dynarmic/src/backend/x64/a32_emit_x64.cpp

1268 lines
47 KiB
C++
Raw Normal View History

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <unordered_map>
#include <unordered_set>
#include <utility>
2018-01-28 00:42:30 +01:00
#include <fmt/ostream.h>
2018-01-04 22:12:02 +01:00
#include <dynarmic/A32/coprocessor.h>
#include "backend/x64/a32_emit_x64.h"
#include "backend/x64/a32_jitstate.h"
#include "backend/x64/abi.h"
#include "backend/x64/block_of_code.h"
#include "backend/x64/devirtualize.h"
#include "backend/x64/emit_x64.h"
#include "common/address_range.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/variant_util.h"
#include "frontend/A32/location_descriptor.h"
#include "frontend/A32/types.h"
#include "frontend/ir/basic_block.h"
#include "frontend/ir/microinstruction.h"
#include "frontend/ir/opcodes.h"
// TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary.
// TODO: Actually implement that proper instruction selector you've always wanted to sweetheart.
namespace Dynarmic::BackendX64 {
using namespace Xbyak::util;
static Xbyak::Address MJitStateReg(A32::Reg reg) {
2018-01-01 23:49:17 +01:00
return dword[r15 + offsetof(A32JitState, Reg) + sizeof(u32) * static_cast<size_t>(reg)];
}
static Xbyak::Address MJitStateExtReg(A32::ExtReg reg) {
if (A32::IsSingleExtReg(reg)) {
size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::S0);
2018-01-01 23:49:17 +01:00
return dword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u32) * index];
}
if (A32::IsDoubleExtReg(reg)) {
size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::D0);
2018-01-01 23:49:17 +01:00
return qword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u64) * index];
}
ASSERT_MSG(false, "Should never happen.");
}
2018-01-02 00:40:34 +01:00
A32EmitContext::A32EmitContext(RegAlloc& reg_alloc, IR::Block& block)
: EmitContext(reg_alloc, block) {}
A32::LocationDescriptor A32EmitContext::Location() const {
return A32::LocationDescriptor{block.Location()};
}
FP::RoundingMode A32EmitContext::FPSCR_RMode() const {
return Location().FPSCR().RMode();
}
2018-07-15 15:23:50 +02:00
u32 A32EmitContext::FPCR() const {
return Location().FPSCR().Value();
}
2018-01-02 00:40:34 +01:00
bool A32EmitContext::FPSCR_FTZ() const {
return Location().FPSCR().FTZ();
}
bool A32EmitContext::FPSCR_DN() const {
return Location().FPSCR().DN();
}
A32EmitX64::A32EmitX64(BlockOfCode& code, A32::UserConfig config, A32::Jit* jit_interface)
: EmitX64(code), config(std::move(config)), jit_interface(jit_interface)
2018-01-04 22:12:02 +01:00
{
GenMemoryAccessors();
code.PreludeComplete();
2018-01-04 22:12:02 +01:00
}
A32EmitX64::~A32EmitX64() = default;
A32EmitX64::BlockDescriptor A32EmitX64::Emit(IR::Block& block) {
code.align();
const u8* const entrypoint = code.getCurr();
// Start emitting.
EmitCondPrelude(block);
2018-01-04 22:12:02 +01:00
RegAlloc reg_alloc{code, A32JitState::SpillCount, SpillToOpArg<A32JitState>};
2018-01-02 00:40:34 +01:00
A32EmitContext ctx{reg_alloc, block};
for (auto iter = block.begin(); iter != block.end(); ++iter) {
IR::Inst* inst = &*iter;
// Call the relevant Emit* member function.
switch (inst->GetOpcode()) {
2018-01-02 00:40:34 +01:00
#define OPCODE(name, type, ...) \
case IR::Opcode::name: \
A32EmitX64::Emit##name(ctx, inst); \
break;
2018-01-02 00:40:34 +01:00
#define A32OPC(name, type, ...) \
case IR::Opcode::A32##name: \
A32EmitX64::EmitA32##name(ctx, inst); \
break;
2018-01-06 22:15:25 +01:00
#define A64OPC(...)
