec.ver,
MBEDTLS_SSL_TRANSPORT_STREAM,
MBEDTLS_SSL_VERSION_TLS1_2);
/* Copy plaintext into record structure */
rec.buf = buf;
rec.buf_len = buf_len;
rec.data_offset = 0;
TEST_ASSERT(plaintext->len <= ciphertext->len);
memcpy(rec.buf + rec.data_offset, plaintext->x, plaintext->len);
rec.data_len = plaintext->len;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
memset(&rec.ctr[0], 0, 8);
rec.ctr[7] = ctr;
TEST_ASSERT(mbedtls_ssl_encrypt_buf(NULL, &transform_send, &rec,
NULL, NULL) == 0);
if (padding_used == MBEDTLS_SSL_CID_TLS1_3_PADDING_GRANULARITY) {
ASSERT_COMPARE(rec.buf + rec.data_offset, rec.data_len,
ciphertext->x, ciphertext->len);
}
TEST_ASSERT(mbedtls_ssl_decrypt_buf(NULL, &transform_recv, &rec) == 0);
ASSERT_COMPARE(rec.buf + rec.data_offset, rec.data_len,
plaintext->x, plaintext->len);
mbedtls_free(buf);
mbedtls_ssl_transform_free(&transform_send);
mbedtls_ssl_transform_free(&transform_recv);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_key_evolution(int hash_alg,
data_t *secret,
data_t *input,
data_t *expected)
{
unsigned char secret_new[MBEDTLS_HASH_MAX_SIZE];
PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls13_evolve_secret(
(psa_algorithm_t) hash_alg,
secret->len ? secret->x : NULL,
input->len ? input->x : NULL, input->len,
secret_new) == 0);
ASSERT_COMPARE(secret_new, (size_t) expected->len,
expected->x, (size_t) expected->len);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_2 */
void ssl_tls_prf(int type, data_t *secret, data_t *random,
char *label, data_t *result_str, int exp_ret)
{
unsigned char *output;
output = mbedtls_calloc(1, result_str->len);
if (output == NULL) {
goto exit;
}
USE_PSA_INIT();
TEST_ASSERT(mbedtls_ssl_tls_prf(type, secret->x, secret->len,
label, random->x, random->len,
output, result_str->len) == exp_ret);
if (exp_ret == 0) {
TEST_ASSERT(mbedtls_test_hexcmp(output, result_str->x,
result_str->len, result_str->len) == 0);
}
exit:
mbedtls_free(output);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_save_load(int ticket_len, char *crt_file,
int endpoint_type, int tls_version)
{
mbedtls_ssl_session original, restored;
unsigned char *buf = NULL;
size_t len;
/*
* Test that a save-load pair is the identity
*/
mbedtls_ssl_session_init(&original);
mbedtls_ssl_session_init(&restored);
/* Prepare a dummy session to work on */
((void) endpoint_type);
((void) tls_version);
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
TEST_ASSERT(ssl_tls13_populate_session(
&original, 0, endpoint_type) == 0);
} else
#endif
{
TEST_ASSERT(ssl_tls12_populate_session(
&original, ticket_len, crt_file) == 0);
}
/* Serialize it */
TEST_ASSERT(mbedtls_ssl_session_save(&original, NULL, 0, &len)
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
TEST_ASSERT((buf = mbedtls_calloc(1, len)) != NULL);
TEST_ASSERT(mbedtls_ssl_session_save(&original, buf, len, &len)
== 0);
/* Restore session from serialized data */
TEST_ASSERT(mbedtls_ssl_session_load(&restored, buf, len) == 0);
/*
* Make sure both session structures are identical
*/
#if defined(MBEDTLS_HAVE_TIME)
TEST_ASSERT(original.start == restored.start);
#endif
TEST_ASSERT(original.tls_version == restored.tls_version);
TEST_ASSERT(original.ciphersuite == restored.ciphersuite);
#if defined(MBEDTLS_SSL_PROTO_TLS1_2)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_2) {
TEST_ASSERT(original.id_len == restored.id_len);
TEST_ASSERT(memcmp(original.id,
restored.id, sizeof(original.id)) == 0);
TEST_ASSERT(memcmp(original.master,
restored.master, sizeof(original.master)) == 0);
#if defined(MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED)
#if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE)
TEST_ASSERT((original.peer_cert == NULL) ==
(restored.peer_cert == NULL));
if (original.peer_cert != NULL) {
TEST_ASSERT(original.peer_cert->raw.len ==
restored.peer_cert->raw.len);
TEST_ASSERT(memcmp(original.peer_cert->raw.p,
restored.peer_cert->raw.p,
original.peer_cert->raw.len) == 0);
}
#else /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
TEST_ASSERT(original.peer_cert_digest_type ==
restored.peer_cert_digest_type);
TEST_ASSERT(original.peer_cert_digest_len ==
restored.peer_cert_digest_len);
TEST_ASSERT((original.peer_cert_digest == NULL) ==
(restored.peer_cert_digest == NULL));
if (original.peer_cert_digest != NULL) {
TEST_ASSERT(memcmp(original.peer_cert_digest,
restored.peer_cert_digest,
original.peer_cert_digest_len) == 0);
}
#endif /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
#endif /* MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED */
TEST_ASSERT(original.verify_result == restored.verify_result);
#if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)
TEST_ASSERT(original.mfl_code == restored.mfl_code);
#endif
#if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC)
TEST_ASSERT(original.encrypt_then_mac == restored.encrypt_then_mac);
#endif
#if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C)
TEST_ASSERT(original.ticket_len == restored.ticket_len);
if (original.ticket_len != 0) {
TEST_ASSERT(original.ticket != NULL);
TEST_ASSERT(restored.ticket != NULL);
TEST_ASSERT(memcmp(original.ticket,
restored.ticket, original.ticket_len) == 0);
}
TEST_ASSERT(original.ticket_lifetime == restored.ticket_lifetime);
#endif
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_2 */
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
TEST_ASSERT(original.endpoint == restored.endpoint);
TEST_ASSERT(original.ciphersuite == restored.ciphersuite);
