Yucom/lsteamclient/steamworks_sdk_103/isteamnetworking.h

148 lines
7.3 KiB
C
Raw Normal View History

2018-01-18 17:24:05 +01:00
//====== Copyright <20> 1996-2008, Valve Corporation, All rights reserved. =======
//
// Purpose: interface to steam managing network connections between game clients & servers
//
//=============================================================================
#ifndef ISTEAMNETWORKING
#define ISTEAMNETWORKING
#ifdef _WIN32
#pragma once
#endif
#include "steamtypes.h"
#include "steamclientpublic.h"
// handle to a socket
typedef uint32 SNetSocket_t;
typedef uint32 SNetListenSocket_t;
// connection progress indicators
enum ESNetSocketState
{
k_ESNetSocketStateInvalid = 0,
// communication is valid
k_ESNetSocketStateConnected = 1,
// states while establishing a connection
k_ESNetSocketStateInitiated = 10, // the connection state machine has started
// p2p connections
k_ESNetSocketStateLocalCandidatesFound = 11, // we've found our local IP info
k_ESNetSocketStateReceivedRemoteCandidates = 12,// we've received information from the remote machine, via the Steam back-end, about their IP info
// direct connections
k_ESNetSocketStateChallengeHandshake = 15, // we've received a challenge packet from the server
// failure states
k_ESNetSocketStateDisconnecting = 21, // the API shut it down, and we're in the process of telling the other end
k_ESNetSocketStateLocalDisconnect = 22, // the API shut it down, and we've completed shutdown
k_ESNetSocketStateTimeoutDuringConnect = 23, // we timed out while trying to creating the connection
k_ESNetSocketStateRemoteEndDisconnected = 24, // the remote end has disconnected from us
k_ESNetSocketStateConnectionBroken = 25, // connection has been broken; either the other end has disappeared or our local network connection has broke
};
// describes how the socket is currently connected
enum ESNetSocketConnectionType
{
k_ESNetSocketConnectionTypeNotConnected = 0,
k_ESNetSocketConnectionTypeUDP = 1,
k_ESNetSocketConnectionTypeUDPRelay = 2,
};
//-----------------------------------------------------------------------------
// Purpose: Functions for making connections and sending data between clients,
// traversing NAT's where possible
//-----------------------------------------------------------------------------
class ISteamNetworking
{
public:
// creates a socket and listens others to connect
// will trigger a SocketStatusCallback_t callback on another client connecting
// nVirtualP2PPort is the unique ID that the client will connect to, in case you have multiple ports
// this can usually just be 0 unless you want multiple sets of connections
// unIP is the local IP address to bind to
// pass in 0 if you just want the default local IP
// unPort is the port to use
// pass in 0 if you don't want users to be able to connect via IP/Port, but expect to be always peer-to-peer connections only
virtual SNetListenSocket_t CreateListenSocket( int nVirtualP2PPort, uint32 nIP, uint16 nPort, bool bAllowUseOfPacketRelay ) = 0;
// creates a socket and begin connection to a remote destination
// can connect via a known steamID (client or game server), or directly to an IP
// on success will trigger a SocketStatusCallback_t callback
// on failure or timeout will trigger a SocketStatusCallback_t callback with a failure code in m_eSNetSocketState
virtual SNetSocket_t CreateP2PConnectionSocket( CSteamID steamIDTarget, int nVirtualPort, int nTimeoutSec, bool bAllowUseOfPacketRelay ) = 0;
virtual SNetSocket_t CreateConnectionSocket( uint32 nIP, uint16 nPort, int nTimeoutSec ) = 0;
// disconnects the connection to the socket, if any, and invalidates the handle
// any unread data on the socket will be thrown away
// if bNotifyRemoteEnd is set, socket will not be completely destroyed until the remote end acknowledges the disconnect
virtual bool DestroySocket( SNetSocket_t hSocket, bool bNotifyRemoteEnd ) = 0;
// destroying a listen socket will automatically kill all the regular sockets generated from it
virtual bool DestroyListenSocket( SNetListenSocket_t hSocket, bool bNotifyRemoteEnd ) = 0;
// sending data
// must be a handle to a connected socket
// data is all sent via UDP, and thus send sizes are limited to 1200 bytes; after this, many routers will start dropping packets
// use the reliable flag with caution; although the resend rate is pretty aggressive,
// it can still cause stalls in receiving data (like TCP)
virtual bool SendDataOnSocket( SNetSocket_t hSocket, void *pubData, uint32 cubData, bool bReliable ) = 0;
// receiving data
// returns false if there is no data remaining
// fills out *pcubMsgSize with the size of the next message, in bytes
virtual bool IsDataAvailableOnSocket( SNetSocket_t hSocket, uint32 *pcubMsgSize ) = 0;
// fills in pubDest with the contents of the message
// messages are always complete, of the same size as was sent (i.e. packetized, not streaming)
// if *pcubMsgSize < cubDest, only partial data is written
// returns false if no data is available
virtual bool RetrieveDataFromSocket( SNetSocket_t hSocket, void *pubDest, uint32 cubDest, uint32 *pcubMsgSize ) = 0;
// checks for data from any socket that has been connected off this listen socket
// returns false if there is no data remaining
// fills out *pcubMsgSize with the size of the next message, in bytes
// fills out *phSocket with the socket that data is available on
virtual bool IsDataAvailable( SNetListenSocket_t hListenSocket, uint32 *pcubMsgSize, SNetSocket_t *phSocket ) = 0;
// retrieves data from any socket that has been connected off this listen socket
// fills in pubDest with the contents of the message
// messages are always complete, of the same size as was sent (i.e. packetized, not streaming)
// if *pcubMsgSize < cubDest, only partial data is written
// returns false if no data is available
// fills out *phSocket with the socket that data is available on
virtual bool RetrieveData( SNetListenSocket_t hListenSocket, void *pubDest, uint32 cubDest, uint32 *pcubMsgSize, SNetSocket_t *phSocket ) = 0;
// returns information about the specified socket, filling out the contents of the pointers
virtual bool GetSocketInfo( SNetSocket_t hSocket, CSteamID *pSteamIDRemote, int *peSocketStatus, uint32 *punIPRemote, uint16 *punPortRemote ) = 0;
// returns which local port the listen socket is bound to
// *pnIP and *pnPort will be 0 if the socket is set to listen for P2P connections only
virtual bool GetListenSocketInfo( SNetListenSocket_t hListenSocket, uint32 *pnIP, uint16 *pnPort ) = 0;
// returns true to describe how the socket ended up connecting
virtual ESNetSocketConnectionType GetSocketConnectionType( SNetSocket_t hSocket ) = 0;
// max packet size, in bytes
virtual int GetMaxPacketSize( SNetSocket_t hSocket ) = 0;
};
#define STEAMNETWORKING_INTERFACE_VERSION "SteamNetworking002"
// callback notification - status of a socket has changed
struct SocketStatusCallback_t
{
enum { k_iCallback = k_iSteamNetworkingCallbacks + 1 };
SNetSocket_t m_hSocket; // the socket used to send/receive data to the remote host
SNetListenSocket_t m_hListenSocket; // this is the server socket that we were listening on; NULL if this was an outgoing connection
CSteamID m_steamIDRemote; // remote steamID we have connected to, if it has one
int m_eSNetSocketState; // socket state, ESNetSocketState
};
#endif // ISTEAMNETWORKING