#include "frontend/ir/opcodes.inc"
#undef OPCODE
#undef A32OPC
2018-01-06 22:15:25 +01:00
#undef A64OPC
default:
2018-01-28 00:42:30 +01:00
ASSERT_MSG(false, "Invalid opcode: {}", inst->GetOpcode());
break;
}
reg_alloc.EndOfAllocScope();
}
reg_alloc.AssertNoMoreUses();
EmitAddCycles(block.CycleCount());
EmitX64::EmitTerminal(block.GetTerminal(), block.Location());
code.int3();
const A32::LocationDescriptor descriptor{block.Location()};
Patch(descriptor, entrypoint);
const size_t size = static_cast<size_t>(code.getCurr() - entrypoint);
const A32::LocationDescriptor end_location{block.EndLocation()};
const auto range = boost::icl::discrete_interval<u32>::closed(descriptor.PC(), end_location.PC() - 1);
A32EmitX64::BlockDescriptor block_desc{entrypoint, size};
block_descriptors.emplace(descriptor.UniqueHash(), block_desc);
block_ranges.AddRange(range, descriptor);
return block_desc;
}
void A32EmitX64::ClearCache() {
EmitX64::ClearCache();
block_ranges.ClearCache();
}
void A32EmitX64::InvalidateCacheRanges(const boost::icl::interval_set<u32>& ranges) {
InvalidateBasicBlocks(block_ranges.InvalidateRanges(ranges));
}
2018-01-04 22:12:02 +01:00
void A32EmitX64::GenMemoryAccessors() {
code.align();
read_memory_8 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryRead8>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
read_memory_16 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryRead16>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
read_memory_32 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryRead32>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
read_memory_64 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryRead64>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
write_memory_8 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryWrite8>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
write_memory_16 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryWrite16>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
write_memory_32 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryWrite32>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
code.align();
write_memory_64 = code.getCurr<const void*>();
2018-02-12 19:17:39 +01:00
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
Devirtualize<&A32::UserCallbacks::MemoryWrite64>(config.callbacks).EmitCall(code);
2018-02-12 19:17:39 +01:00
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, ABI_RETURN);
code.ret();
2018-01-04 22:12:02 +01:00
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetRegister(A32EmitContext& ctx, IR::Inst* inst) {
A32::Reg reg = inst->GetArg(0).GetA32RegRef();
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, MJitStateReg(reg));
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) {
A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsSingleExtReg(reg));
2018-01-02 00:40:34 +01:00
Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.movss(result, MJitStateExtReg(reg));
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) {
A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsDoubleExtReg(reg));
2018-01-02 00:40:34 +01:00
Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.movsd(result, MJitStateExtReg(reg));
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetRegister(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
A32::Reg reg = inst->GetArg(0).GetA32RegRef();
if (args[1].IsImmediate()) {
code.mov(MJitStateReg(reg), args[1].GetImmediateU32());
} else if (args[1].IsInXmm()) {
2018-01-02 00:40:34 +01:00
Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
code.movd(MJitStateReg(reg), to_store);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32();
code.mov(MJitStateReg(reg), to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsSingleExtReg(reg));
if (args[1].IsInXmm()) {
2018-01-02 00:40:34 +01:00
Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
code.movss(MJitStateExtReg(reg), to_store);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32();
code.mov(MJitStateExtReg(reg), to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsDoubleExtReg(reg));
if (args[1].IsInXmm()) {
2018-01-02 00:40:34 +01:00
Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
code.movsd(MJitStateExtReg(reg), to_store);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg64 to_store = ctx.reg_alloc.UseGpr(args[1]);
code.mov(MJitStateExtReg(reg), to_store);
}
}
2018-01-01 23:49:17 +01:00
static u32 GetCpsrImpl(A32JitState* jit_state) {
return jit_state->Cpsr();
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
2018-07-27 12:15:52 +02:00
Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
2018-07-27 12:15:52 +02:00
// Here we observe that CPSR_et and CPSR_ge are right next to each other in memory,
// so we load them both at the same time with one 64-bit read. This allows us to
// extract all of their bits together at once with one pext.