TEST_ASSERT(original.ticket_age_add == restored.ticket_age_add);
TEST_ASSERT(original.ticket_flags == restored.ticket_flags);
TEST_ASSERT(original.resumption_key_len == restored.resumption_key_len);
if (original.resumption_key_len != 0) {
TEST_ASSERT(original.resumption_key != NULL);
TEST_ASSERT(restored.resumption_key != NULL);
TEST_ASSERT(memcmp(original.resumption_key,
restored.resumption_key,
original.resumption_key_len) == 0);
}
#if defined(MBEDTLS_HAVE_TIME) && defined(MBEDTLS_SSL_SRV_C)
if (endpoint_type == MBEDTLS_SSL_IS_SERVER) {
TEST_ASSERT(original.start == restored.start);
}
#endif
#if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C)
if (endpoint_type == MBEDTLS_SSL_IS_CLIENT) {
#if defined(MBEDTLS_HAVE_TIME)
TEST_ASSERT(original.ticket_received == restored.ticket_received);
#endif
TEST_ASSERT(original.ticket_lifetime == restored.ticket_lifetime);
TEST_ASSERT(original.ticket_len == restored.ticket_len);
if (original.ticket_len != 0) {
TEST_ASSERT(original.ticket != NULL);
TEST_ASSERT(restored.ticket != NULL);
TEST_ASSERT(memcmp(original.ticket,
restored.ticket,
original.ticket_len) == 0);
}
}
#endif
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
exit:
mbedtls_ssl_session_free(&original);
mbedtls_ssl_session_free(&restored);
mbedtls_free(buf);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_load_save(int ticket_len, char *crt_file,
int endpoint_type, int tls_version)
{
mbedtls_ssl_session session;
unsigned char *buf1 = NULL, *buf2 = NULL;
size_t len0, len1, len2;
/*
* Test that a load-save pair is the identity
*/
mbedtls_ssl_session_init(&session);
/* Prepare a dummy session to work on */
((void) endpoint_type);
((void) tls_version);
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
TEST_ASSERT(ssl_tls13_populate_session(
&session, 0, endpoint_type) == 0);
} else
#endif
{
TEST_ASSERT(ssl_tls12_populate_session(
&session, ticket_len, crt_file) == 0);
}
/* Get desired buffer size for serializing */
TEST_ASSERT(mbedtls_ssl_session_save(&session, NULL, 0, &len0)
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
/* Allocate first buffer */
buf1 = mbedtls_calloc(1, len0);
TEST_ASSERT(buf1 != NULL);
/* Serialize to buffer and free live session */
TEST_ASSERT(mbedtls_ssl_session_save(&session, buf1, len0, &len1)
== 0);
TEST_ASSERT(len0 == len1);
mbedtls_ssl_session_free(&session);
/* Restore session from serialized data */
TEST_ASSERT(mbedtls_ssl_session_load(&session, buf1, len1) == 0);
/* Allocate second buffer and serialize to it */
buf2 = mbedtls_calloc(1, len0);
TEST_ASSERT(buf2 != NULL);
TEST_ASSERT(mbedtls_ssl_session_save(&session, buf2, len0, &len2)
== 0);
/* Make sure both serialized versions are identical */
TEST_ASSERT(len1 == len2);
TEST_ASSERT(memcmp(buf1, buf2, len1) == 0);
exit:
mbedtls_ssl_session_free(&session);
mbedtls_free(buf1);
mbedtls_free(buf2);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_save_buf_size(int ticket_len, char *crt_file,
int endpoint_type, int tls_version)
{
mbedtls_ssl_session session;
unsigned char *buf = NULL;
size_t good_len, bad_len, test_len;
/*
* Test that session_save() fails cleanly on small buffers
*/
mbedtls_ssl_session_init(&session);
/* Prepare dummy session and get serialized size */
((void) endpoint_type);
((void) tls_version);
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
TEST_ASSERT(ssl_tls13_populate_session(
&session, 0, endpoint_type) == 0);
} else
#endif
{
TEST_ASSERT(ssl_tls12_populate_session(
&session, ticket_len, crt_file) == 0);
}
TEST_ASSERT(mbedtls_ssl_session_save(&session, NULL, 0, &good_len)
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
/* Try all possible bad lengths */
for (bad_len = 1; bad_len < good_len; bad_len++) {
/* Allocate exact size so that asan/valgrind can detect any overwrite */
mbedtls_free(buf);
TEST_ASSERT((buf = mbedtls_calloc(1, bad_len)) != NULL);
TEST_ASSERT(mbedtls_ssl_session_save(&session, buf, bad_len,
&test_len)
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
TEST_ASSERT(test_len == good_len);
}
exit:
mbedtls_ssl_session_free(&session);
mbedtls_free(buf);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_load_buf_size(int ticket_len, char *crt_file,
int endpoint_type, int tls_version)
{
mbedtls_ssl_session session;
unsigned char *good_buf = NULL, *bad_buf = NULL;
size_t good_len, bad_len;
/*
* Test that session_load() fails cleanly on small buffers
*/
mbedtls_ssl_session_init(&session);
/* Prepare serialized session data */
((void) endpoint_type);
((void) tls_version);
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
TEST_ASSERT(ssl_tls13_populate_session(
&session, 0, endpoint_type) == 0);
} else
#endif
{
TEST_ASSERT(ssl_tls12_populate_session(
&session, ticket_len, crt_file) == 0);
}
TEST_ASSERT(mbedtls_ssl_session_save(&session, NULL, 0, &good_len)
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL);
TEST_ASSERT((good_buf = mbedtls_calloc(1, good_len)) != NULL);
TEST_ASSERT(mbedtls_ssl_session_save(&session, good_buf, good_len,
&good_len) == 0);
mbedtls_ssl_session_free(&session);
/* Try all possible bad lengths */
for (bad_len = 0; bad_len < good_len; bad_len++) {
/* Allocate exact size so that asan/valgrind can detect any overread */
mbedtls_free(bad_buf);
bad_buf = mbedtls_calloc(1, bad_len ? bad_len : 1);
TEST_ASSERT(bad_buf != NULL);
memcpy(bad_buf, good_buf, bad_len);
TEST_ASSERT(mbedtls_ssl_session_load(&session, bad_buf, bad_len)
== MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
