mbedtls/tests/suites/test_suite_alignment.function
Agathiyan Bragadeesh dc28a5a105 Rename ASSERT_FALSE to TEST_FAIL
Signed-off-by: Agathiyan Bragadeesh <agathiyan.bragadeesh2@arm.com>
2023-07-18 11:45:28 +01:00

360 lines
9.6 KiB
C

/* BEGIN_HEADER */
#include "../library/alignment.h"
#include <stdint.h>
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wunreachable-code"
#endif
/*
* Convert a string of the form "abcd" (case-insensitive) to a uint64_t.
*/
int parse_hex_string(char *hex_string, uint64_t *result)
{
uint8_t raw[8] = { 0 };
size_t olen;
if (mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0) {
return 0;
}
*result = 0;
for (size_t i = 0; i < olen; i++) {
*result |= ((uint64_t) raw[i]) << ((olen - i - 1) * 8);
}
return 1;
}
/* END_HEADER */
/* BEGIN_CASE */
void mbedtls_unaligned_access(int size, int offset)
{
/* Define 64-bit aligned raw byte array */
uint64_t raw[2];
/* Populate with known data */
uint8_t *x = (uint8_t *) raw;
for (size_t i = 0; i < sizeof(raw); i++) {
x[i] = (uint8_t) i;
}
TEST_ASSERT(size == 16 || size == 32 || size == 64);
uint64_t r = 0;
switch (size) {
case 16:
r = mbedtls_get_unaligned_uint16(x + offset);
break;
case 32:
r = mbedtls_get_unaligned_uint32(x + offset);
break;
case 64:
r = mbedtls_get_unaligned_uint64(x + offset);
break;
}
/* Define expected result by manually aligning the raw bytes, and
* reading back with a normal pointer access. */
uint64_t raw_aligned_64;
uint16_t *raw_aligned_16 = (uint16_t *) &raw_aligned_64;
uint32_t *raw_aligned_32 = (uint32_t *) &raw_aligned_64;
memcpy(&raw_aligned_64, ((uint8_t *) &raw) + offset, size / 8);
/* Make a 16/32/64 byte read from the aligned location, and copy to expected */
uint64_t expected = 0;
switch (size) {
case 16:
expected = *raw_aligned_16;
break;
case 32:
expected = *raw_aligned_32;
break;
case 64:
expected = raw_aligned_64;
break;
}
TEST_EQUAL(r, expected);
/* Write sentinel to the part of the array we will test writing to */
for (size_t i = 0; i < (size_t) (size / 8); i++) {
x[i + offset] = 0xff;
}
/*
* Write back to the array with mbedtls_put_unaligned_uint16 and validate
* that the array is unchanged as a result.
*/
switch (size) {
case 16:
mbedtls_put_unaligned_uint16(x + offset, r);
break;
case 32:
mbedtls_put_unaligned_uint32(x + offset, r);
break;
case 64:
mbedtls_put_unaligned_uint64(x + offset, r);
break;
}
for (size_t i = 0; i < sizeof(x); i++) {
TEST_EQUAL(x[i], (uint8_t) i);
}
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_byteswap(char *input_str, int size, char *expected_str)
{
uint64_t input = 0, expected = 0;
TEST_ASSERT(parse_hex_string(input_str, &input));
TEST_ASSERT(parse_hex_string(expected_str, &expected));
/* Check against expected result */
uint64_t r = 0;
switch (size) {
case 16:
r = MBEDTLS_BSWAP16(input);
break;
case 32:
r = MBEDTLS_BSWAP32(input);
break;
case 64:
r = MBEDTLS_BSWAP64(input);
break;
default:
TEST_FAIL("size must be 16, 32 or 64");
}
TEST_EQUAL(r, expected);
/*
* Check byte by byte by extracting bytes from opposite ends of
* input and r.