2018-07-27 12:15:52 +02:00
static_assert(offsetof(A32JitState, CPSR_et) + 4 == offsetof(A32JitState, CPSR_ge));
code.mov(result.cvt64(), qword[r15 + offsetof(A32JitState, CPSR_et)]);
code.mov(tmp.cvt64(), 0x8080808000000003ull);
code.pext(result.cvt64(), result.cvt64(), tmp.cvt64());
code.mov(tmp, 0x000f0220);
code.pdep(result, result, tmp);
code.mov(tmp, dword[r15 + offsetof(A32JitState, CPSR_q)]);
code.shl(tmp, 27);
code.or_(result, tmp);
code.or_(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]);
code.or_(result, dword[r15 + offsetof(A32JitState, CPSR_jaifm)]);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
} else {
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.HostCall(inst);
code.mov(code.ABI_PARAM1, code.r15);
code.CallFunction(&GetCpsrImpl);
}
}
2018-01-01 23:49:17 +01:00
static void SetCpsrImpl(u32 value, A32JitState* jit_state) {
jit_state->SetCpsr(value);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
Xbyak::Reg32 cpsr = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
// CPSR_q
code.bt(cpsr, 27);
code.setc(code.byte[r15 + offsetof(A32JitState, CPSR_q)]);
// CPSR_nzcv
code.mov(tmp, cpsr);
code.and_(tmp, 0xF0000000);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], tmp);
// CPSR_jaifm
code.mov(tmp, cpsr);
code.and_(tmp, 0x07F0FDDF);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_jaifm)], tmp);
// CPSR_et and CPSR_ge
static_assert(offsetof(A32JitState, CPSR_et) + 4 == offsetof(A32JitState, CPSR_ge));
code.mov(tmp, 0x000f0220);
code.pext(cpsr, cpsr, tmp);
code.mov(tmp.cvt64(), 0x8080808000000003ull);
code.pdep(cpsr.cvt64(), cpsr.cvt64(), tmp.cvt64());
code.mov(tmp.cvt64(), cpsr.cvt64());
code.shr(tmp.cvt64(), 7);
code.sub(cpsr.cvt64(), tmp.cvt64());
code.mov(qword[r15 + offsetof(A32JitState, CPSR_et)], cpsr.cvt64());
} else {
ctx.reg_alloc.HostCall(nullptr, args[0]);
code.mov(code.ABI_PARAM2, code.r15);
code.CallFunction(&SetCpsrImpl);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetCpsrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
u32 imm = args[0].GetImmediateU32();
code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], u32(imm & 0xF0000000));
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.and_(a, 0xF0000000);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], a);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetCpsrNZCVQ(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
u32 imm = args[0].GetImmediateU32();
code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], u32(imm & 0xF0000000));
code.mov(code.byte[r15 + offsetof(A32JitState, CPSR_q)], u8((imm & 0x08000000) != 0 ? 1 : 0));
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.bt(a, 27);
code.setc(code.byte[r15 + offsetof(A32JitState, CPSR_q)]);
code.and_(a, 0xF0000000);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], a);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetNFlag(A32EmitContext& ctx, IR::Inst* inst) {
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]);
code.shr(result, 31);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetNFlag(A32EmitContext& ctx, IR::Inst* inst) {
constexpr size_t flag_bit = 31;
constexpr u32 flag_mask = 1u << flag_bit;
2018-01-02 00:40:34 +01:00
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask);
} else {
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
}
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shl(to_store, flag_bit);
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetZFlag(A32EmitContext& ctx, IR::Inst* inst) {
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]);
code.shr(result, 30);
code.and_(result, 1);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetZFlag(A32EmitContext& ctx, IR::Inst* inst) {
constexpr size_t flag_bit = 30;
constexpr u32 flag_mask = 1u << flag_bit;
2018-01-02 00:40:34 +01:00
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask);
} else {
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
}
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shl(to_store, flag_bit);
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetCFlag(A32EmitContext& ctx, IR::Inst* inst) {
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]);
code.shr(result, 29);
code.and_(result, 1);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetCFlag(A32EmitContext& ctx, IR::Inst* inst) {
constexpr size_t flag_bit = 29;
constexpr u32 flag_mask = 1u << flag_bit;
2018-01-02 00:40:34 +01:00
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask);
} else {
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
}
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shl(to_store, flag_bit);
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetVFlag(A32EmitContext& ctx, IR::Inst* inst) {
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, CPSR_nzcv)]);
code.shr(result, 28);
code.and_(result, 1);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetVFlag(A32EmitContext& ctx, IR::Inst* inst) {
constexpr size_t flag_bit = 28;
constexpr u32 flag_mask = 1u << flag_bit;
2018-01-02 00:40:34 +01:00
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], flag_mask);
} else {
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
}
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shl(to_store, flag_bit);
code.and_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], ~flag_mask);
code.or_(dword[r15 + offsetof(A32JitState, CPSR_nzcv)], to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32OrQFlag(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1())
code.mov(dword[r15 + offsetof(A32JitState, CPSR_q)], 1);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg8 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt8();
code.or_(code.byte[r15 + offsetof(A32JitState, CPSR_q)], to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetGEFlags(A32EmitContext& ctx, IR::Inst* inst) {
Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.movd(result, dword[r15 + offsetof(A32JitState, CPSR_ge)]);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetGEFlags(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ASSERT(!args[0].IsImmediate());
if (args[0].IsInXmm()) {
2018-01-02 00:40:34 +01:00
Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[0]);
code.movd(dword[r15 + offsetof(A32JitState, CPSR_ge)], to_store);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt32();
code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], to_store);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetGEFlagsCompressed(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
u32 imm = args[0].GetImmediateU32();
u32 ge = 0;
ge |= Common::Bit<19>(imm) ? 0xFF000000 : 0;
ge |= Common::Bit<18>(imm) ? 0x00FF0000 : 0;
ge |= Common::Bit<17>(imm) ? 0x0000FF00 : 0;
ge |= Common::Bit<16>(imm) ? 0x000000FF : 0;
code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], ge);
} else if (code.DoesCpuSupport(Xbyak::util::Cpu::tBMI2)) {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
Xbyak::Reg32 b = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(b, 0x01010101);
code.shr(a, 16);
code.pdep(a, a, b);
code.imul(a, a, 0xFF);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], a);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shr(a, 16);
code.and_(a, 0xF);
code.imul(a, a, 0x00204081);
code.and_(a, 0x01010101);
code.imul(a, a, 0xFF);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_ge)], a);
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32BXWritePC(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
auto& arg = args[0];
// Pseudocode:
// if (new_pc & 1) {
// new_pc &= 0xFFFFFFFE;
// cpsr.T = true;
// } else {
// new_pc &= 0xFFFFFFFC;
// cpsr.T = false;
// }
// We rely on the fact we disallow EFlag from changing within a block.
