mbedtls/tests/suites/test_suite_bignum_core.function
Tom Cosgrove e16a945421
Add unit tests for mbedtls_mpi_core_mul()
The test cases use the following MPI values.

The .data file only includes those (a, b) values where a <= b; the test code
does a * b and b * a.

    0 1 80 ff 100 fffe ffff 10000 ffffffff 100000000
    20000000000000 7f7f7f7f7f7f7f7f 8000000000000000 ffffffffffffffff
    10000000000000000 10000000000000001 1234567890abcdef0
    fffffffffffffffffefefefefefefefe 100000000000000000000000000000000
    1234567890abcdef01234567890abcdef0
    ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
    1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0
    4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b

The lines in the .data file were generated by the following script

```
    #!/usr/bin/env perl
    #
    # mpi-test-core-mul.pl - generate MPI tests in Perl for mbedtls_mpi_core_mul()
    #
    use strict;
    use warnings;
    use Math::BigInt;
    use sort 'stable';

    my $echo = 0;

    my @mul_mpis = qw(
        0 1 80 ff 100 fffe ffff 10000 ffffffff 100000000
        20000000000000 7f7f7f7f7f7f7f7f 8000000000000000 ffffffffffffffff
        10000000000000000 10000000000000001 1234567890abcdef0 fffffffffffffffffefefefefefefefe
        100000000000000000000000000000000 1234567890abcdef01234567890abcdef0
        ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
        1234567890abcdef01234567890abcdef01234567890abcdef01234567890abcdef0
        4df72d07b4b71c8dacb6cffa954f8d88254b6277099308baf003fab73227f34029643b5a263f66e0d3c3fa297ef71755efd53b8fb6cb812c6bbf7bcf179298bd9947c4c8b14324140a2c0f5fad7958a69050a987a6096e9f055fb38edf0c5889eca4a0cfa99b45fbdeee4c696b328ddceae4723945901ec025076b12b
    );

    generate_tests();

    sub generate_tests {
        generate_mbedtls_mpi_core_mul();
    }

    sub generate_mbedtls_mpi_core_mul {

        my $sub_name = (caller(0))[3];      # e.g. main::generate_mbedtls_mpi_sub_mpi
        my ($ignore, $test_name) = split("main::generate_", $sub_name);

        my @cases = ();

        for my $ah (@mul_mpis) {
            for my $bh (@mul_mpis) {

                my $a = Math::BigInt->from_hex($ah);
                my $b = Math::BigInt->from_hex($bh);
                next if $a > $b;		# don't need to repeat test cases

                my $r = $a * $b;
                my $rh = $r->to_hex();

                my $desc = "$test_name #NUMBER: 0x$ah * 0x$bh = 0x$rh";
                my $case = output($test_name, str($ah), str($bh), str($rh));

                push(@cases, [$case, $desc]);
            }
        }

        output_cases("", @cases);
    }

    sub output_cases {

        my ($explain, @cases) = @_;

        my $count = 1;
        for my $c (@cases) {

            my ($case, $desc, $dep) = @$c;
            $desc =~ s/NUMBER/$count/; $count++;
            if (defined($explain) && $desc =~ /EXPLAIN/) {
                $desc =~ s/EXPLAIN/$explain/;
                $explain = "";
            }

            my $depends = "";
            $depends = "depends_on:$dep\n" if defined($dep) && length($dep);

            print <<EOF;

    $desc
    $depends$case
    EOF
        }
    }

    sub output {
        return join(":", @_);
    }

    sub str {
        return '"' . $_[0] . '"';
    }
```

Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
Signed-off-by: Gabor Mezei <gabor.mezei@arm.com>
2023-03-31 16:16:05 +02:00

1317 lines
40 KiB
C

/* BEGIN_HEADER */
#include "mbedtls/bignum.h"
#include "mbedtls/entropy.h"
#include "bignum_core.h"
#include "constant_time_internal.h"
#include "test/constant_flow.h"
/** Verifies mbedtls_mpi_core_add().
*
* \param[in] A Little-endian presentation of the left operand.
* \param[in] B Little-endian presentation of the right operand.
* \param limbs Number of limbs in each MPI (\p A, \p B, \p S and \p X).
* \param[in] S Little-endian presentation of the expected sum.
* \param carry Expected carry from the addition.
* \param[in,out] X Temporary storage to be used for results.
*
* \return 1 if mbedtls_mpi_core_add() passes this test, otherwise 0.
*/
static int mpi_core_verify_add(mbedtls_mpi_uint *A,
mbedtls_mpi_uint *B,
size_t limbs,
mbedtls_mpi_uint *S,
int carry,
mbedtls_mpi_uint *X)
{
int ret = 0;
size_t bytes = limbs * sizeof(*A);
/* The test cases have A <= B to avoid repetition, so we test A + B then,
* if A != B, B + A. If A == B, we can test when A and B are aliased */
/* A + B */
/* A + B => correct result and carry */
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, A, B, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
/* A + B; alias output and first operand => correct result and carry */
memcpy(X, A, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, X, B, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
/* A + B; alias output and second operand => correct result and carry */
memcpy(X, B, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, A, X, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
if (memcmp(A, B, bytes) == 0) {
/* A == B, so test where A and B are aliased */
/* A + A => correct result and carry */
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, A, A, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
/* A + A, output aliased to both operands => correct result and carry */
memcpy(X, A, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, X, X, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
} else {
/* A != B, so test B + A */
/* B + A => correct result and carry */
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, B, A, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
/* B + A; alias output and first operand => correct result and carry */
memcpy(X, B, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, X, A, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
/* B + A; alias output and second operand => correct result and carry */
memcpy(X, A, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_add(X, B, X, limbs));
ASSERT_COMPARE(X, bytes, S, bytes);
}
ret = 1;
exit:
return ret;
}
/** Verifies mbedtls_mpi_core_add_if().
*
* \param[in] A Little-endian presentation of the left operand.
* \param[in] B Little-endian presentation of the right operand.
* \param limbs Number of limbs in each MPI (\p A, \p B, \p S and \p X).
* \param[in] S Little-endian presentation of the expected sum.
* \param carry Expected carry from the addition.
* \param[in,out] X Temporary storage to be used for results.