}
exit:
mbedtls_ssl_session_free(&session);
mbedtls_free(good_buf);
mbedtls_free(bad_buf);
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_session_serialize_version_check(int corrupt_major,
int corrupt_minor,
int corrupt_patch,
int corrupt_config,
int endpoint_type,
int tls_version)
{
unsigned char serialized_session[2048];
size_t serialized_session_len;
unsigned cur_byte;
mbedtls_ssl_session session;
uint8_t should_corrupt_byte[] = { corrupt_major == 1,
corrupt_minor == 1,
corrupt_patch == 1,
corrupt_config == 1,
corrupt_config == 1 };
mbedtls_ssl_session_init(&session);
((void) endpoint_type);
((void) tls_version);
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if (tls_version == MBEDTLS_SSL_VERSION_TLS1_3) {
TEST_ASSERT(ssl_tls13_populate_session(
&session, 0, endpoint_type) == 0);
} else
#endif
TEST_ASSERT(ssl_tls12_populate_session(&session, 0, NULL) == 0);
/* Infer length of serialized session. */
TEST_ASSERT(mbedtls_ssl_session_save(&session,
serialized_session,
sizeof(serialized_session),
&serialized_session_len) == 0);
mbedtls_ssl_session_free(&session);
/* Without any modification, we should be able to successfully
* de-serialize the session - double-check that. */
TEST_ASSERT(mbedtls_ssl_session_load(&session,
serialized_session,
serialized_session_len) == 0);
mbedtls_ssl_session_free(&session);
/* Go through the bytes in the serialized session header and
* corrupt them bit-by-bit. */
for (cur_byte = 0; cur_byte < sizeof(should_corrupt_byte); cur_byte++) {
int cur_bit;
unsigned char * const byte = &serialized_session[cur_byte];
if (should_corrupt_byte[cur_byte] == 0) {
continue;
}
for (cur_bit = 0; cur_bit < CHAR_BIT; cur_bit++) {
unsigned char const corrupted_bit = 0x1u << cur_bit;
/* Modify a single bit in the serialized session. */
*byte ^= corrupted_bit;
/* Attempt to deserialize */
TEST_ASSERT(mbedtls_ssl_session_load(&session,
serialized_session,
serialized_session_len) ==
MBEDTLS_ERR_SSL_VERSION_MISMATCH);
/* Undo the change */
*byte ^= corrupted_bit;
}
}
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void mbedtls_endpoint_sanity(int endpoint_type)
{
enum { BUFFSIZE = 1024 };
mbedtls_endpoint ep;
int ret = -1;
handshake_test_options options;
init_handshake_options(&options);
options.pk_alg = MBEDTLS_PK_RSA;
ret = mbedtls_endpoint_init(NULL, endpoint_type, &options,
NULL, NULL, NULL, NULL);
TEST_ASSERT(MBEDTLS_ERR_SSL_BAD_INPUT_DATA == ret);
ret = mbedtls_endpoint_certificate_init(NULL, options.pk_alg, 0, 0, 0);
TEST_ASSERT(MBEDTLS_ERR_SSL_BAD_INPUT_DATA == ret);
ret = mbedtls_endpoint_init(&ep, endpoint_type, &options,
NULL, NULL, NULL, NULL);
TEST_ASSERT(ret == 0);
exit:
mbedtls_endpoint_free(&ep, NULL);
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_ECP_C */
void move_handshake_to_state(int endpoint_type, int state, int need_pass)
{
enum { BUFFSIZE = 1024 };
mbedtls_endpoint base_ep, second_ep;
int ret = -1;
handshake_test_options options;
init_handshake_options(&options);
options.pk_alg = MBEDTLS_PK_RSA;
USE_PSA_INIT();
mbedtls_platform_zeroize(&base_ep, sizeof(base_ep));
mbedtls_platform_zeroize(&second_ep, sizeof(second_ep));
ret = mbedtls_endpoint_init(&base_ep, endpoint_type, &options,
NULL, NULL, NULL, NULL);
TEST_ASSERT(ret == 0);
ret = mbedtls_endpoint_init(&second_ep,
(endpoint_type == MBEDTLS_SSL_IS_SERVER) ?
MBEDTLS_SSL_IS_CLIENT : MBEDTLS_SSL_IS_SERVER,
&options, NULL, NULL, NULL, NULL);
TEST_ASSERT(ret == 0);
ret = mbedtls_mock_socket_connect(&(base_ep.socket),
&(second_ep.socket),
BUFFSIZE);
TEST_ASSERT(ret == 0);
ret = mbedtls_move_handshake_to_state(&(base_ep.ssl),
&(second_ep.ssl),
state);
if (need_pass) {
TEST_ASSERT(ret == 0 ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE);
TEST_ASSERT(base_ep.ssl.state == state);
} else {
TEST_ASSERT(ret != 0 &&
ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE);
TEST_ASSERT(base_ep.ssl.state != state);
}
exit:
free_handshake_options(&options);
mbedtls_endpoint_free(&base_ep, NULL);
mbedtls_endpoint_free(&second_ep, NULL);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_ECP_C:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void handshake_version(int dtls, int client_min_version, int client_max_version,
int server_min_version, int server_max_version,
int expected_negotiated_version)
{
handshake_test_options options;
init_handshake_options(&options);
options.client_min_version = client_min_version;
options.client_max_version = client_max_version;
options.server_min_version = server_min_version;
options.server_max_version = server_max_version;
options.expected_negotiated_version = expected_negotiated_version;
options.dtls = dtls;
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void handshake_psk_cipher(char *cipher, int pk_alg, data_t *psk_str, int dtls)
{
handshake_test_options options;
init_handshake_options(&options);
options.cipher = cipher;
options.dtls = dtls;
options.psk_str = psk_str;
options.pk_alg = pk_alg;
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void handshake_cipher(char *cipher, int pk_alg, int dtls)
{
test_handshake_psk_cipher(cipher, pk_alg, NULL, dtls);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void handshake_ciphersuite_select(char *cipher, int pk_alg, data_t *psk_str,
int psa_alg, int psa_alg2, int psa_usage,
int expected_handshake_result,
int expected_ciphersuite)
{
handshake_test_options options;
init_handshake_options(&options);
options.cipher = cipher;