if (arg.IsImmediate()) {
u32 new_pc = arg.GetImmediateU32();
u32 mask = Common::Bit<0>(new_pc) ? 0xFFFFFFFE : 0xFFFFFFFC;
u32 et = 0;
2018-01-02 00:40:34 +01:00
et |= ctx.Location().EFlag() ? 2 : 0;
et |= Common::Bit<0>(new_pc) ? 1 : 0;
code.mov(MJitStateReg(A32::Reg::PC), new_pc & mask);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], et);
} else {
2018-01-02 00:40:34 +01:00
if (ctx.Location().EFlag()) {
Xbyak::Reg32 new_pc = ctx.reg_alloc.UseScratchGpr(arg).cvt32();
Xbyak::Reg32 mask = ctx.reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 et = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(mask, new_pc);
code.and_(mask, 1);
code.lea(et, ptr[mask.cvt64() + 2]);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], et);
code.lea(mask, ptr[mask.cvt64() + mask.cvt64() * 1 - 4]); // mask = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC
code.and_(new_pc, mask);
code.mov(MJitStateReg(A32::Reg::PC), new_pc);
} else {
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 new_pc = ctx.reg_alloc.UseScratchGpr(arg).cvt32();
Xbyak::Reg32 mask = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(mask, new_pc);
code.and_(mask, 1);
code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], mask);
code.lea(mask, ptr[mask.cvt64() + mask.cvt64() * 1 - 4]); // mask = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC
code.and_(new_pc, mask);
code.mov(MJitStateReg(A32::Reg::PC), new_pc);
}
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CallSupervisor(A32EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(nullptr);
code.SwitchMxcsrOnExit();
code.mov(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_to_run)]);
code.sub(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_remaining)]);
Devirtualize<&A32::UserCallbacks::AddTicks>(config.callbacks).EmitCall(code);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.EndOfAllocScope();
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(nullptr, {}, args[0]);
Devirtualize<&A32::UserCallbacks::CallSVC>(config.callbacks).EmitCall(code);
Devirtualize<&A32::UserCallbacks::GetTicksRemaining>(config.callbacks).EmitCall(code);
code.mov(qword[r15 + offsetof(A32JitState, cycles_to_run)], code.ABI_RETURN);
code.mov(qword[r15 + offsetof(A32JitState, cycles_remaining)], code.ABI_RETURN);
code.SwitchMxcsrOnEntry();
}
void A32EmitX64::EmitA32ExceptionRaised(A32EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ASSERT(args[0].IsImmediate() && args[1].IsImmediate());
u32 pc = args[0].GetImmediateU32();
u64 exception = args[1].GetImmediateU64();
Devirtualize<&A32::UserCallbacks::ExceptionRaised>(config.callbacks).EmitCall(code, [&](RegList param) {
code.mov(param[0], pc);
code.mov(param[1], exception);
});
}
2018-01-01 23:49:17 +01:00
static u32 GetFpscrImpl(A32JitState* jit_state) {
return jit_state->Fpscr();
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetFpscr(A32EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(inst);
code.mov(code.ABI_PARAM1, code.r15);
code.stmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]);
code.CallFunction(&GetFpscrImpl);
}
2018-01-01 23:49:17 +01:00
static void SetFpscrImpl(u32 value, A32JitState* jit_state) {
jit_state->SetFpscr(value);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetFpscr(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(nullptr, args[0]);
code.mov(code.ABI_PARAM2, code.r15);
code.CallFunction(&SetFpscrImpl);
code.ldmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32GetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, FPSCR_nzcv)]);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, result);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 value = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.and_(value, 0b11000001'00000001);
code.imul(value, value, 0b00010000'00100001);
code.shl(value, 16);
code.and_(value, 0xF0000000);
code.mov(dword[r15 + offsetof(A32JitState, FPSCR_nzcv)], value);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32SetExclusive(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ASSERT(args[1].IsImmediate());
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 address = ctx.reg_alloc.UseGpr(args[0]).cvt32();
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(dword[r15 + offsetof(A32JitState, exclusive_address)], address);
}
template <typename T, T (A32::UserCallbacks::*raw_fn)(A32::VAddr)>
static void ReadMemory(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, const CodePtr wrapped_fn) {