*
* \return 1 if mbedtls_mpi_core_add_if() passes this test, otherwise 0.
*/
static int mpi_core_verify_add_if(mbedtls_mpi_uint *A,
mbedtls_mpi_uint *B,
size_t limbs,
mbedtls_mpi_uint *S,
int carry,
mbedtls_mpi_uint *X)
{
int ret = 0;
size_t bytes = limbs * sizeof(*A);
/* The test cases have A <= B to avoid repetition, so we test A + B then,
* if A != B, B + A. If A == B, we can test when A and B are aliased */
/* A + B */
/* cond = 0 => X unchanged, no carry */
memcpy(X, A, bytes);
TEST_EQUAL(0, mbedtls_mpi_core_add_if(X, B, limbs, 0));
ASSERT_COMPARE(X, bytes, A, bytes);
/* cond = 1 => correct result and carry */
TEST_EQUAL(carry, mbedtls_mpi_core_add_if(X, B, limbs, 1));
ASSERT_COMPARE(X, bytes, S, bytes);
if (memcmp(A, B, bytes) == 0) {
/* A == B, so test where A and B are aliased */
/* cond = 0 => X unchanged, no carry */
memcpy(X, B, bytes);
TEST_EQUAL(0, mbedtls_mpi_core_add_if(X, X, limbs, 0));
ASSERT_COMPARE(X, bytes, B, bytes);
/* cond = 1 => correct result and carry */
TEST_EQUAL(carry, mbedtls_mpi_core_add_if(X, X, limbs, 1));
ASSERT_COMPARE(X, bytes, S, bytes);
} else {
/* A != B, so test B + A */
/* cond = 0 => d unchanged, no carry */
memcpy(X, B, bytes);
TEST_EQUAL(0, mbedtls_mpi_core_add_if(X, A, limbs, 0));
ASSERT_COMPARE(X, bytes, B, bytes);
/* cond = 1 => correct result and carry */
TEST_EQUAL(carry, mbedtls_mpi_core_add_if(X, A, limbs, 1));
ASSERT_COMPARE(X, bytes, S, bytes);
}
ret = 1;
exit:
return ret;
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_BIGNUM_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void mpi_core_io_null()
{
mbedtls_mpi_uint X = 0;
int ret;
ret = mbedtls_mpi_core_read_be(&X, 1, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_write_be(&X, 1, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_read_be(NULL, 0, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_write_be(NULL, 0, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_read_le(&X, 1, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_write_le(&X, 1, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_read_le(NULL, 0, NULL, 0);
TEST_EQUAL(ret, 0);
ret = mbedtls_mpi_core_write_le(NULL, 0, NULL, 0);
TEST_EQUAL(ret, 0);
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_io_be(data_t *input, int nb_int, int nx_32_int, int iret,
int oret)
{
if (iret != 0) {
TEST_ASSERT(oret == 0);
}
TEST_LE_S(0, nb_int);
size_t nb = nb_int;
unsigned char buf[1024];
TEST_LE_U(nb, sizeof(buf));
/* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need
* to halve the number of limbs to have the same size. */
size_t nx;
TEST_LE_S(0, nx_32_int);
if (sizeof(mbedtls_mpi_uint) == 8) {
nx = nx_32_int / 2 + nx_32_int % 2;
} else {
nx = nx_32_int;
}
mbedtls_mpi_uint X[sizeof(buf) / sizeof(mbedtls_mpi_uint)];
TEST_LE_U(nx, sizeof(X) / sizeof(X[0]));
int ret = mbedtls_mpi_core_read_be(X, nx, input->x, input->len);
TEST_EQUAL(ret, iret);
if (iret == 0) {
ret = mbedtls_mpi_core_write_be(X, nx, buf, nb);
TEST_EQUAL(ret, oret);
}
if ((iret == 0) && (oret == 0)) {
if (nb > input->len) {
size_t leading_zeroes = nb - input->len;
TEST_ASSERT(memcmp(buf + nb - input->len, input->x, input->len) == 0);
for (size_t i = 0; i < leading_zeroes; i++) {
TEST_EQUAL(buf[i], 0);
}
} else {
size_t leading_zeroes = input->len - nb;
TEST_ASSERT(memcmp(input->x + input->len - nb, buf, nb) == 0);
for (size_t i = 0; i < leading_zeroes; i++) {
TEST_EQUAL(input->x[i], 0);
}
}
}
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_io_le(data_t *input, int nb_int, int nx_32_int, int iret,
int oret)
{
if (iret != 0) {
TEST_ASSERT(oret == 0);
}
TEST_LE_S(0, nb_int);
size_t nb = nb_int;
unsigned char buf[1024];
TEST_LE_U(nb, sizeof(buf));
/* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need
* to halve the number of limbs to have the same size. */
size_t nx;
TEST_LE_S(0, nx_32_int);
if (sizeof(mbedtls_mpi_uint) == 8) {
nx = nx_32_int / 2 + nx_32_int % 2;
} else {
nx = nx_32_int;
}
mbedtls_mpi_uint X[sizeof(buf) / sizeof(mbedtls_mpi_uint)];
TEST_LE_U(nx, sizeof(X) / sizeof(X[0]));
int ret = mbedtls_mpi_core_read_le(X, nx, input->x, input->len);
TEST_EQUAL(ret, iret);
if (iret == 0) {
ret = mbedtls_mpi_core_write_le(X, nx, buf, nb);
TEST_EQUAL(ret, oret);
}
if ((iret == 0) && (oret == 0)) {
if (nb > input->len) {
TEST_ASSERT(memcmp(buf, input->x, input->len) == 0);
for (size_t i = input->len; i < nb; i++) {
TEST_EQUAL(buf[i], 0);
}
} else {
TEST_ASSERT(memcmp(input->x, buf, nb) == 0);
for (size_t i = nb; i < input->len; i++) {
TEST_EQUAL(input->x[i], 0);
}
}
}
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_bitlen(char *input_X, int nr_bits)
{
mbedtls_mpi_uint *X = NULL;
size_t limbs;
TEST_EQUAL(mbedtls_test_read_mpi_core(&X, &limbs, input_X), 0);