options.psk_str = psk_str;
options.pk_alg = pk_alg;
options.opaque_alg = psa_alg;
options.opaque_alg2 = psa_alg2;
options.opaque_usage = psa_usage;
options.expected_handshake_result = expected_handshake_result;
options.expected_ciphersuite = expected_ciphersuite;
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void app_data(int mfl, int cli_msg_len, int srv_msg_len,
int expected_cli_fragments,
int expected_srv_fragments, int dtls)
{
handshake_test_options options;
init_handshake_options(&options);
options.mfl = mfl;
options.cli_msg_len = cli_msg_len;
options.srv_msg_len = srv_msg_len;
options.expected_cli_fragments = expected_cli_fragments;
options.expected_srv_fragments = expected_srv_fragments;
options.dtls = dtls;
#if !defined(MBEDTLS_SSL_PROTO_TLS1_2)
options.expected_negotiated_version = MBEDTLS_SSL_VERSION_TLS1_3;
#endif
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_ECP_C:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void app_data_tls(int mfl, int cli_msg_len, int srv_msg_len,
int expected_cli_fragments,
int expected_srv_fragments)
{
test_app_data(mfl, cli_msg_len, srv_msg_len, expected_cli_fragments,
expected_srv_fragments, 0);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void app_data_dtls(int mfl, int cli_msg_len, int srv_msg_len,
int expected_cli_fragments,
int expected_srv_fragments)
{
test_app_data(mfl, cli_msg_len, srv_msg_len, expected_cli_fragments,
expected_srv_fragments, 1);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_SSL_RENEGOTIATION:MBEDTLS_SSL_CONTEXT_SERIALIZATION:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void handshake_serialization()
{
handshake_test_options options;
init_handshake_options(&options);
options.serialize = 1;
options.dtls = 1;
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_DEBUG_C:MBEDTLS_SSL_MAX_FRAGMENT_LENGTH:MBEDTLS_CIPHER_MODE_CBC:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_KEY_EXCHANGE_DHE_RSA_ENABLED */
void handshake_fragmentation(int mfl,
int expected_srv_hs_fragmentation,
int expected_cli_hs_fragmentation)
{
handshake_test_options options;
log_pattern srv_pattern, cli_pattern;
srv_pattern.pattern = cli_pattern.pattern = "found fragmented DTLS handshake";
srv_pattern.counter = 0;
cli_pattern.counter = 0;
init_handshake_options(&options);
options.dtls = 1;
options.mfl = mfl;
/* Set cipher to one using CBC so that record splitting can be tested */
options.cipher = "TLS-DHE-RSA-WITH-AES-256-CBC-SHA256";
options.srv_auth_mode = MBEDTLS_SSL_VERIFY_REQUIRED;
options.srv_log_obj = &srv_pattern;
options.cli_log_obj = &cli_pattern;
options.srv_log_fun = log_analyzer;
options.cli_log_fun = log_analyzer;
perform_handshake(&options);
/* Test if the server received a fragmented handshake */
if (expected_srv_hs_fragmentation) {
TEST_ASSERT(srv_pattern.counter >= 1);
}
/* Test if the client received a fragmented handshake */
if (expected_cli_hs_fragmentation) {
TEST_ASSERT(cli_pattern.counter >= 1);
}
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_SSL_RENEGOTIATION:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void renegotiation(int legacy_renegotiation)
{
handshake_test_options options;
init_handshake_options(&options);
options.renegotiate = 1;
options.legacy_renegotiation = legacy_renegotiation;
options.dtls = 1;
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void resize_buffers(int mfl, int renegotiation, int legacy_renegotiation,
int serialize, int dtls, char *cipher)
{
handshake_test_options options;
init_handshake_options(&options);
options.mfl = mfl;
options.cipher = cipher;
options.renegotiate = renegotiation;
options.legacy_renegotiation = legacy_renegotiation;
options.serialize = serialize;
options.dtls = dtls;
options.resize_buffers = 1;
perform_handshake(&options);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
exit:
free_handshake_options(&options);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH:MBEDTLS_SSL_CONTEXT_SERIALIZATION:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void resize_buffers_serialize_mfl(int mfl)
{
test_resize_buffers(mfl, 0, MBEDTLS_SSL_LEGACY_NO_RENEGOTIATION, 1, 1,
(char *) "");
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH:MBEDTLS_SSL_RENEGOTIATION:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_CAN_HANDLE_RSA_TEST_KEY */
void resize_buffers_renegotiate_mfl(int mfl, int legacy_renegotiation,
char *cipher)
{
test_resize_buffers(mfl, 1, legacy_renegotiation, 0, 1, cipher);
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_PSK_ENABLED */
void test_multiple_psks()
{
unsigned char psk0[10] = { 0 };
unsigned char psk0_identity[] = { 'f', 'o', 'o' };
unsigned char psk1[10] = { 0 };
unsigned char psk1_identity[] = { 'b', 'a', 'r' };
mbedtls_ssl_config conf;
USE_PSA_INIT();
mbedtls_ssl_config_init(&conf);
TEST_ASSERT(mbedtls_ssl_conf_psk(&conf,
psk0, sizeof(psk0),
psk0_identity, sizeof(psk0_identity)) == 0);
TEST_ASSERT(mbedtls_ssl_conf_psk(&conf,
psk1, sizeof(psk1),
psk1_identity, sizeof(psk1_identity)) ==
MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE);
exit:
mbedtls_ssl_config_free(&conf);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_PSK_ENABLED:MBEDTLS_USE_PSA_CRYPTO */
void test_multiple_psks_opaque(int mode)
{
/*
* Mode 0: Raw PSK, then opaque PSK
* Mode 1: Opaque PSK, then raw PSK
* Mode 2: 2x opaque PSK
*/
unsigned char psk0_raw[10] = { 0 };
unsigned char psk0_raw_identity[] = { 'f', 'o', 'o' };
mbedtls_svc_key_id_t psk0_opaque = mbedtls_svc_key_id_make(0x1, (psa_key_id_t) 1);