constexpr size_t bit_size = Common::BitSize<T>();
auto args = reg_alloc.GetArgumentInfo(inst);
if (!config.page_table) {
reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<raw_fn>(config.callbacks).EmitCall(code);
return;
}
reg_alloc.UseScratch(args[0], ABI_PARAM2);
Xbyak::Reg64 result = reg_alloc.ScratchGpr({ABI_RETURN});
Xbyak::Reg32 vaddr = code.ABI_PARAM2.cvt32();
Xbyak::Reg64 page_index = reg_alloc.ScratchGpr();
Xbyak::Reg64 page_offset = reg_alloc.ScratchGpr();
Xbyak::Label abort, end;
code.mov(result, reinterpret_cast<u64>(config.page_table));
code.mov(page_index.cvt32(), vaddr);
code.shr(page_index.cvt32(), 12);
code.mov(result, qword[result + page_index * 8]);
code.test(result, result);
code.jz(abort);
code.mov(page_offset.cvt32(), vaddr);
code.and_(page_offset.cvt32(), 4095);
switch (bit_size) {
case 8:
code.movzx(result, code.byte[result + page_offset]);
break;
case 16:
code.movzx(result, word[result + page_offset]);
break;
case 32:
code.mov(result.cvt32(), dword[result + page_offset]);
break;
case 64:
code.mov(result.cvt64(), qword[result + page_offset]);
break;
default:
ASSERT_MSG(false, "Invalid bit_size");
break;
}
code.jmp(end);
code.L(abort);
code.call(wrapped_fn);
code.L(end);
reg_alloc.DefineValue(inst, result);
}
template <typename T, void (A32::UserCallbacks::*raw_fn)(A32::VAddr, T)>
static void WriteMemory(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, const CodePtr wrapped_fn) {
constexpr size_t bit_size = Common::BitSize<T>();
auto args = reg_alloc.GetArgumentInfo(inst);
if (!config.page_table) {
reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<raw_fn>(config.callbacks).EmitCall(code);
return;
}
reg_alloc.ScratchGpr({ABI_RETURN});
reg_alloc.UseScratch(args[0], ABI_PARAM2);
reg_alloc.UseScratch(args[1], ABI_PARAM3);
Xbyak::Reg32 vaddr = code.ABI_PARAM2.cvt32();
Xbyak::Reg64 value = code.ABI_PARAM3;
Xbyak::Reg64 page_index = reg_alloc.ScratchGpr();
Xbyak::Reg64 page_offset = reg_alloc.ScratchGpr();
Xbyak::Label abort, end;
code.mov(rax, reinterpret_cast<u64>(config.page_table));
code.mov(page_index.cvt32(), vaddr);
code.shr(page_index.cvt32(), 12);
code.mov(rax, qword[rax + page_index * 8]);
code.test(rax, rax);
code.jz(abort);
code.mov(page_offset.cvt32(), vaddr);
code.and_(page_offset.cvt32(), 4095);
switch (bit_size) {
case 8:
code.mov(code.byte[rax + page_offset], value.cvt8());
break;
case 16:
code.mov(word[rax + page_offset], value.cvt16());
break;
case 32:
code.mov(dword[rax + page_offset], value.cvt32());
break;
case 64:
code.mov(qword[rax + page_offset], value.cvt64());
break;
default:
ASSERT_MSG(false, "Invalid bit_size");
break;
}
code.jmp(end);
code.L(abort);
code.call(wrapped_fn);
code.L(end);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<u8, &A32::UserCallbacks::MemoryRead8>(code, ctx.reg_alloc, inst, config, read_memory_8);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<u16, &A32::UserCallbacks::MemoryRead16>(code, ctx.reg_alloc, inst, config, read_memory_16);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<u32, &A32::UserCallbacks::MemoryRead32>(code, ctx.reg_alloc, inst, config, read_memory_32);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<u64, &A32::UserCallbacks::MemoryRead64>(code, ctx.reg_alloc, inst, config, read_memory_64);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<u8, &A32::UserCallbacks::MemoryWrite8>(code, ctx.reg_alloc, inst, config, write_memory_8);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<u16, &A32::UserCallbacks::MemoryWrite16>(code, ctx.reg_alloc, inst, config, write_memory_16);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<u32, &A32::UserCallbacks::MemoryWrite32>(code, ctx.reg_alloc, inst, config, write_memory_32);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<u64, &A32::UserCallbacks::MemoryWrite64>(code, ctx.reg_alloc, inst, config, write_memory_64);
}
template <typename T, void (A32::UserCallbacks::*fn)(A32::VAddr, T)>
static void ExclusiveWrite(BlockOfCode& code, RegAlloc& reg_alloc, IR::Inst* inst, const A32::UserConfig& config, bool prepend_high_word) {
auto args = reg_alloc.GetArgumentInfo(inst);
if (prepend_high_word) {
reg_alloc.HostCall(nullptr, {}, args[0], args[1], args[2]);
} else {
reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
}
Xbyak::Reg32 passed = reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg32 tmp = code.ABI_RETURN.cvt32(); // Use one of the unusued HostCall registers.