TEST_EQUAL(mbedtls_mpi_core_bitlen(X, limbs), nr_bits);
exit:
mbedtls_free(X);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_lt_ct(char *input_X, char *input_Y, int exp_ret)
{
mbedtls_mpi_uint *X = NULL;
size_t X_limbs;
mbedtls_mpi_uint *Y = NULL;
size_t Y_limbs;
int ret;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&Y, &Y_limbs, input_Y));
/* We need two same-length limb arrays */
TEST_EQUAL(X_limbs, Y_limbs);
TEST_CF_SECRET(X, X_limbs * sizeof(mbedtls_mpi_uint));
TEST_CF_SECRET(Y, X_limbs * sizeof(mbedtls_mpi_uint));
ret = mbedtls_mpi_core_lt_ct(X, Y, X_limbs);
TEST_EQUAL(ret, exp_ret);
exit:
mbedtls_free(X);
mbedtls_free(Y);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_uint_le_mpi(char *input_A)
{
mbedtls_mpi_uint *A = NULL;
size_t A_limbs = 0;
TEST_EQUAL(mbedtls_test_read_mpi_core(&A, &A_limbs, input_A), 0);
int is_large = 0; /* nonzero limbs beyond the lowest-order one? */
for (size_t i = 1; i < A_limbs; i++) {
if (A[i] != 0) {
is_large = 1;
break;
}
}
TEST_CF_SECRET(A, A_limbs * sizeof(*A));
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi(0, A, A_limbs), 1);
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi(A[0], A, A_limbs), 1);
if (is_large) {
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi(A[0] + 1,
A, A_limbs), 1);
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1) >> 1,
A, A_limbs), 1);
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1),
A, A_limbs), 1);
} else {
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi(A[0] + 1,
A, A_limbs),
A[0] + 1 <= A[0]);
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1) >> 1,
A, A_limbs),
(mbedtls_mpi_uint) (-1) >> 1 <= A[0]);
TEST_EQUAL(mbedtls_mpi_core_uint_le_mpi((mbedtls_mpi_uint) (-1),
A, A_limbs),
(mbedtls_mpi_uint) (-1) <= A[0]);
}
exit:
mbedtls_free(A);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_cond_assign(char *input_X,
char *input_Y,
int input_bytes)
{
mbedtls_mpi_uint *X = NULL;
mbedtls_mpi_uint *Y = NULL;
size_t limbs_X;
size_t limbs_Y;
TEST_EQUAL(mbedtls_test_read_mpi_core(&X, &limbs_X, input_X), 0);
TEST_EQUAL(mbedtls_test_read_mpi_core(&Y, &limbs_Y, input_Y), 0);
size_t limbs = limbs_X;
size_t copy_limbs = CHARS_TO_LIMBS(input_bytes);
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
size_t copy_bytes = copy_limbs * sizeof(mbedtls_mpi_uint);
TEST_EQUAL(limbs_X, limbs_Y);
TEST_ASSERT(copy_limbs <= limbs);
/* condition is false */
TEST_CF_SECRET(X, bytes);
TEST_CF_SECRET(Y, bytes);
mbedtls_mpi_core_cond_assign(X, Y, copy_limbs, 0);
TEST_CF_PUBLIC(X, bytes);
TEST_CF_PUBLIC(Y, bytes);
TEST_ASSERT(memcmp(X, Y, bytes) != 0);
/* condition is true */
TEST_CF_SECRET(X, bytes);
TEST_CF_SECRET(Y, bytes);
mbedtls_mpi_core_cond_assign(X, Y, copy_limbs, 1);
TEST_CF_PUBLIC(X, bytes);
TEST_CF_PUBLIC(Y, bytes);
/* Check if the given length is copied even it is smaller
than the length of the given MPIs. */
if (copy_limbs < limbs) {
TEST_CF_PUBLIC(X, bytes);
TEST_CF_PUBLIC(Y, bytes);
ASSERT_COMPARE(X, copy_bytes, Y, copy_bytes);
TEST_ASSERT(memcmp(X, Y, bytes) != 0);
} else {
ASSERT_COMPARE(X, bytes, Y, bytes);
}
exit:
mbedtls_free(X);
mbedtls_free(Y);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_cond_swap(char *input_X,
char *input_Y,
int input_bytes)
{
mbedtls_mpi_uint *tmp_X = NULL;
mbedtls_mpi_uint *tmp_Y = NULL;
mbedtls_mpi_uint *X = NULL;
mbedtls_mpi_uint *Y = NULL;
size_t limbs_X;
size_t limbs_Y;
TEST_EQUAL(mbedtls_test_read_mpi_core(&tmp_X, &limbs_X, input_X), 0);
TEST_EQUAL(mbedtls_test_read_mpi_core(&tmp_Y, &limbs_Y, input_Y), 0);
size_t limbs = limbs_X;
size_t copy_limbs = CHARS_TO_LIMBS(input_bytes);
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
size_t copy_bytes = copy_limbs * sizeof(mbedtls_mpi_uint);
TEST_EQUAL(limbs_X, limbs_Y);
TEST_ASSERT(copy_limbs <= limbs);
ASSERT_ALLOC(X, limbs);
memcpy(X, tmp_X, bytes);
ASSERT_ALLOC(Y, limbs);
memcpy(Y, tmp_Y, bytes);
/* condition is false */
TEST_CF_SECRET(X, bytes);
TEST_CF_SECRET(Y, bytes);
mbedtls_mpi_core_cond_swap(X, Y, copy_limbs, 0);
TEST_CF_PUBLIC(X, bytes);
TEST_CF_PUBLIC(Y, bytes);
ASSERT_COMPARE(X, bytes, tmp_X, bytes);
ASSERT_COMPARE(Y, bytes, tmp_Y, bytes);
/* condition is true */
TEST_CF_SECRET(X, bytes);
TEST_CF_SECRET(Y, bytes);
mbedtls_mpi_core_cond_swap(X, Y, copy_limbs, 1);
TEST_CF_PUBLIC(X, bytes);
TEST_CF_PUBLIC(Y, bytes);
/* Check if the given length is copied even it is smaller
than the length of the given MPIs. */
if (copy_limbs < limbs) {
ASSERT_COMPARE(X, copy_bytes, tmp_Y, copy_bytes);
ASSERT_COMPARE(Y, copy_bytes, tmp_X, copy_bytes);
TEST_ASSERT(memcmp(X, tmp_X, bytes) != 0);
TEST_ASSERT(memcmp(X, tmp_Y, bytes) != 0);
TEST_ASSERT(memcmp(Y, tmp_X, bytes) != 0);