unsigned char psk0_opaque_identity[] = { 'f', 'o', 'o' };
unsigned char psk1_raw[10] = { 0 };
unsigned char psk1_raw_identity[] = { 'b', 'a', 'r' };
mbedtls_svc_key_id_t psk1_opaque = mbedtls_svc_key_id_make(0x1, (psa_key_id_t) 2);
unsigned char psk1_opaque_identity[] = { 'b', 'a', 'r' };
mbedtls_ssl_config conf;
USE_PSA_INIT();
mbedtls_ssl_config_init(&conf);
switch (mode) {
case 0:
TEST_ASSERT(mbedtls_ssl_conf_psk(&conf,
psk0_raw, sizeof(psk0_raw),
psk0_raw_identity, sizeof(psk0_raw_identity))
== 0);
TEST_ASSERT(mbedtls_ssl_conf_psk_opaque(&conf,
psk1_opaque,
psk1_opaque_identity,
sizeof(psk1_opaque_identity))
== MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE);
break;
case 1:
TEST_ASSERT(mbedtls_ssl_conf_psk_opaque(&conf,
psk0_opaque,
psk0_opaque_identity,
sizeof(psk0_opaque_identity))
== 0);
TEST_ASSERT(mbedtls_ssl_conf_psk(&conf,
psk1_raw, sizeof(psk1_raw),
psk1_raw_identity, sizeof(psk1_raw_identity))
== MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE);
break;
case 2:
TEST_ASSERT(mbedtls_ssl_conf_psk_opaque(&conf,
psk0_opaque,
psk0_opaque_identity,
sizeof(psk0_opaque_identity))
== 0);
TEST_ASSERT(mbedtls_ssl_conf_psk_opaque(&conf,
psk1_opaque,
psk1_opaque_identity,
sizeof(psk1_opaque_identity))
== MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE);
break;
default:
TEST_ASSERT(0);
break;
}
exit:
mbedtls_ssl_config_free(&conf);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void conf_version(int endpoint, int transport,
int min_tls_version, int max_tls_version,
int expected_ssl_setup_result)
{
mbedtls_ssl_config conf;
mbedtls_ssl_context ssl;
mbedtls_ssl_config_init(&conf);
mbedtls_ssl_init(&ssl);
mbedtls_ssl_conf_endpoint(&conf, endpoint);
mbedtls_ssl_conf_transport(&conf, transport);
mbedtls_ssl_conf_min_tls_version(&conf, min_tls_version);
mbedtls_ssl_conf_max_tls_version(&conf, max_tls_version);
TEST_ASSERT(mbedtls_ssl_setup(&ssl, &conf) == expected_ssl_setup_result);
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_C:!MBEDTLS_DEPRECATED_REMOVED:!MBEDTLS_DEPRECATED_WARNING:MBEDTLS_ECP_DP_SECP192R1_ENABLED:MBEDTLS_ECP_DP_SECP224R1_ENABLED:MBEDTLS_ECP_DP_SECP256R1_ENABLED */
void conf_curve()
{
mbedtls_ecp_group_id curve_list[] = { MBEDTLS_ECP_DP_SECP192R1,
MBEDTLS_ECP_DP_SECP224R1,
MBEDTLS_ECP_DP_SECP256R1,
MBEDTLS_ECP_DP_NONE };
uint16_t iana_tls_group_list[] = { MBEDTLS_SSL_IANA_TLS_GROUP_SECP192R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP224R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP256R1,
MBEDTLS_SSL_IANA_TLS_GROUP_NONE };
mbedtls_ssl_config conf;
mbedtls_ssl_config_init(&conf);
#if defined(MBEDTLS_SSL_PROTO_TLS1_2)
mbedtls_ssl_conf_max_tls_version(&conf, MBEDTLS_SSL_VERSION_TLS1_2);
mbedtls_ssl_conf_min_tls_version(&conf, MBEDTLS_SSL_VERSION_TLS1_2);
#else
mbedtls_ssl_conf_max_tls_version(&conf, MBEDTLS_SSL_VERSION_TLS1_3);
mbedtls_ssl_conf_min_tls_version(&conf, MBEDTLS_SSL_VERSION_TLS1_3);
#endif
mbedtls_ssl_conf_curves(&conf, curve_list);
mbedtls_ssl_context ssl;
mbedtls_ssl_init(&ssl);
TEST_ASSERT(mbedtls_ssl_setup(&ssl, &conf) == 0);
TEST_ASSERT(ssl.handshake != NULL && ssl.handshake->group_list != NULL);
TEST_ASSERT(ssl.conf != NULL && ssl.conf->group_list == NULL);
TEST_EQUAL(ssl.handshake->group_list[ARRAY_LENGTH(iana_tls_group_list) - 1],
MBEDTLS_SSL_IANA_TLS_GROUP_NONE);
for (size_t i = 0; i < ARRAY_LENGTH(iana_tls_group_list); i++) {
TEST_EQUAL(iana_tls_group_list[i], ssl.handshake->group_list[i]);
}
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_DEPRECATED_REMOVED */
void conf_group()
{
uint16_t iana_tls_group_list[] = { MBEDTLS_SSL_IANA_TLS_GROUP_SECP192R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP224R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP256R1,
MBEDTLS_SSL_IANA_TLS_GROUP_NONE };
mbedtls_ssl_config conf;
mbedtls_ssl_config_init(&conf);
mbedtls_ssl_conf_max_tls_version(&conf, MBEDTLS_SSL_VERSION_TLS1_2);
mbedtls_ssl_conf_min_tls_version(&conf, MBEDTLS_SSL_VERSION_TLS1_2);
mbedtls_ssl_conf_groups(&conf, iana_tls_group_list);
mbedtls_ssl_context ssl;
mbedtls_ssl_init(&ssl);
TEST_ASSERT(mbedtls_ssl_setup(&ssl, &conf) == 0);
TEST_ASSERT(ssl.conf != NULL && ssl.conf->group_list != NULL);
TEST_EQUAL(ssl.conf->group_list[ARRAY_LENGTH(iana_tls_group_list) - 1],
MBEDTLS_SSL_IANA_TLS_GROUP_NONE);
for (size_t i = 0; i < ARRAY_LENGTH(iana_tls_group_list); i++) {
TEST_EQUAL(iana_tls_group_list[i], ssl.conf->group_list[i]);
}
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_SRV_C:MBEDTLS_SSL_CACHE_C:!MBEDTLS_SSL_PROTO_TLS1_3:MBEDTLS_DEBUG_C:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_PKCS1_V15:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void force_bad_session_id_len()
{
enum { BUFFSIZE = 1024 };
handshake_test_options options;
mbedtls_endpoint client, server;
log_pattern srv_pattern, cli_pattern;
mbedtls_test_message_socket_context server_context, client_context;
srv_pattern.pattern = cli_pattern.pattern = "cache did not store session";
srv_pattern.counter = 0;
init_handshake_options(&options);
options.srv_log_obj = &srv_pattern;
options.srv_log_fun = log_analyzer;
USE_PSA_INIT();
mbedtls_platform_zeroize(&client, sizeof(client));
mbedtls_platform_zeroize(&server, sizeof(server));
mbedtls_message_socket_init(&server_context);
mbedtls_message_socket_init(&client_context);
TEST_ASSERT(mbedtls_endpoint_init(&client, MBEDTLS_SSL_IS_CLIENT,
&options, NULL, NULL,
NULL, NULL) == 0);