Xbyak::Label end;
code.mov(passed, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(tmp, code.ABI_PARAM2);
code.xor_(tmp, dword[r15 + offsetof(A32JitState, exclusive_address)]);
code.test(tmp, A32JitState::RESERVATION_GRANULE_MASK);
code.jne(end);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
if (prepend_high_word) {
code.mov(code.ABI_PARAM3.cvt32(), code.ABI_PARAM3.cvt32()); // zero extend to 64-bits
code.shl(code.ABI_PARAM4, 32);
code.or_(code.ABI_PARAM3, code.ABI_PARAM4);
}
Devirtualize<fn>(config.callbacks).EmitCall(code);
code.xor_(passed, passed);
code.L(end);
reg_alloc.DefineValue(inst, passed);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWrite<u8, &A32::UserCallbacks::MemoryWrite8>(code, ctx.reg_alloc, inst, config, false);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWrite<u16, &A32::UserCallbacks::MemoryWrite16>(code, ctx.reg_alloc, inst, config, false);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWrite<u32, &A32::UserCallbacks::MemoryWrite32>(code, ctx.reg_alloc, inst, config, false);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWrite<u64, &A32::UserCallbacks::MemoryWrite64>(code, ctx.reg_alloc, inst, config, true);
}
static void EmitCoprocessorException() {
ASSERT_MSG(false, "Should raise coproc exception here");
}
static void CallCoprocCallback(BlockOfCode& code, RegAlloc& reg_alloc, A32::Jit* jit_interface, A32::Coprocessor::Callback callback, IR::Inst* inst = nullptr, boost::optional<Argument&> arg0 = {}, boost::optional<Argument&> arg1 = {}) {
reg_alloc.HostCall(inst, {}, {}, arg0, arg1);
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(jit_interface));
if (callback.user_arg) {
code.mov(code.ABI_PARAM2, reinterpret_cast<u64>(*callback.user_arg));
}
code.CallFunction(callback.function);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocInternalOperation(A32EmitContext& ctx, IR::Inst* inst) {
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc1 = static_cast<unsigned>(coproc_info[2]);
A32::CoprocReg CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
A32::CoprocReg CRn = static_cast<A32::CoprocReg>(coproc_info[4]);
A32::CoprocReg CRm = static_cast<A32::CoprocReg>(coproc_info[5]);
unsigned opc2 = static_cast<unsigned>(coproc_info[6]);
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileInternalOperation(two, opc1, CRd, CRn, CRm, opc2);
if (!action) {
EmitCoprocessorException();
return;
}
2018-01-02 00:40:34 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocSendOneWord(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc1 = static_cast<unsigned>(coproc_info[2]);
A32::CoprocReg CRn = static_cast<A32::CoprocReg>(coproc_info[3]);
A32::CoprocReg CRm = static_cast<A32::CoprocReg>(coproc_info[4]);
unsigned opc2 = static_cast<unsigned>(coproc_info[5]);
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileSendOneWord(two, opc1, CRn, CRm, opc2);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
2018-01-04 22:12:02 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get<A32::Coprocessor::Callback>(action), nullptr, args[1]);
return;
case 2: {
u32* destination_ptr = boost::get<u32*>(action);
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 reg_word = ctx.reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
code.mov(reg_destination_addr, reinterpret_cast<u64>(destination_ptr));
code.mov(code.dword[reg_destination_addr], reg_word);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocSendTwoWords(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc = static_cast<unsigned>(coproc_info[2]);
A32::CoprocReg CRm = static_cast<A32::CoprocReg>(coproc_info[3]);
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileSendTwoWords(two, opc, CRm);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
2018-01-04 22:12:02 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get<A32::Coprocessor::Callback>(action), nullptr, args[1], args[2]);
return;
case 2: {
auto destination_ptrs = boost::get<std::array<u32*, 2>>(action);
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 reg_word1 = ctx.reg_alloc.UseGpr(args[1]).cvt32();
Xbyak::Reg32 reg_word2 = ctx.reg_alloc.UseGpr(args[2]).cvt32();
Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
code.mov(reg_destination_addr, reinterpret_cast<u64>(destination_ptrs[0]));
code.mov(code.dword[reg_destination_addr], reg_word1);