TEST_ASSERT(memcmp(Y, tmp_Y, bytes) != 0);
} else {
ASSERT_COMPARE(X, bytes, tmp_Y, bytes);
ASSERT_COMPARE(Y, bytes, tmp_X, bytes);
}
exit:
mbedtls_free(tmp_X);
mbedtls_free(tmp_Y);
mbedtls_free(X);
mbedtls_free(Y);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_shift_r(char *input, int count, char *result)
{
mbedtls_mpi_uint *X = NULL;
mbedtls_mpi_uint *Y = NULL;
size_t limbs, n;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &limbs, input));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&Y, &n, result));
TEST_EQUAL(limbs, n);
mbedtls_mpi_core_shift_r(X, limbs, count);
ASSERT_COMPARE(X, limbs * ciL, Y, limbs * ciL);
exit:
mbedtls_free(X);
mbedtls_free(Y);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_add_and_add_if(char *input_A, char *input_B,
char *input_S, int carry)
{
mbedtls_mpi_uint *A = NULL; /* first value to add */
mbedtls_mpi_uint *B = NULL; /* second value to add */
mbedtls_mpi_uint *S = NULL; /* expected result */
mbedtls_mpi_uint *X = NULL; /* destination - the in/out first operand */
size_t A_limbs, B_limbs, S_limbs;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&A, &A_limbs, input_A));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&B, &B_limbs, input_B));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&S, &S_limbs, input_S));
/* add and add_if expect all operands to be the same length */
TEST_EQUAL(A_limbs, B_limbs);
TEST_EQUAL(A_limbs, S_limbs);
size_t limbs = A_limbs;
ASSERT_ALLOC(X, limbs);
TEST_ASSERT(mpi_core_verify_add(A, B, limbs, S, carry, X));
TEST_ASSERT(mpi_core_verify_add_if(A, B, limbs, S, carry, X));
exit:
mbedtls_free(A);
mbedtls_free(B);
mbedtls_free(S);
mbedtls_free(X);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_sub(char *input_A, char *input_B,
char *input_X, int carry)
{
mbedtls_mpi A, B, X;
mbedtls_mpi_uint *a = NULL;
mbedtls_mpi_uint *b = NULL;
mbedtls_mpi_uint *x = NULL; /* expected */
mbedtls_mpi_uint *r = NULL; /* result */
mbedtls_mpi_init(&A);
mbedtls_mpi_init(&B);
mbedtls_mpi_init(&X);
TEST_EQUAL(0, mbedtls_test_read_mpi(&A, input_A));
TEST_EQUAL(0, mbedtls_test_read_mpi(&B, input_B));
TEST_EQUAL(0, mbedtls_test_read_mpi(&X, input_X));
/* All of the inputs are +ve (or zero) */
TEST_EQUAL(1, A.s);
TEST_EQUAL(1, B.s);
TEST_EQUAL(1, X.s);
/* Get the number of limbs we will need */
size_t limbs = MAX(A.n, B.n);
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
/* The result shouldn't have more limbs than the longest input */
TEST_LE_U(X.n, limbs);
/* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */
/* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */
ASSERT_ALLOC(a, bytes);
ASSERT_ALLOC(b, bytes);
ASSERT_ALLOC(x, bytes);
ASSERT_ALLOC(r, bytes);
/* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as
* processed by mbedtls_mpi_core_sub()) are little endian, we can just
* copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC())
*/
memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint));
memcpy(b, B.p, B.n * sizeof(mbedtls_mpi_uint));
memcpy(x, X.p, X.n * sizeof(mbedtls_mpi_uint));
/* 1a) r = a - b => we should get the correct carry */
TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, a, b, limbs));
/* 1b) r = a - b => we should get the correct result */
ASSERT_COMPARE(r, bytes, x, bytes);
/* 2 and 3 test "r may be aliased to a or b" */
/* 2a) r = a; r -= b => we should get the correct carry (use r to avoid clobbering a) */
memcpy(r, a, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, r, b, limbs));
/* 2b) r -= b => we should get the correct result */
ASSERT_COMPARE(r, bytes, x, bytes);
/* 3a) r = b; r = a - r => we should get the correct carry (use r to avoid clobbering b) */
memcpy(r, b, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, a, r, limbs));
/* 3b) r = a - b => we should get the correct result */
ASSERT_COMPARE(r, bytes, x, bytes);
/* 4 tests "r may be aliased to [...] both" */
if (A.n == B.n && memcmp(A.p, B.p, bytes) == 0) {
memcpy(r, b, bytes);
TEST_EQUAL(carry, mbedtls_mpi_core_sub(r, r, r, limbs));
ASSERT_COMPARE(r, bytes, x, bytes);
}
exit:
mbedtls_free(a);
mbedtls_free(b);
mbedtls_free(x);
mbedtls_free(r);
mbedtls_mpi_free(&A);
mbedtls_mpi_free(&B);
mbedtls_mpi_free(&X);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_mla(char *input_A, char *input_B, char *input_S,
char *input_X4, char *input_cy4,
char *input_X8, char *input_cy8)
{
/* We are testing A += B * s; A, B are MPIs, s is a scalar.
*
* However, we encode s as an MPI in the .data file as the test framework
* currently only supports `int`-typed scalars, and that doesn't cover the
* full range of `mbedtls_mpi_uint`.
*
* We also have the different results for sizeof(mbedtls_mpi_uint) == 4 or 8.