TEST_ASSERT(mbedtls_endpoint_init(&server, MBEDTLS_SSL_IS_SERVER,
&options, NULL, NULL, NULL,
NULL) == 0);
mbedtls_debug_set_threshold(1);
mbedtls_ssl_conf_dbg(&server.conf, options.srv_log_fun,
options.srv_log_obj);
TEST_ASSERT(mbedtls_mock_socket_connect(&(client.socket),
&(server.socket),
BUFFSIZE) == 0);
TEST_ASSERT(mbedtls_move_handshake_to_state(&(client.ssl),
&(server.ssl),
MBEDTLS_SSL_HANDSHAKE_WRAPUP)
== 0);
/* Force a bad session_id_len that will be read by the server in
* mbedtls_ssl_cache_set. */
server.ssl.session_negotiate->id_len = 33;
if (options.cli_msg_len != 0 || options.srv_msg_len != 0) {
/* Start data exchanging test */
TEST_ASSERT(mbedtls_exchange_data(&(client.ssl), options.cli_msg_len,
options.expected_cli_fragments,
&(server.ssl), options.srv_msg_len,
options.expected_srv_fragments)
== 0);
}
/* Make sure that the cache did not store the session */
TEST_EQUAL(srv_pattern.counter, 1);
exit:
mbedtls_endpoint_free(&client, NULL);
mbedtls_endpoint_free(&server, NULL);
free_handshake_options(&options);
mbedtls_debug_set_threshold(0);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_SRV_C:MBEDTLS_SSL_DTLS_CLIENT_PORT_REUSE:MBEDTLS_TEST_HOOKS */
void cookie_parsing(data_t *cookie, int exp_ret)
{
mbedtls_ssl_context ssl;
mbedtls_ssl_config conf;
size_t len;
mbedtls_ssl_init(&ssl);
mbedtls_ssl_config_init(&conf);
TEST_EQUAL(mbedtls_ssl_config_defaults(&conf, MBEDTLS_SSL_IS_SERVER,
MBEDTLS_SSL_TRANSPORT_DATAGRAM,
MBEDTLS_SSL_PRESET_DEFAULT),
0);
TEST_EQUAL(mbedtls_ssl_setup(&ssl, &conf), 0);
TEST_EQUAL(mbedtls_ssl_check_dtls_clihlo_cookie(&ssl, ssl.cli_id,
ssl.cli_id_len,
cookie->x, cookie->len,
ssl.out_buf,
MBEDTLS_SSL_OUT_CONTENT_LEN,
&len),
exp_ret);
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TIMING_C:MBEDTLS_HAVE_TIME */
void timing_final_delay_accessor()
{
mbedtls_timing_delay_context delay_context;
mbedtls_timing_set_delay(&delay_context, 50, 100);
TEST_ASSERT(mbedtls_timing_get_final_delay(&delay_context) == 100);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_DTLS_CONNECTION_ID */
void cid_sanity()
{
mbedtls_ssl_context ssl;
mbedtls_ssl_config conf;
unsigned char own_cid[MBEDTLS_SSL_CID_IN_LEN_MAX];
unsigned char test_cid[MBEDTLS_SSL_CID_IN_LEN_MAX];
int cid_enabled;
size_t own_cid_len;
mbedtls_test_rnd_std_rand(NULL, own_cid, sizeof(own_cid));
mbedtls_ssl_init(&ssl);
mbedtls_ssl_config_init(&conf);
TEST_ASSERT(mbedtls_ssl_config_defaults(&conf,
MBEDTLS_SSL_IS_CLIENT,
MBEDTLS_SSL_TRANSPORT_STREAM,
MBEDTLS_SSL_PRESET_DEFAULT)
== 0);
TEST_ASSERT(mbedtls_ssl_setup(&ssl, &conf) == 0);
/* Can't use CID functions with stream transport. */
TEST_ASSERT(mbedtls_ssl_set_cid(&ssl, MBEDTLS_SSL_CID_ENABLED, own_cid,
sizeof(own_cid))
== MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
TEST_ASSERT(mbedtls_ssl_get_own_cid(&ssl, &cid_enabled, test_cid,
&own_cid_len)
== MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
TEST_ASSERT(mbedtls_ssl_config_defaults(&conf,
MBEDTLS_SSL_IS_CLIENT,
MBEDTLS_SSL_TRANSPORT_DATAGRAM,
MBEDTLS_SSL_PRESET_DEFAULT)
== 0);
/* Attempt to set config cid size too big. */
TEST_ASSERT(mbedtls_ssl_conf_cid(&conf, MBEDTLS_SSL_CID_IN_LEN_MAX + 1,
MBEDTLS_SSL_UNEXPECTED_CID_IGNORE)
== MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
TEST_ASSERT(mbedtls_ssl_conf_cid(&conf, sizeof(own_cid),
MBEDTLS_SSL_UNEXPECTED_CID_IGNORE)
== 0);
/* Attempt to set CID length not matching config. */
TEST_ASSERT(mbedtls_ssl_set_cid(&ssl, MBEDTLS_SSL_CID_ENABLED, own_cid,
MBEDTLS_SSL_CID_IN_LEN_MAX - 1)
== MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
TEST_ASSERT(mbedtls_ssl_set_cid(&ssl, MBEDTLS_SSL_CID_ENABLED, own_cid,
sizeof(own_cid))
== 0);
/* Test we get back what we put in. */
TEST_ASSERT(mbedtls_ssl_get_own_cid(&ssl, &cid_enabled, test_cid,
&own_cid_len)
== 0);
TEST_EQUAL(cid_enabled, MBEDTLS_SSL_CID_ENABLED);
ASSERT_COMPARE(own_cid, own_cid_len, test_cid, own_cid_len);
/* Test disabling works. */
TEST_ASSERT(mbedtls_ssl_set_cid(&ssl, MBEDTLS_SSL_CID_DISABLED, NULL,
0)
== 0);
TEST_ASSERT(mbedtls_ssl_get_own_cid(&ssl, &cid_enabled, test_cid,
&own_cid_len)
== 0);
TEST_EQUAL(cid_enabled, MBEDTLS_SSL_CID_DISABLED);
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_ECP_DP_SECP256R1_ENABLED:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_ECDSA_C */
void raw_key_agreement_fail(int bad_server_ecdhe_key)
{
enum { BUFFSIZE = 17000 };
mbedtls_endpoint client, server;
mbedtls_psa_stats_t stats;
size_t free_slots_before = -1;
handshake_test_options options;
uint16_t iana_tls_group_list[] = { MBEDTLS_SSL_IANA_TLS_GROUP_SECP256R1,
MBEDTLS_SSL_IANA_TLS_GROUP_NONE };
USE_PSA_INIT();
mbedtls_platform_zeroize(&client, sizeof(client));
mbedtls_platform_zeroize(&server, sizeof(server));
init_handshake_options(&options);
options.pk_alg = MBEDTLS_PK_ECDSA;
/* Client side, force SECP256R1 to make one key bitflip fail
* the raw key agreement. Flipping the first byte makes the
* required 0x04 identifier invalid. */
TEST_EQUAL(mbedtls_endpoint_init(&client, MBEDTLS_SSL_IS_CLIENT,
&options, NULL, NULL,
NULL, iana_tls_group_list), 0);
/* Server side */
TEST_EQUAL(mbedtls_endpoint_init(&server, MBEDTLS_SSL_IS_SERVER,
&options, NULL, NULL,
NULL, NULL), 0);
TEST_EQUAL(mbedtls_mock_socket_connect(&(client.socket),
&(server.socket),
BUFFSIZE), 0);
TEST_EQUAL(mbedtls_move_handshake_to_state(&(client.ssl),
&(server.ssl),
MBEDTLS_SSL_CLIENT_KEY_EXCHANGE)
, 0);
mbedtls_psa_get_stats(&stats);
/* Save the number of slots in use up to this point.
