nixpkgs-suyu/doc/languages-frameworks/texlive.section.md
Anderson Torres e671d3bbbd Nix docs: remove with lib; from example code
Following [Best Practices](https://nix.dev/guides/best-practices#with-scopes),
`with` is a problematic language construction and should be avoided.

Usually it is employed like a "factorization": `[ X.A X.B X.C X.D ]` is written
`with X; [ A B C D ]`.

However, as shown in the link above, the syntatical rules of `with` are not so
intuitive, and this "distributive rule" is very selective, in the sense that
`with X; [ A B C D ]` is not equivalent to `[ X.A X.B X.C X.D ]`.

However, this factorization is still useful to "squeeze" some code, especially
in lists like `meta.maintainers`.

On the other hand, it becomes less justifiable in bigger scopes. This is
especially true in cases like `with lib;` in the top of expression and in sets
like `meta = with lib; { . . . }`.

That being said, this patch removes most of example code in the current
documentation.

The exceptions are, for now
- doc/functions/generators.section.md
- doc/languages-frameworks/coq.section.md

because, well, they are way more complicated, and I couldn't parse them
mentally - yet another reason why `with` should be avoided!
2024-03-06 11:40:09 -03:00

8.5 KiB

TeX Live

Since release 15.09 there is a new TeX Live packaging that lives entirely under attribute texlive.

User's guide (experimental new interface)

Release 23.11 ships with a new interface that will eventually replace texlive.combine.

  • For basic usage, use some of the prebuilt environments available at the top level, such as texliveBasic, texliveSmall. For the full list of prebuilt environments, inspect texlive.schemes.

  • Packages cannot be used directly but must be assembled in an environment. To create or add packages to an environment, use

    texliveSmall.withPackages (ps: with ps; [ collection-langkorean algorithms cm-super ])
    

    The function withPackages can be called multiple times to add more packages.

    • Note. Within Nixpkgs, packages should only use prebuilt environments as inputs, such as texliveSmall or texliveInfraOnly, and should not depend directly on texlive. Further dependencies should be added by calling withPackages. This is to ensure that there is a consistent and simple way to override the inputs.
  • texlive.withPackages uses the same logic as buildEnv. Only parts of a package are installed in an environment: its 'runtime' files (tex output), binaries (out output), and support files (tlpkg output). Moreover, man and info pages are assembled into separate man and info outputs. To add only the TeX files of a package, or its documentation (texdoc output), just specify the outputs:

    texlive.withPackages (ps: with ps; [
      texdoc # recommended package to navigate the documentation
      perlPackages.LaTeXML.tex # tex files of LaTeXML, omit binaries
      cm-super
      cm-super.texdoc # documentation of cm-super
    ])
    
  • All packages distributed by TeX Live, which contains most of CTAN, are available and can be found under texlive.pkgs:

    $ nix repl
    nix-repl> :l <nixpkgs>
    nix-repl> texlive.pkgs.[TAB]
    

    Note that the packages in texlive.pkgs are only provided for search purposes and must not be used directly.

  • Experimental and subject to change without notice: to add the documentation for all packages in the environment, use

    texliveSmall.__overrideTeXConfig { withDocs = true; }
    

    This can be applied before or after calling withPackages.

    The function currently support the parameters withDocs, withSources, and requireTeXPackages.

User's guide

  • For basic usage just pull texlive.combined.scheme-basic for an environment with basic LaTeX support.

  • It typically won't work to use separately installed packages together. Instead, you can build a custom set of packages like this. Most CTAN packages should be available:

    texlive.combine {
      inherit (texlive) scheme-small collection-langkorean algorithms cm-super;
    }
    
  • There are all the schemes, collections and a few thousand packages, as defined upstream (perhaps with tiny differences).

  • By default you only get executables and files needed during runtime, and a little documentation for the core packages. To change that, you need to add pkgFilter function to combine.

    texlive.combine {
      # inherit (texlive) whatever-you-want;
      pkgFilter = pkg:
        pkg.tlType == "run" || pkg.tlType == "bin" || pkg.hasManpages || pkg.pname == "cm-super";
      # elem tlType [ "run" "bin" "doc" "source" ]
      # there are also other attributes: version, name
    }
    
  • You can list packages e.g. by nix repl.

    $ nix repl
    nix-repl> :l <nixpkgs>
    nix-repl> texlive.collection-[TAB]
    
  • Note that the wrapper assumes that the result has a chance to be useful. For example, the core executables should be present, as well as some core data files. The supported way of ensuring this is by including some scheme, for example scheme-basic, into the combination.