*/
for (size_t i = 0; i < (size_t) (size / 8); i++) {
size_t s1 = i * 8;
size_t s2 = ((size / 8 - 1) - i) * 8;
uint64_t a = (input & ((uint64_t) 0xff << s1)) >> s1;
uint64_t b = (r & ((uint64_t) 0xff << s2)) >> s2;
TEST_EQUAL(a, b);
}
/* Check BSWAP(BSWAP(x)) == x */
switch (size) {
case 16:
r = MBEDTLS_BSWAP16(r);
TEST_EQUAL(r, input & 0xffff);
break;
case 32:
r = MBEDTLS_BSWAP32(r);
TEST_EQUAL(r, input & 0xffffffff);
break;
case 64:
r = MBEDTLS_BSWAP64(r);
TEST_EQUAL(r, input);
break;
}
}
/* END_CASE */
/* BEGIN_CASE */
void get_byte()
{
uint8_t data[16];
for (size_t i = 0; i < sizeof(data); i++) {
data[i] = (uint8_t) i;
}
uint64_t u64 = 0x0706050403020100;
for (size_t b = 0; b < 8; b++) {
uint8_t expected = b;
uint8_t actual = b + 1;
switch (b) {
case 0:
actual = MBEDTLS_BYTE_0(u64);
break;
case 1:
actual = MBEDTLS_BYTE_1(u64);
break;
case 2:
actual = MBEDTLS_BYTE_2(u64);
break;
case 3:
actual = MBEDTLS_BYTE_3(u64);
break;
case 4:
actual = MBEDTLS_BYTE_4(u64);
break;
case 5:
actual = MBEDTLS_BYTE_5(u64);
break;
case 6:
actual = MBEDTLS_BYTE_6(u64);
break;
case 7:
actual = MBEDTLS_BYTE_7(u64);
break;
}
TEST_EQUAL(actual, expected);
}
uint32_t u32 = 0x03020100;
for (size_t b = 0; b < 4; b++) {
uint8_t expected = b;
uint8_t actual = b + 1;
switch (b) {
case 0:
actual = MBEDTLS_BYTE_0(u32);
break;
case 1:
actual = MBEDTLS_BYTE_1(u32);
break;
case 2:
actual = MBEDTLS_BYTE_2(u32);
break;
case 3:
actual = MBEDTLS_BYTE_3(u32);
break;
}
TEST_EQUAL(actual, expected);
}
uint16_t u16 = 0x0100;
for (size_t b = 0; b < 2; b++) {
uint8_t expected = b;
uint8_t actual = b + 1;
switch (b) {
case 0:
actual = MBEDTLS_BYTE_0(u16);
break;
case 1:
actual = MBEDTLS_BYTE_1(u16);
break;
}
TEST_EQUAL(actual, expected);
}
uint8_t u8 = 0x01;
uint8_t actual = MBEDTLS_BYTE_0(u8);
TEST_EQUAL(actual, u8);
}
/* END_CASE */
/* BEGIN_CASE */
void unaligned_access_endian_aware(int size, int offset, int big_endian)
{
TEST_ASSERT(size == 16 || size == 24 || size == 32 || size == 64);
TEST_ASSERT(offset >= 0 && offset < 8);
/* Define 64-bit aligned raw byte array */
uint64_t raw[2];
/* Populate with known data: x == { 0, 1, 2, ... } */
uint8_t *x = (uint8_t *) raw;
for (size_t i = 0; i < sizeof(raw); i++) {
x[i] = (uint8_t) i;
}
uint64_t read = 0;
if (big_endian) {
switch (size) {
case 16:
read = MBEDTLS_GET_UINT16_BE(x, offset);
break;
case 24:
read = MBEDTLS_GET_UINT24_BE(x, offset);
break;
case 32:
read = MBEDTLS_GET_UINT32_BE(x, offset);
break;
case 64:
read = MBEDTLS_GET_UINT64_BE(x, offset);
break;
}
} else {
switch (size) {
case 16:
read = MBEDTLS_GET_UINT16_LE(x, offset);
break;
case 24:
read = MBEDTLS_GET_UINT24_LE(x, offset);
break;
case 32:
read = MBEDTLS_GET_UINT32_LE(x, offset);
break;
case 64:
read = MBEDTLS_GET_UINT64_LE(x, offset);
break;
}
}
/* Build up expected value byte by byte, in either big or little endian format */
uint64_t expected = 0;
for (size_t i = 0; i < (size_t) (size / 8); i++) {
uint64_t b = x[i + offset];
uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i);
expected |= b << shift;
}
/* Verify read */
TEST_EQUAL(read, expected);
/* Test writing back to memory. First write sentinel */
for (size_t i = 0; i < (size_t) (size / 8); i++) {
x[i + offset] = 0xff;
}
/* Overwrite sentinel with endian-aware write macro */
if (big_endian) {
switch (size) {
case 16:
MBEDTLS_PUT_UINT16_BE(read, x, offset);
break;
case 24:
MBEDTLS_PUT_UINT24_BE(read, x, offset);
break;
case 32:
MBEDTLS_PUT_UINT32_BE(read, x, offset);
break;
case 64:
MBEDTLS_PUT_UINT64_BE(read, x, offset);
break;
}
} else {
switch (size) {
case 16:
MBEDTLS_PUT_UINT16_LE(read, x, offset);
break;
case 24:
MBEDTLS_PUT_UINT24_LE(read, x, offset);
break;
case 32:
MBEDTLS_PUT_UINT32_LE(read, x, offset);
break;
case 64:
MBEDTLS_PUT_UINT64_LE(read, x, offset);
break;
}
}
/* Verify write - check memory is correct */
for (size_t i = 0; i < sizeof(raw); i++) {
TEST_EQUAL(x[i], (uint8_t) i);
}
}
/* END_CASE */
/* BEGIN_CASE */
void mbedtls_is_big_endian()
{
uint16_t check = 0x1234;
uint8_t *p = (uint8_t *) &check;
if (MBEDTLS_IS_BIG_ENDIAN) {
/* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */
TEST_EQUAL(p[0], 0x12);
TEST_EQUAL(p[1], 0x34);
} else {
/* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */
TEST_EQUAL(p[0], 0x34);
TEST_EQUAL(p[1], 0x12);
}
}
/* END_CASE */