mbedtls/library/psa_util.c
Valerio Setti d4fc5d9d1c psa_util: allow larger raw buffers in mbedtls_ecdsa_raw_to_der()
The only real contraint on the raw buffer is that it is large
enough to contain 2 coordinates. Larger buffers are therefore
allowed and the extra data will simply be ignored.

Note = trying to impose a strict sizing on the raw buffer causes
       several failures in test suites. This suggests that it is
       quite common to use larger buffer to store raw signatures.

Signed-off-by: Valerio Setti <valerio.setti@nordicsemi.no>
2024-02-06 08:42:42 +01:00

572 lines
19 KiB
C

/*
* PSA hashing layer on top of Mbed TLS software crypto
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#include "common.h"
/* This is needed for MBEDTLS_ERR_XXX macros */
#include <mbedtls/error.h>
#if defined(MBEDTLS_ASN1_WRITE_C)
#include <mbedtls/asn1write.h>
#include <psa/crypto_sizes.h>
#endif
#include "psa_util_internal.h"
#if defined(MBEDTLS_PSA_CRYPTO_C)
#include <psa/crypto.h>
#if defined(MBEDTLS_MD_LIGHT)
#include <mbedtls/md.h>
#endif
#if defined(MBEDTLS_LMS_C)
#include <mbedtls/lms.h>
#endif
#if defined(MBEDTLS_SSL_TLS_C) && \
(defined(MBEDTLS_USE_PSA_CRYPTO) || defined(MBEDTLS_SSL_PROTO_TLS1_3))
#include <mbedtls/ssl.h>
#endif
#if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) || \
defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
#include <mbedtls/rsa.h>
#endif
#if defined(MBEDTLS_USE_PSA_CRYPTO) && \
defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
#include <mbedtls/ecp.h>
#endif
#if defined(MBEDTLS_PK_C)
#include <mbedtls/pk.h>
#endif
#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
#include <mbedtls/cipher.h>
#endif
/* PSA_SUCCESS is kept at the top of each error table since
* it's the most common status when everything functions properly. */
#if defined(MBEDTLS_MD_LIGHT)
const mbedtls_error_pair_t psa_to_md_errors[] =
{
{ PSA_SUCCESS, 0 },
{ PSA_ERROR_NOT_SUPPORTED, MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE },
{ PSA_ERROR_INVALID_ARGUMENT, MBEDTLS_ERR_MD_BAD_INPUT_DATA },
{ PSA_ERROR_INSUFFICIENT_MEMORY, MBEDTLS_ERR_MD_ALLOC_FAILED }
};
#endif
#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
const mbedtls_error_pair_t psa_to_cipher_errors[] =
{
{ PSA_SUCCESS, 0 },
{ PSA_ERROR_NOT_SUPPORTED, MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE },
{ PSA_ERROR_INVALID_ARGUMENT, MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA },
{ PSA_ERROR_INSUFFICIENT_MEMORY, MBEDTLS_ERR_CIPHER_ALLOC_FAILED }
};
#endif
#if defined(MBEDTLS_LMS_C)
const mbedtls_error_pair_t psa_to_lms_errors[] =
{
{ PSA_SUCCESS, 0 },
{ PSA_ERROR_BUFFER_TOO_SMALL, MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL },
{ PSA_ERROR_INVALID_ARGUMENT, MBEDTLS_ERR_LMS_BAD_INPUT_DATA }
};
#endif
#if defined(MBEDTLS_SSL_TLS_C) && \
(defined(MBEDTLS_USE_PSA_CRYPTO) || defined(MBEDTLS_SSL_PROTO_TLS1_3))
const mbedtls_error_pair_t psa_to_ssl_errors[] =
{
{ PSA_SUCCESS, 0 },
{ PSA_ERROR_INSUFFICIENT_MEMORY, MBEDTLS_ERR_SSL_ALLOC_FAILED },
{ PSA_ERROR_NOT_SUPPORTED, MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE },
{ PSA_ERROR_INVALID_SIGNATURE, MBEDTLS_ERR_SSL_INVALID_MAC },
{ PSA_ERROR_INVALID_ARGUMENT, MBEDTLS_ERR_SSL_BAD_INPUT_DATA },
{ PSA_ERROR_BAD_STATE, MBEDTLS_ERR_SSL_INTERNAL_ERROR },
{ PSA_ERROR_BUFFER_TOO_SMALL, MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL }
};
#endif
#if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) || \
defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
const mbedtls_error_pair_t psa_to_pk_rsa_errors[] =
{
{ PSA_SUCCESS, 0 },