  • TeX Live packages are also available under texlive.pkgs as derivations with outputs out, tex, texdoc, texsource, tlpkg, man, info. They cannot be installed outside of texlive.combine but are available for other uses. To repackage a font, for instance, use

    stdenvNoCC.mkDerivation rec {
      src = texlive.pkgs.iwona;
    
      inherit (src) pname version;
    
      installPhase = ''
        runHook preInstall
        install -Dm644 fonts/opentype/nowacki/iwona/*.otf -t $out/share/fonts/opentype
        runHook postInstall
      '';
    }
    

    See biber, iwona for complete examples.

Custom packages

You may find that you need to use an external TeX package. A derivation for such package has to provide the contents of the "texmf" directory in its "tex" output, according to the TeX Directory Structure. Dependencies on other TeX packages can be listed in the attribute tlDeps.

The functions texlive.combine and texlive.withPackages recognise the following outputs:

  • "out": contents are linked in the TeX Live environment, and binaries in the $out/bin folder are wrapped;
  • "tex": linked in $TEXMFDIST; files should follow the TDS (for instance $tex/tex/latex/foiltex/foiltex.cls);
  • "texdoc", "texsource": ignored by default, treated as "tex";
  • "tlpkg": linked in $TEXMFROOT/tlpkg;
  • "man", "info", ...: the other outputs are combined into separate outputs.

When using pkgFilter, texlive.combine will assign tlType respectively "bin", "run", "doc", "source", "tlpkg" to the above outputs.

Here is a (very verbose) example. See also the packages auctex, eukleides, mftrace for more examples.

with import <nixpkgs> {};

let
  foiltex = stdenvNoCC.mkDerivation {
    pname = "latex-foiltex";
    version = "2.1.4b";

    outputs = [ "tex" "texdoc" ];
    passthru.tlDeps = with texlive; [ latex ];

    srcs = [
      (fetchurl {
        url = "http://mirrors.ctan.org/macros/latex/contrib/foiltex/foiltex.dtx";
        hash = "sha256-/2I2xHXpZi0S988uFsGuPV6hhMw8e0U5m/P8myf42R0=";
      })
      (fetchurl {
        url = "http://mirrors.ctan.org/macros/latex/contrib/foiltex/foiltex.ins";
        hash = "sha256-KTm3pkd+Cpu0nSE2WfsNEa56PeXBaNfx/sOO2Vv0kyc=";
      })
    ];

    unpackPhase = ''
      runHook preUnpack

      for _src in $srcs; do
        cp "$_src" $(stripHash "$_src")
      done

      runHook postUnpack
    '';

    nativeBuildInputs = [
      (texliveSmall.withPackages (ps: with ps; [ cm-super hypdoc latexmk ]))
      # multiple-outputs.sh fails if $out is not defined
      (writeShellScript "force-tex-output.sh" ''
        out="''${tex-}"
      '')
    ];

    dontConfigure = true;

    buildPhase = ''
      runHook preBuild

      # Generate the style files
      latex foiltex.ins

      # Generate the documentation
      export HOME=.
      latexmk -pdf foiltex.dtx

      runHook postBuild
    '';

    installPhase = ''
      runHook preInstall

      path="$tex/tex/latex/foiltex"
      mkdir -p "$path"
      cp *.{cls,def,clo,sty} "$path/"

      path="$texdoc/doc/tex/latex/foiltex"
      mkdir -p "$path"
      cp *.pdf "$path/"

      runHook postInstall
    '';

    meta = {
      description = "A LaTeX2e class for overhead transparencies";
      license = lib.licenses.unfreeRedistributable;
      maintainers = with lib.maintainers; [ veprbl ];
      platforms = lib.platforms.all;
    };
  };

  latex_with_foiltex = texliveSmall.withPackages (_: [ foiltex ]);
in
  runCommand "test.pdf" {
    nativeBuildInputs = [ latex_with_foiltex ];
  } ''
cat >test.tex <<EOF
\documentclass{foils}

\title{Presentation title}
\date{}

\begin{document}
\maketitle
\end{document}
EOF
  pdflatex test.tex
  cp test.pdf $out
''

LuaLaTeX font cache

The font cache for LuaLaTeX is written to $HOME. Therefore, it is necessary to set $HOME to a writable path, e.g. before using LuaLaTeX in nix derivations:

runCommandNoCC "lualatex-hello-world" {
  buildInputs = [ texliveFull ];
} ''
  mkdir $out
  echo '\documentclass{article} \begin{document} Hello world \end{document}' > main.tex
  env HOME=$(mktemp -d) lualatex  -interaction=nonstopmode -output-format=pdf -output-directory=$out ./main.tex
''

Additionally, the cache of a user can diverge from the nix store. To resolve font issues that might follow, the cache can be removed by the user:

luaotfload-tool --cache=erase --flush-lookups --force