* With PSA, one can be used for the ECDH private key. */
free_slots_before = stats.empty_slots;
if (bad_server_ecdhe_key) {
/* Force a simulated bitflip in the server key. to make the
* raw key agreement in ssl_write_client_key_exchange fail. */
(client.ssl).handshake->ecdh_psa_peerkey[0] ^= 0x02;
}
TEST_EQUAL(mbedtls_move_handshake_to_state(&(client.ssl),
&(server.ssl),
MBEDTLS_SSL_HANDSHAKE_OVER),
bad_server_ecdhe_key ? MBEDTLS_ERR_SSL_HW_ACCEL_FAILED : 0);
mbedtls_psa_get_stats(&stats);
/* Make sure that the key slot is already destroyed in case of failure,
* without waiting to close the connection. */
if (bad_server_ecdhe_key) {
TEST_EQUAL(free_slots_before, stats.empty_slots);
}
exit:
mbedtls_endpoint_free(&client, NULL);
mbedtls_endpoint_free(&server, NULL);
free_handshake_options(&options);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS:MBEDTLS_SSL_PROTO_TLS1_3:!MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_SSL_CLI_C:MBEDTLS_SSL_SRV_C:MBEDTLS_SSL_HANDSHAKE_WITH_CERT_ENABLED:MBEDTLS_ECP_DP_SECP384R1_ENABLED */
void tls13_server_certificate_msg_invalid_vector_len()
{
int ret = -1;
mbedtls_endpoint client_ep, server_ep;
unsigned char *buf, *end;
size_t buf_len;
int step = 0;
int expected_result;
mbedtls_ssl_chk_buf_ptr_args expected_chk_buf_ptr_args;
handshake_test_options client_options;
handshake_test_options server_options;
/*
* Test set-up
*/
USE_PSA_INIT();
mbedtls_platform_zeroize(&client_ep, sizeof(client_ep));
mbedtls_platform_zeroize(&server_ep, sizeof(server_ep));
init_handshake_options(&client_options);
client_options.pk_alg = MBEDTLS_PK_ECDSA;
ret = mbedtls_endpoint_init(&client_ep, MBEDTLS_SSL_IS_CLIENT,
&client_options, NULL, NULL, NULL, NULL);
TEST_EQUAL(ret, 0);
init_handshake_options(&server_options);
server_options.pk_alg = MBEDTLS_PK_ECDSA;
ret = mbedtls_endpoint_init(&server_ep, MBEDTLS_SSL_IS_SERVER,
&server_options, NULL, NULL, NULL, NULL);
TEST_EQUAL(ret, 0);
ret = mbedtls_mock_socket_connect(&(client_ep.socket),
&(server_ep.socket), 1024);
TEST_EQUAL(ret, 0);
while (1) {
mbedtls_test_set_step(++step);
ret = mbedtls_move_handshake_to_state(&(server_ep.ssl),
&(client_ep.ssl),
MBEDTLS_SSL_CERTIFICATE_VERIFY);
TEST_EQUAL(ret, 0);
ret = mbedtls_ssl_flush_output(&(server_ep.ssl));
TEST_EQUAL(ret, 0);
ret = mbedtls_move_handshake_to_state(&(client_ep.ssl),
&(server_ep.ssl),
MBEDTLS_SSL_SERVER_CERTIFICATE);
TEST_EQUAL(ret, 0);
ret = mbedtls_ssl_tls13_fetch_handshake_msg(&(client_ep.ssl),
MBEDTLS_SSL_HS_CERTIFICATE,
&buf, &buf_len);
TEST_EQUAL(ret, 0);
end = buf + buf_len;
/*
* Tweak server Certificate message and parse it.
*/
ret = tweak_tls13_certificate_msg_vector_len(
buf, &end, step, &expected_result, &expected_chk_buf_ptr_args);
if (ret != 0) {
break;
}
ret = mbedtls_ssl_tls13_parse_certificate(&(client_ep.ssl), buf, end);
TEST_EQUAL(ret, expected_result);
TEST_ASSERT(mbedtls_ssl_cmp_chk_buf_ptr_fail_args(
&expected_chk_buf_ptr_args) == 0);
mbedtls_ssl_reset_chk_buf_ptr_fail_args();
ret = mbedtls_ssl_session_reset(&(client_ep.ssl));
TEST_EQUAL(ret, 0);
ret = mbedtls_ssl_session_reset(&(server_ep.ssl));
TEST_EQUAL(ret, 0);
}
exit:
mbedtls_ssl_reset_chk_buf_ptr_fail_args();
mbedtls_endpoint_free(&client_ep, NULL);
mbedtls_endpoint_free(&server_ep, NULL);
free_handshake_options(&client_options);
free_handshake_options(&server_options);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_KEY_EXCHANGE_ECJPAKE_ENABLED */
void ssl_ecjpake_set_password(int use_opaque_arg)
{
mbedtls_ssl_context ssl;
mbedtls_ssl_config conf;
#if defined(MBEDTLS_USE_PSA_CRYPTO)
mbedtls_svc_key_id_t pwd_slot = MBEDTLS_SVC_KEY_ID_INIT;
#else /* MBEDTLS_USE_PSA_CRYPTO */
(void) use_opaque_arg;
#endif /* MBEDTLS_USE_PSA_CRYPTO */
unsigned char pwd_string[sizeof(ECJPAKE_TEST_PWD)] = "";
size_t pwd_len = 0;
int ret;
USE_PSA_INIT();
mbedtls_ssl_init(&ssl);
/* test with uninitalized SSL context */
ECJPAKE_TEST_SET_PASSWORD(MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
mbedtls_ssl_config_init(&conf);
TEST_EQUAL(mbedtls_ssl_config_defaults(&conf,
MBEDTLS_SSL_IS_CLIENT,
MBEDTLS_SSL_TRANSPORT_STREAM,
MBEDTLS_SSL_PRESET_DEFAULT), 0);
TEST_EQUAL(mbedtls_ssl_setup(&ssl, &conf), 0);
/* test with empty password or unitialized password key (depending on use_opaque_arg) */
ECJPAKE_TEST_SET_PASSWORD(MBEDTLS_ERR_SSL_BAD_INPUT_DATA);
pwd_len = strlen(ECJPAKE_TEST_PWD);
memcpy(pwd_string, ECJPAKE_TEST_PWD, pwd_len);
#if defined(MBEDTLS_USE_PSA_CRYPTO)
if (use_opaque_arg) {
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t check_attributes = PSA_KEY_ATTRIBUTES_INIT;
/* First try with an invalid usage */
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, PSA_ALG_JPAKE);