code.mov(reg_destination_addr, reinterpret_cast<u64>(destination_ptrs[1]));
code.mov(code.dword[reg_destination_addr], reg_word2);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocGetOneWord(A32EmitContext& ctx, IR::Inst* inst) {
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc1 = static_cast<unsigned>(coproc_info[2]);
A32::CoprocReg CRn = static_cast<A32::CoprocReg>(coproc_info[3]);
A32::CoprocReg CRm = static_cast<A32::CoprocReg>(coproc_info[4]);
unsigned opc2 = static_cast<unsigned>(coproc_info[5]);
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileGetOneWord(two, opc1, CRn, CRm, opc2);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
2018-01-04 22:12:02 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get<A32::Coprocessor::Callback>(action), inst);
return;
case 2: {
u32* source_ptr = boost::get<u32*>(action);
2018-01-02 00:40:34 +01:00
Xbyak::Reg32 reg_word = ctx.reg_alloc.ScratchGpr().cvt32();
Xbyak::Reg64 reg_source_addr = ctx.reg_alloc.ScratchGpr();
code.mov(reg_source_addr, reinterpret_cast<u64>(source_ptr));
code.mov(reg_word, code.dword[reg_source_addr]);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, reg_word);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocGetTwoWords(A32EmitContext& ctx, IR::Inst* inst) {
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
unsigned opc = coproc_info[2];
A32::CoprocReg CRm = static_cast<A32::CoprocReg>(coproc_info[3]);
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileGetTwoWords(two, opc, CRm);
switch (action.which()) {
case 0:
EmitCoprocessorException();
return;
case 1:
2018-01-04 22:12:02 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, boost::get<A32::Coprocessor::Callback>(action), inst);
return;
case 2: {
auto source_ptrs = boost::get<std::array<u32*, 2>>(action);
2018-01-02 00:40:34 +01:00
Xbyak::Reg64 reg_result = ctx.reg_alloc.ScratchGpr();
Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
Xbyak::Reg64 reg_tmp = ctx.reg_alloc.ScratchGpr();
code.mov(reg_destination_addr, reinterpret_cast<u64>(source_ptrs[1]));
code.mov(reg_result.cvt32(), code.dword[reg_destination_addr]);
code.shl(reg_result, 32);
code.mov(reg_destination_addr, reinterpret_cast<u64>(source_ptrs[0]));
code.mov(reg_tmp.cvt32(), code.dword[reg_destination_addr]);
code.or_(reg_result, reg_tmp);
2018-01-02 00:40:34 +01:00
ctx.reg_alloc.DefineValue(inst, reg_result);
return;
}
default:
ASSERT_MSG(false, "Unreachable");
}
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocLoadWords(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
bool long_transfer = coproc_info[2] != 0;
A32::CoprocReg CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
bool has_option = coproc_info[4] != 0;
boost::optional<u8> option{has_option, coproc_info[5]};
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileLoadWords(two, long_transfer, CRd, option);
if (!action) {
EmitCoprocessorException();
return;
}
2018-01-02 00:40:34 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]);
}
2018-01-02 00:40:34 +01:00
void A32EmitX64::EmitA32CoprocStoreWords(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
auto coproc_info = inst->GetArg(0).GetCoprocInfo();
size_t coproc_num = coproc_info[0];
bool two = coproc_info[1] != 0;
bool long_transfer = coproc_info[2] != 0;
A32::CoprocReg CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
bool has_option = coproc_info[4] != 0;
boost::optional<u8> option{has_option, coproc_info[5]};
std::shared_ptr<A32::Coprocessor> coproc = config.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileStoreWords(two, long_transfer, CRd, option);
if (!action) {
EmitCoprocessorException();
return;
}
2018-01-02 00:40:34 +01:00
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]);
}
void A32EmitX64::EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location) {
ASSERT_MSG(A32::LocationDescriptor{terminal.next}.TFlag() == A32::LocationDescriptor{initial_location}.TFlag(), "Unimplemented");
ASSERT_MSG(A32::LocationDescriptor{terminal.next}.EFlag() == A32::LocationDescriptor{initial_location}.EFlag(), "Unimplemented");
ASSERT_MSG(terminal.num_instructions == 1, "Unimplemented");
code.mov(code.ABI_PARAM2.cvt32(), A32::LocationDescriptor{terminal.next}.PC());
code.mov(code.ABI_PARAM3.cvt32(), 1);
code.mov(MJitStateReg(A32::Reg::PC), code.ABI_PARAM2.cvt32());