*/
mbedtls_mpi A, B, S, X4, X8, cy4, cy8;
mbedtls_mpi_uint *a = NULL;
mbedtls_mpi_uint *x = NULL;
mbedtls_mpi_init(&A);
mbedtls_mpi_init(&B);
mbedtls_mpi_init(&S);
mbedtls_mpi_init(&X4);
mbedtls_mpi_init(&X8);
mbedtls_mpi_init(&cy4);
mbedtls_mpi_init(&cy8);
TEST_EQUAL(0, mbedtls_test_read_mpi(&A, input_A));
TEST_EQUAL(0, mbedtls_test_read_mpi(&B, input_B));
TEST_EQUAL(0, mbedtls_test_read_mpi(&S, input_S));
TEST_EQUAL(0, mbedtls_test_read_mpi(&X4, input_X4));
TEST_EQUAL(0, mbedtls_test_read_mpi(&cy4, input_cy4));
TEST_EQUAL(0, mbedtls_test_read_mpi(&X8, input_X8));
TEST_EQUAL(0, mbedtls_test_read_mpi(&cy8, input_cy8));
/* The MPI encoding of scalar s must be only 1 limb */
TEST_EQUAL(1, S.n);
/* We only need to work with X4 or X8, and cy4 or cy8, depending on sizeof(mbedtls_mpi_uint) */
mbedtls_mpi *X = (sizeof(mbedtls_mpi_uint) == 4) ? &X4 : &X8;
mbedtls_mpi *cy = (sizeof(mbedtls_mpi_uint) == 4) ? &cy4 : &cy8;
/* The carry should only have one limb */
TEST_EQUAL(1, cy->n);
/* All of the inputs are +ve (or zero) */
TEST_EQUAL(1, A.s);
TEST_EQUAL(1, B.s);
TEST_EQUAL(1, S.s);
TEST_EQUAL(1, X->s);
TEST_EQUAL(1, cy->s);
/* Get the (max) number of limbs we will need */
size_t limbs = MAX(A.n, B.n);
size_t bytes = limbs * sizeof(mbedtls_mpi_uint);
/* The result shouldn't have more limbs than the longest input */
TEST_LE_U(X->n, limbs);
/* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */
/* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */
ASSERT_ALLOC(a, bytes);
ASSERT_ALLOC(x, bytes);
/* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as
* processed by mbedtls_mpi_core_mla()) are little endian, we can just
* copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()).
*/
memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint));
memcpy(x, X->p, X->n * sizeof(mbedtls_mpi_uint));
/* 1a) A += B * s => we should get the correct carry */
TEST_EQUAL(mbedtls_mpi_core_mla(a, limbs, B.p, B.n, *S.p), *cy->p);
/* 1b) A += B * s => we should get the correct result */
ASSERT_COMPARE(a, bytes, x, bytes);
if (A.n == B.n && memcmp(A.p, B.p, bytes) == 0) {
/* Check when A and B are aliased */
memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint));
TEST_EQUAL(mbedtls_mpi_core_mla(a, limbs, a, limbs, *S.p), *cy->p);
ASSERT_COMPARE(a, bytes, x, bytes);
}
exit:
mbedtls_free(a);
mbedtls_free(x);
mbedtls_mpi_free(&A);
mbedtls_mpi_free(&B);
mbedtls_mpi_free(&S);
mbedtls_mpi_free(&X4);
mbedtls_mpi_free(&X8);
mbedtls_mpi_free(&cy4);
mbedtls_mpi_free(&cy8);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_montg_init(char *input_N, char *input_mm)
{
mbedtls_mpi N, mm;
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&mm);
TEST_EQUAL(0, mbedtls_test_read_mpi(&N, input_N));
TEST_EQUAL(0, mbedtls_test_read_mpi(&mm, input_mm));
/* The MPI encoding of mm should be 1 limb (sizeof(mbedtls_mpi_uint) == 8) or
* 2 limbs (sizeof(mbedtls_mpi_uint) == 4).
*
* The data file contains the expected result for sizeof(mbedtls_mpi_uint) == 8;
* for sizeof(mbedtls_mpi_uint) == 4 it's just the LSW of this.
*/
TEST_ASSERT(mm.n == 1 || mm.n == 2);
/* All of the inputs are +ve (or zero) */
TEST_EQUAL(1, N.s);
TEST_EQUAL(1, mm.s);
/* mbedtls_mpi_core_montmul_init() only returns a result, no error possible */
mbedtls_mpi_uint result = mbedtls_mpi_core_montmul_init(N.p);
/* Check we got the correct result */
TEST_EQUAL(result, mm.p[0]);
exit:
mbedtls_mpi_free(&N);
mbedtls_mpi_free(&mm);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_montmul(int limbs_AN4, int limbs_B4,
int limbs_AN8, int limbs_B8,
char *input_A,
char *input_B,
char *input_N,
char *input_X4,
char *input_X8)
{
mbedtls_mpi A, B, N, X4, X8, T, R;
mbedtls_mpi_init(&A);
mbedtls_mpi_init(&B);
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&X4); /* expected result, sizeof(mbedtls_mpi_uint) == 4 */
mbedtls_mpi_init(&X8); /* expected result, sizeof(mbedtls_mpi_uint) == 8 */
mbedtls_mpi_init(&T);
mbedtls_mpi_init(&R); /* for the result */
TEST_EQUAL(0, mbedtls_test_read_mpi(&A, input_A));
TEST_EQUAL(0, mbedtls_test_read_mpi(&B, input_B));
TEST_EQUAL(0, mbedtls_test_read_mpi(&N, input_N));
TEST_EQUAL(0, mbedtls_test_read_mpi(&X4, input_X4));
TEST_EQUAL(0, mbedtls_test_read_mpi(&X8, input_X8));
mbedtls_mpi *X = (sizeof(mbedtls_mpi_uint) == 4) ? &X4 : &X8;
int limbs_AN = (sizeof(mbedtls_mpi_uint) == 4) ? limbs_AN4 : limbs_AN8;
int limbs_B = (sizeof(mbedtls_mpi_uint) == 4) ? limbs_B4 : limbs_B8;
TEST_LE_U(A.n, (size_t) limbs_AN);
TEST_LE_U(X->n, (size_t) limbs_AN);
TEST_LE_U(B.n, (size_t) limbs_B);
TEST_LE_U(limbs_B, limbs_AN);