psa_set_key_type(&attributes, PSA_KEY_TYPE_PASSWORD);
PSA_ASSERT(psa_import_key(&attributes, pwd_string,
pwd_len, &pwd_slot));
ECJPAKE_TEST_SET_PASSWORD(MBEDTLS_ERR_SSL_HW_ACCEL_FAILED);
/* check that the opaque key is still valid after failure */
TEST_EQUAL(psa_get_key_attributes(pwd_slot, &check_attributes),
PSA_SUCCESS);
psa_destroy_key(pwd_slot);
/* Then set the correct usage */
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
PSA_ASSERT(psa_import_key(&attributes, pwd_string,
pwd_len, &pwd_slot));
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
/* final check which should work without errors */
ECJPAKE_TEST_SET_PASSWORD(0);
#if defined(MBEDTLS_USE_PSA_CRYPTO)
if (use_opaque_arg) {
psa_destroy_key(pwd_slot);
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
mbedtls_ssl_free(&ssl);
mbedtls_ssl_config_free(&conf);
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void elliptic_curve_get_properties()
{
psa_ecc_family_t psa_family;
size_t psa_bits;
USE_PSA_INIT();
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || defined(PSA_WANT_ECC_SECP_R1_521)
TEST_AVAILABLE_ECC(25, MBEDTLS_ECP_DP_SECP521R1, PSA_ECC_FAMILY_SECP_R1, 521);
#else
TEST_UNAVAILABLE_ECC(25, MBEDTLS_ECP_DP_SECP521R1, PSA_ECC_FAMILY_SECP_R1, 521);
#endif
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || defined(PSA_WANT_ECC_BRAINPOOL_P_R1_512)
TEST_AVAILABLE_ECC(28, MBEDTLS_ECP_DP_BP512R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1, 512);
#else
TEST_UNAVAILABLE_ECC(28, MBEDTLS_ECP_DP_BP512R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1, 512);
#endif
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || defined(PSA_WANT_ECC_SECP_R1_384)
TEST_AVAILABLE_ECC(24, MBEDTLS_ECP_DP_SECP384R1, PSA_ECC_FAMILY_SECP_R1, 384);
#else
TEST_UNAVAILABLE_ECC(24, MBEDTLS_ECP_DP_SECP384R1, PSA_ECC_FAMILY_SECP_R1, 384);
#endif
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || defined(PSA_WANT_ECC_BRAINPOOL_P_R1_384)
TEST_AVAILABLE_ECC(27, MBEDTLS_ECP_DP_BP384R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1, 384);
#else
TEST_UNAVAILABLE_ECC(27, MBEDTLS_ECP_DP_BP384R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1, 384);
#endif
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || defined(PSA_WANT_ECC_SECP_R1_256)
TEST_AVAILABLE_ECC(23, MBEDTLS_ECP_DP_SECP256R1, PSA_ECC_FAMILY_SECP_R1, 256);
#else
TEST_UNAVAILABLE_ECC(23, MBEDTLS_ECP_DP_SECP256R1, PSA_ECC_FAMILY_SECP_R1, 256);
#endif
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) || defined(PSA_WANT_ECC_SECP_K1_256)
TEST_AVAILABLE_ECC(22, MBEDTLS_ECP_DP_SECP256K1, PSA_ECC_FAMILY_SECP_K1, 256);
#else
TEST_UNAVAILABLE_ECC(22, MBEDTLS_ECP_DP_SECP256K1, PSA_ECC_FAMILY_SECP_K1, 256);
#endif
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || defined(PSA_WANT_ECC_BRAINPOOL_P_R1_256)
TEST_AVAILABLE_ECC(26, MBEDTLS_ECP_DP_BP256R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1, 256);
#else
TEST_UNAVAILABLE_ECC(26, MBEDTLS_ECP_DP_BP256R1, PSA_ECC_FAMILY_BRAINPOOL_P_R1, 256);
#endif
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || defined(PSA_WANT_ECC_SECP_R1_224)
TEST_AVAILABLE_ECC(21, MBEDTLS_ECP_DP_SECP224R1, PSA_ECC_FAMILY_SECP_R1, 224);
#else
TEST_UNAVAILABLE_ECC(21, MBEDTLS_ECP_DP_SECP224R1, PSA_ECC_FAMILY_SECP_R1, 224);
#endif
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || defined(PSA_WANT_ECC_SECP_K1_224)
TEST_AVAILABLE_ECC(20, MBEDTLS_ECP_DP_SECP224K1, PSA_ECC_FAMILY_SECP_K1, 224);
#else
TEST_UNAVAILABLE_ECC(20, MBEDTLS_ECP_DP_SECP224K1, PSA_ECC_FAMILY_SECP_K1, 224);
#endif
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || defined(PSA_WANT_ECC_SECP_R1_192)
TEST_AVAILABLE_ECC(19, MBEDTLS_ECP_DP_SECP192R1, PSA_ECC_FAMILY_SECP_R1, 192);
#else
TEST_UNAVAILABLE_ECC(19, MBEDTLS_ECP_DP_SECP192R1, PSA_ECC_FAMILY_SECP_R1, 192);
#endif
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || defined(PSA_WANT_ECC_SECP_K1_192)
TEST_AVAILABLE_ECC(18, MBEDTLS_ECP_DP_SECP192K1, PSA_ECC_FAMILY_SECP_K1, 192);
#else
TEST_UNAVAILABLE_ECC(18, MBEDTLS_ECP_DP_SECP192K1, PSA_ECC_FAMILY_SECP_K1, 192);
#endif
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || defined(PSA_WANT_ECC_MONTGOMERY_255)
TEST_AVAILABLE_ECC(29, MBEDTLS_ECP_DP_CURVE25519, PSA_ECC_FAMILY_MONTGOMERY, 255);
#else
TEST_UNAVAILABLE_ECC(29, MBEDTLS_ECP_DP_CURVE25519, PSA_ECC_FAMILY_MONTGOMERY, 255);
#endif
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) || defined(PSA_WANT_ECC_MONTGOMERY_448)
TEST_AVAILABLE_ECC(30, MBEDTLS_ECP_DP_CURVE448, PSA_ECC_FAMILY_MONTGOMERY, 448);
#else
TEST_UNAVAILABLE_ECC(30, MBEDTLS_ECP_DP_CURVE448, PSA_ECC_FAMILY_MONTGOMERY, 448);
#endif
USE_PSA_DONE();
}
/* END_CASE */