code.SwitchMxcsrOnExit();
Devirtualize<&A32::UserCallbacks::InterpreterFallback>(config.callbacks).EmitCall(code);
code.ReturnFromRunCode(true); // TODO: Check cycles
}
void A32EmitX64::EmitTerminalImpl(IR::Term::ReturnToDispatch, IR::LocationDescriptor) {
code.ReturnFromRunCode();
}
static u32 CalculateCpsr_et(const IR::LocationDescriptor& arg) {
const A32::LocationDescriptor desc{arg};
u32 et = 0;
et |= desc.EFlag() ? 2 : 0;
et |= desc.TFlag() ? 1 : 0;
return et;
}
void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location) {
if (CalculateCpsr_et(terminal.next) != CalculateCpsr_et(initial_location)) {
code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], CalculateCpsr_et(terminal.next));
}
code.cmp(qword[r15 + offsetof(A32JitState, cycles_remaining)], 0);
patch_information[terminal.next].jg.emplace_back(code.getCurr());
if (auto next_bb = GetBasicBlock(terminal.next)) {
EmitPatchJg(terminal.next, next_bb->entrypoint);
} else {
EmitPatchJg(terminal.next);
}
Xbyak::Label dest;
code.jmp(dest, Xbyak::CodeGenerator::T_NEAR);
code.SwitchToFarCode();
code.align(16);
code.L(dest);
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{terminal.next}.PC());
PushRSBHelper(rax, rbx, terminal.next);
code.ForceReturnFromRunCode();
code.SwitchToNearCode();
}
void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location) {
if (CalculateCpsr_et(terminal.next) != CalculateCpsr_et(initial_location)) {
code.mov(dword[r15 + offsetof(A32JitState, CPSR_et)], CalculateCpsr_et(terminal.next));
}
patch_information[terminal.next].jmp.emplace_back(code.getCurr());
if (auto next_bb = GetBasicBlock(terminal.next)) {
EmitPatchJmp(terminal.next, next_bb->entrypoint);
} else {
EmitPatchJmp(terminal.next);
}
}
void A32EmitX64::EmitTerminalImpl(IR::Term::PopRSBHint, IR::LocationDescriptor) {
// This calculation has to match up with IREmitter::PushRSB
// TODO: Optimization is available here based on known state of FPSCR_mode and CPSR_et.
code.mov(ecx, MJitStateReg(A32::Reg::PC));
code.shl(rcx, 32);
code.mov(ebx, dword[r15 + offsetof(A32JitState, FPSCR_mode)]);
code.or_(ebx, dword[r15 + offsetof(A32JitState, CPSR_et)]);
code.or_(rbx, rcx);
code.mov(eax, dword[r15 + offsetof(A32JitState, rsb_ptr)]);
code.sub(eax, 1);
code.and_(eax, u32(A32JitState::RSBPtrMask));
code.mov(dword[r15 + offsetof(A32JitState, rsb_ptr)], eax);
code.cmp(rbx, qword[r15 + offsetof(A32JitState, rsb_location_descriptors) + rax * sizeof(u64)]);
code.jne(code.GetReturnFromRunCodeAddress());
code.mov(rax, qword[r15 + offsetof(A32JitState, rsb_codeptrs) + rax * sizeof(u64)]);
code.jmp(rax);
}
void A32EmitX64::EmitTerminalImpl(IR::Term::If terminal, IR::LocationDescriptor initial_location) {
Xbyak::Label pass = EmitCond(terminal.if_);
EmitTerminal(terminal.else_, initial_location);
code.L(pass);
EmitTerminal(terminal.then_, initial_location);
}
2018-01-07 17:33:02 +01:00
void A32EmitX64::EmitTerminalImpl(IR::Term::CheckBit, IR::LocationDescriptor) {
ASSERT_MSG(false, "Term::CheckBit should never be emitted by the A32 frontend");
}
void A32EmitX64::EmitTerminalImpl(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location) {
code.cmp(code.byte[r15 + offsetof(A32JitState, halt_requested)], u8(0));
code.jne(code.GetForceReturnFromRunCodeAddress());
EmitTerminal(terminal.else_, initial_location);
}
void A32EmitX64::EmitPatchJg(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
const CodePtr patch_location = code.getCurr();
if (target_code_ptr) {
code.jg(target_code_ptr);
} else {
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC());
code.jg(code.GetReturnFromRunCodeAddress());
}
code.EnsurePatchLocationSize(patch_location, 14);
}
void A32EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
const CodePtr patch_location = code.getCurr();
if (target_code_ptr) {
code.jmp(target_code_ptr);
} else {
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC());
code.jmp(code.GetReturnFromRunCodeAddress());
}
code.EnsurePatchLocationSize(patch_location, 13);
}
void A32EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) {
if (!target_code_ptr) {
target_code_ptr = code.GetReturnFromRunCodeAddress();
}
const CodePtr patch_location = code.getCurr();
code.mov(code.rcx, reinterpret_cast<u64>(target_code_ptr));
code.EnsurePatchLocationSize(patch_location, 10);
}
} // namespace Dynarmic::BackendX64