/* All of the inputs are +ve (or zero) */
TEST_EQUAL(1, A.s);
TEST_EQUAL(1, B.s);
TEST_EQUAL(1, N.s);
TEST_EQUAL(1, X->s);
TEST_EQUAL(0, mbedtls_mpi_grow(&A, limbs_AN));
TEST_EQUAL(0, mbedtls_mpi_grow(&N, limbs_AN));
TEST_EQUAL(0, mbedtls_mpi_grow(X, limbs_AN));
TEST_EQUAL(0, mbedtls_mpi_grow(&B, limbs_B));
size_t working_limbs = mbedtls_mpi_core_montmul_working_limbs(limbs_AN);
TEST_EQUAL(working_limbs, limbs_AN * 2 + 1);
TEST_EQUAL(0, mbedtls_mpi_grow(&T, working_limbs));
/* Calculate the Montgomery constant (this is unit tested separately) */
mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N.p);
TEST_EQUAL(0, mbedtls_mpi_grow(&R, limbs_AN)); /* ensure it's got the right number of limbs */
mbedtls_mpi_core_montmul(R.p, A.p, B.p, B.n, N.p, N.n, mm, T.p);
size_t bytes = N.n * sizeof(mbedtls_mpi_uint);
ASSERT_COMPARE(R.p, bytes, X->p, bytes);
/* The output (R, above) may be aliased to A - use R to save the value of A */
memcpy(R.p, A.p, bytes);
mbedtls_mpi_core_montmul(A.p, A.p, B.p, B.n, N.p, N.n, mm, T.p);
ASSERT_COMPARE(A.p, bytes, X->p, bytes);
memcpy(A.p, R.p, bytes); /* restore A */
/* The output may be aliased to N - use R to save the value of N */
memcpy(R.p, N.p, bytes);
mbedtls_mpi_core_montmul(N.p, A.p, B.p, B.n, N.p, N.n, mm, T.p);
ASSERT_COMPARE(N.p, bytes, X->p, bytes);
memcpy(N.p, R.p, bytes);
if (limbs_AN == limbs_B) {
/* Test when A aliased to B (requires A == B on input values) */
if (memcmp(A.p, B.p, bytes) == 0) {
/* Test with A aliased to B and output, since this is permitted -
* don't bother with yet another test with only A and B aliased */
mbedtls_mpi_core_montmul(B.p, B.p, B.p, B.n, N.p, N.n, mm, T.p);
ASSERT_COMPARE(B.p, bytes, X->p, bytes);
memcpy(B.p, A.p, bytes); /* restore B from equal value A */
}
/* The output may be aliased to B - last test, so we don't save B */
mbedtls_mpi_core_montmul(B.p, A.p, B.p, B.n, N.p, N.n, mm, T.p);
ASSERT_COMPARE(B.p, bytes, X->p, bytes);
}
exit:
mbedtls_mpi_free(&A);
mbedtls_mpi_free(&B);
mbedtls_mpi_free(&N);
mbedtls_mpi_free(&X4);
mbedtls_mpi_free(&X8);
mbedtls_mpi_free(&T);
mbedtls_mpi_free(&R);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_get_mont_r2_unsafe_neg()
{
mbedtls_mpi N, RR;
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&RR);
const char *n = "7ffffffffffffff1";
/* Test for zero divisor */
TEST_EQUAL(MBEDTLS_ERR_MPI_DIVISION_BY_ZERO,
mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N));
/* Test for negative input */
TEST_EQUAL(0, mbedtls_test_read_mpi(&N, n));
N.s = -1;
TEST_EQUAL(MBEDTLS_ERR_MPI_NEGATIVE_VALUE,
mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N));
N.s = 1;
exit:
mbedtls_mpi_free(&N);
mbedtls_mpi_free(&RR);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_get_mont_r2_unsafe(char *input_N,
char *input_RR_X4,
char *input_RR_X8)
{
mbedtls_mpi N, RR, RR_REF;
/* Select the appropriate output */
char *input_rr = (sizeof(mbedtls_mpi_uint) == 4) ? input_RR_X4 : input_RR_X8;
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&RR);
mbedtls_mpi_init(&RR_REF);
/* Read inputs */
TEST_EQUAL(0, mbedtls_test_read_mpi(&N, input_N));
TEST_EQUAL(0, mbedtls_test_read_mpi(&RR_REF, input_rr));
/* All of the inputs are +ve (or zero) */
TEST_EQUAL(1, N.s);
TEST_EQUAL(1, RR_REF.s);
/* Test valid input */
TEST_EQUAL(0, mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N));
/* Test that the moduli is odd */
TEST_EQUAL(N.p[0] ^ 1, N.p[0] - 1);
/* Output is +ve (or zero) */
TEST_EQUAL(1, RR_REF.s);
/* rr is updated to a valid pointer */
TEST_ASSERT(RR.p != NULL);
/* Calculated rr matches expected value */
TEST_ASSERT(mbedtls_mpi_cmp_mpi(&RR, &RR_REF) == 0);
exit:
mbedtls_mpi_free(&N);
mbedtls_mpi_free(&RR);
mbedtls_mpi_free(&RR_REF);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS */
void mpi_core_ct_uint_table_lookup(int bitlen, int window_size)
{
size_t limbs = BITS_TO_LIMBS(bitlen);
size_t count = ((size_t) 1) << window_size;
mbedtls_mpi_uint *table = NULL;
mbedtls_mpi_uint *dest = NULL;
ASSERT_ALLOC(table, limbs * count);
ASSERT_ALLOC(dest, limbs);
/*
* Fill the table with a unique counter so that differences are easily
* detected. (And have their relationship to the index relatively non-trivial just
* to be sure.)
*/
for (size_t i = 0; i < count * limbs; i++) {
table[i] = ~i - 1;
}
for (size_t i = 0; i < count; i++) {
mbedtls_mpi_uint *current = table + i * limbs;
memset(dest, 0x00, limbs * sizeof(*dest));
/*
* We shouldn't leak anything through timing.
* We need to set these in every loop as we need to make the loop
* variable public for the loop head and the buffers for comparison.
*/
TEST_CF_SECRET(&i, sizeof(i));
TEST_CF_SECRET(dest, limbs * sizeof(*dest));
TEST_CF_SECRET(table, count * limbs * sizeof(*table));
mbedtls_mpi_core_ct_uint_table_lookup(dest, table, limbs, count, i);
TEST_CF_PUBLIC(dest, limbs * sizeof(*dest));
TEST_CF_PUBLIC(table, count * limbs * sizeof(*table));
ASSERT_COMPARE(dest, limbs * sizeof(*dest),
current, limbs * sizeof(*current));
TEST_CF_PUBLIC(&i, sizeof(i));
}
exit:
mbedtls_free(table);
mbedtls_free(dest);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_fill_random(int wanted_bytes_arg, int extra_rng_bytes,
int extra_limbs, int before, int expected_ret)
{
size_t wanted_bytes = wanted_bytes_arg;
mbedtls_mpi_uint *X = NULL;
size_t X_limbs = CHARS_TO_LIMBS(wanted_bytes) + extra_limbs;
size_t rng_bytes = wanted_bytes + extra_rng_bytes;
unsigned char *rnd_data = NULL;
mbedtls_test_rnd_buf_info rnd_info = { NULL, rng_bytes, NULL, NULL };
int ret;
/* Prepare an RNG with known output, limited to rng_bytes. */
ASSERT_ALLOC(rnd_data, rng_bytes);
TEST_EQUAL(0, mbedtls_test_rnd_std_rand(NULL, rnd_data, rng_bytes));
rnd_info.buf = rnd_data;
/* Allocate an MPI with room for wanted_bytes plus extra_limbs.
* extra_limbs may be negative but the total limb count must be positive.
* Fill the MPI with the byte value in before. */
TEST_LE_U(1, X_limbs);
ASSERT_ALLOC(X, X_limbs);
memset(X, before, X_limbs * sizeof(*X));
ret = mbedtls_mpi_core_fill_random(X, X_limbs, wanted_bytes,
mbedtls_test_rnd_buffer_rand,
&rnd_info);
TEST_EQUAL(expected_ret, ret);
if (expected_ret == 0) {
/* mbedtls_mpi_core_fill_random is documented to use bytes from the
* RNG as a big-endian representation of the number. We used an RNG
* with known output, so check that the output contains the
* expected value. Bytes above wanted_bytes must be zero. */
for (size_t i = 0; i < wanted_bytes; i++) {
mbedtls_test_set_step(i);
TEST_EQUAL(GET_BYTE(X, i), rnd_data[wanted_bytes - 1 - i]);
}
for (size_t i = wanted_bytes; i < X_limbs * ciL; i++) {
mbedtls_test_set_step(i);
TEST_EQUAL(GET_BYTE(X, i), 0);
}
}
exit:
mbedtls_free(rnd_data);
mbedtls_free(X);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_mul(char *input_A_hex, char *input_B_hex,
char *expected_hex)
{
mbedtls_mpi A, B, Expected;
mbedtls_mpi_uint *a = NULL;
mbedtls_mpi_uint *b = NULL;
mbedtls_mpi_uint *expected = NULL;
mbedtls_mpi_uint *r = NULL;
mbedtls_mpi_init(&A);
mbedtls_mpi_init(&B);
mbedtls_mpi_init(&Expected);
TEST_EQUAL(mbedtls_test_read_mpi(&A, input_A_hex), 0);
TEST_EQUAL(mbedtls_test_read_mpi(&B, input_B_hex), 0);
TEST_EQUAL(mbedtls_test_read_mpi(&Expected, expected_hex), 0);
/* All of the inputs are +ve (or zero) */
TEST_EQUAL(A.s, 1);
TEST_EQUAL(B.s, 1);
TEST_EQUAL(Expected.s, 1);
/* Test cases are such that A <= B, so #limbs should be <= */
TEST_ASSERT(A.n <= B.n);
TEST_ASSERT(A.n + B.n >= Expected.n);
size_t output_limbs = A.n + B.n;
TEST_EQUAL(mbedtls_mpi_grow(&Expected, output_limbs), 0);
TEST_EQUAL(Expected.n, output_limbs);
/* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */
a = mbedtls_calloc(A.n, sizeof(mbedtls_mpi_uint));
b = mbedtls_calloc(B.n, sizeof(mbedtls_mpi_uint));
expected = mbedtls_calloc(Expected.n, sizeof(mbedtls_mpi_uint));
r = mbedtls_calloc(output_limbs, sizeof(mbedtls_mpi_uint));
TEST_ASSERT(a != NULL);
TEST_ASSERT(b != NULL);
TEST_ASSERT(expected != NULL);
TEST_ASSERT(r != NULL);
/* Populate the arrays */
memcpy(a, A.p, A.n * sizeof(mbedtls_mpi_uint));
memcpy(b, B.p, B.n * sizeof(mbedtls_mpi_uint));
memcpy(expected, Expected.p, Expected.n * sizeof(mbedtls_mpi_uint));
/* Set result to something that is unlikely to be correct */
memset(r, '!', output_limbs * sizeof(mbedtls_mpi_uint));
/* 1. r = a * b - result should be correct, a and b unchanged */
mbedtls_mpi_core_mul(r, A.p, A.n, B.p, B.n);
TEST_EQUAL(memcmp(r, expected, output_limbs * sizeof(mbedtls_mpi_uint)), 0);
TEST_EQUAL(memcmp(a, A.p, A.n * sizeof(mbedtls_mpi_uint)), 0);
TEST_EQUAL(memcmp(b, B.p, B.n * sizeof(mbedtls_mpi_uint)), 0);
/* 2. r = b * a - result should be correct, a and b unchanged */
memset(r, '!', output_limbs * sizeof(mbedtls_mpi_uint));
mbedtls_mpi_core_mul(r, B.p, B.n, A.p, A.n);
TEST_EQUAL(memcmp(r, expected, output_limbs * sizeof(mbedtls_mpi_uint)), 0);
TEST_EQUAL(memcmp(a, A.p, A.n * sizeof(mbedtls_mpi_uint)), 0);
TEST_EQUAL(memcmp(b, B.p, B.n * sizeof(mbedtls_mpi_uint)), 0);
exit:
mbedtls_free(a);
mbedtls_free(b);
mbedtls_free(expected);
mbedtls_free(r);
mbedtls_mpi_free(&A);
mbedtls_mpi_free(&B);
mbedtls_mpi_free(&Expected);
}
/* END_CASE */
/* BEGIN MERGE SLOT 1 */
/* BEGIN_CASE */
void mpi_core_exp_mod(char *input_N, char *input_A,
char *input_E, char *input_X)
{
mbedtls_mpi_uint *A = NULL;
mbedtls_mpi_uint *E = NULL;
mbedtls_mpi_uint *N = NULL;
mbedtls_mpi_uint *X = NULL;
size_t A_limbs, E_limbs, N_limbs, X_limbs;
const mbedtls_mpi_uint *R2 = NULL;
mbedtls_mpi_uint *Y = NULL;
mbedtls_mpi_uint *T = NULL;
/* Legacy MPIs for computing R2 */
mbedtls_mpi N_mpi;
mbedtls_mpi_init(&N_mpi);
mbedtls_mpi R2_mpi;
mbedtls_mpi_init(&R2_mpi);
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&A, &A_limbs, input_A));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&E, &E_limbs, input_E));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&N, &N_limbs, input_N));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X));
ASSERT_ALLOC(Y, N_limbs);
TEST_EQUAL(A_limbs, N_limbs);
TEST_EQUAL(X_limbs, N_limbs);
TEST_EQUAL(0, mbedtls_mpi_grow(&N_mpi, N_limbs));
memcpy(N_mpi.p, N, N_limbs * sizeof(*N));
N_mpi.n = N_limbs;
TEST_EQUAL(0,
mbedtls_mpi_core_get_mont_r2_unsafe(&R2_mpi, &N_mpi));
TEST_EQUAL(0, mbedtls_mpi_grow(&R2_mpi, N_limbs));
R2 = R2_mpi.p;
size_t working_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N_limbs,
E_limbs);
/* No point exactly duplicating the code in mbedtls_mpi_core_exp_mod_working_limbs()
* to see if the output is correct, but we can check that it's in a
* reasonable range. The current calculation works out as
* `1 + N_limbs * (welem + 3)`, where welem is the number of elements in
* the window (1 << 1 up to 1 << 6).
*/
size_t min_expected_working_limbs = 1 + N_limbs * 4;
size_t max_expected_working_limbs = 1 + N_limbs * 67;
TEST_LE_U(min_expected_working_limbs, working_limbs);
TEST_LE_U(working_limbs, max_expected_working_limbs);
/* Should also be at least mbedtls_mpi_core_montmul_working_limbs() */
TEST_LE_U(mbedtls_mpi_core_montmul_working_limbs(N_limbs),
working_limbs);
ASSERT_ALLOC(T, working_limbs);
mbedtls_mpi_core_exp_mod(Y, A, N, N_limbs, E, E_limbs, R2, T);
TEST_EQUAL(0, memcmp(X, Y, N_limbs * sizeof(mbedtls_mpi_uint)));
/* Check when output aliased to input */
mbedtls_mpi_core_exp_mod(A, A, N, N_limbs, E, E_limbs, R2, T);
TEST_EQUAL(0, memcmp(X, A, N_limbs * sizeof(mbedtls_mpi_uint)));
exit:
mbedtls_free(T);
mbedtls_free(A);
mbedtls_free(E);
mbedtls_free(N);
mbedtls_free(X);
mbedtls_free(Y);
mbedtls_mpi_free(&N_mpi);
mbedtls_mpi_free(&R2_mpi);
// R2 doesn't need to be freed as it is only aliasing R2_mpi
}
/* END_CASE */
/* END MERGE SLOT 1 */
/* BEGIN MERGE SLOT 2 */
/* END MERGE SLOT 2 */
/* BEGIN MERGE SLOT 3 */
/* BEGIN_CASE */
void mpi_core_sub_int(char *input_A, char *input_B,
char *input_X, int borrow)
{
/* We are testing A - b, where A is an MPI and b is a scalar, expecting
* result X with borrow borrow. However, for ease of handling we encode b
* as a 1-limb MPI (B) in the .data file. */
mbedtls_mpi_uint *A = NULL;
mbedtls_mpi_uint *B = NULL;
mbedtls_mpi_uint *X = NULL;
mbedtls_mpi_uint *R = NULL;
size_t A_limbs, B_limbs, X_limbs;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&A, &A_limbs, input_A));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&B, &B_limbs, input_B));
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X));
/* The MPI encoding of scalar b must be only 1 limb */
TEST_EQUAL(B_limbs, 1);
/* The subtraction is fixed-width, so A and X must have the same number of limbs */
TEST_EQUAL(A_limbs, X_limbs);
size_t limbs = A_limbs;
ASSERT_ALLOC(R, limbs);
#define TEST_COMPARE_CORE_MPIS(A, B, limbs) \
ASSERT_COMPARE(A, (limbs) * sizeof(mbedtls_mpi_uint), B, (limbs) * sizeof(mbedtls_mpi_uint))
/* 1. R = A - b. Result and borrow should be correct */
TEST_EQUAL(mbedtls_mpi_core_sub_int(R, A, B[0], limbs), borrow);
TEST_COMPARE_CORE_MPIS(R, X, limbs);
/* 2. A = A - b. Result and borrow should be correct */
TEST_EQUAL(mbedtls_mpi_core_sub_int(A, A, B[0], limbs), borrow);
TEST_COMPARE_CORE_MPIS(A, X, limbs);
exit:
mbedtls_free(A);
mbedtls_free(B);
mbedtls_free(X);
mbedtls_free(R);
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_core_check_zero_ct(char *input_X, int expected_is_zero)
{
mbedtls_mpi_uint *X = NULL;
size_t X_limbs;
TEST_EQUAL(0, mbedtls_test_read_mpi_core(&X, &X_limbs, input_X));
TEST_CF_SECRET(X, X_limbs * sizeof(mbedtls_mpi_uint));
mbedtls_mpi_uint check = mbedtls_mpi_core_check_zero_ct(X, X_limbs);
int is_zero = (check == 0);
TEST_EQUAL(is_zero, expected_is_zero);
exit:
mbedtls_free(X);
}
/* END_CASE */
/* END MERGE SLOT 3 */
/* BEGIN MERGE SLOT 4 */
/* END MERGE SLOT 4 */
/* BEGIN MERGE SLOT 5 */
/* END MERGE SLOT 5 */
/* BEGIN MERGE SLOT 6 */
/* END MERGE SLOT 6 */
/* BEGIN MERGE SLOT 7 */
/* END MERGE SLOT 7 */
/* BEGIN MERGE SLOT 8 */
/* END MERGE SLOT 8 */
/* BEGIN MERGE SLOT 9 */
/* END MERGE SLOT 9 */
/* BEGIN MERGE SLOT 10 */
/* END MERGE SLOT 10 */