{ PSA_ERROR_NOT_PERMITTED, MBEDTLS_ERR_RSA_BAD_INPUT_DATA },
{ PSA_ERROR_INVALID_ARGUMENT, MBEDTLS_ERR_RSA_BAD_INPUT_DATA },
{ PSA_ERROR_INVALID_HANDLE, MBEDTLS_ERR_RSA_BAD_INPUT_DATA },
{ PSA_ERROR_BUFFER_TOO_SMALL, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE },
{ PSA_ERROR_INSUFFICIENT_ENTROPY, MBEDTLS_ERR_RSA_RNG_FAILED },
{ PSA_ERROR_INVALID_SIGNATURE, MBEDTLS_ERR_RSA_VERIFY_FAILED },
{ PSA_ERROR_INVALID_PADDING, MBEDTLS_ERR_RSA_INVALID_PADDING }
};
#endif
#if defined(MBEDTLS_USE_PSA_CRYPTO) && \
defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
const mbedtls_error_pair_t psa_to_pk_ecdsa_errors[] =
{
{ PSA_SUCCESS, 0 },
{ PSA_ERROR_NOT_PERMITTED, MBEDTLS_ERR_ECP_BAD_INPUT_DATA },
{ PSA_ERROR_INVALID_ARGUMENT, MBEDTLS_ERR_ECP_BAD_INPUT_DATA },
{ PSA_ERROR_INVALID_HANDLE, MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE },
{ PSA_ERROR_BUFFER_TOO_SMALL, MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL },
{ PSA_ERROR_INSUFFICIENT_ENTROPY, MBEDTLS_ERR_ECP_RANDOM_FAILED },
{ PSA_ERROR_INVALID_SIGNATURE, MBEDTLS_ERR_ECP_VERIFY_FAILED }
};
#endif
int psa_generic_status_to_mbedtls(psa_status_t status)
{
switch (status) {
case PSA_SUCCESS:
return 0;
case PSA_ERROR_NOT_SUPPORTED:
return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED;
case PSA_ERROR_CORRUPTION_DETECTED:
return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
case PSA_ERROR_COMMUNICATION_FAILURE:
case PSA_ERROR_HARDWARE_FAILURE:
return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
case PSA_ERROR_NOT_PERMITTED:
default:
return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
}
}
int psa_status_to_mbedtls(psa_status_t status,
const mbedtls_error_pair_t *local_translations,
size_t local_errors_num,
int (*fallback_f)(psa_status_t))
{
for (size_t i = 0; i < local_errors_num; i++) {
if (status == local_translations[i].psa_status) {
return local_translations[i].mbedtls_error;
}
}
return fallback_f(status);
}
#if defined(MBEDTLS_PK_C)
int psa_pk_status_to_mbedtls(psa_status_t status)
{
switch (status) {
case PSA_ERROR_INVALID_HANDLE:
return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
case PSA_ERROR_BUFFER_TOO_SMALL:
return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
case PSA_ERROR_NOT_SUPPORTED:
return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
case PSA_ERROR_INVALID_ARGUMENT:
return MBEDTLS_ERR_PK_INVALID_ALG;
case PSA_ERROR_INSUFFICIENT_MEMORY:
return MBEDTLS_ERR_PK_ALLOC_FAILED;
case PSA_ERROR_BAD_STATE:
return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
case PSA_ERROR_DATA_CORRUPT:
case PSA_ERROR_DATA_INVALID:
case PSA_ERROR_STORAGE_FAILURE:
return MBEDTLS_ERR_PK_FILE_IO_ERROR;
default:
return psa_generic_status_to_mbedtls(status);
}
}
#endif /* MBEDTLS_PK_C */
/****************************************************************/
/* Key management */
/****************************************************************/
#if defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
psa_ecc_family_t mbedtls_ecc_group_to_psa(mbedtls_ecp_group_id grpid,
size_t *bits)
{
switch (grpid) {
#if defined(MBEDTLS_ECP_HAVE_SECP192R1)
case MBEDTLS_ECP_DP_SECP192R1:
*bits = 192;
return PSA_ECC_FAMILY_SECP_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP224R1)
case MBEDTLS_ECP_DP_SECP224R1:
*bits = 224;
return PSA_ECC_FAMILY_SECP_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP256R1)
case MBEDTLS_ECP_DP_SECP256R1:
*bits = 256;
return PSA_ECC_FAMILY_SECP_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP384R1)
case MBEDTLS_ECP_DP_SECP384R1:
*bits = 384;
return PSA_ECC_FAMILY_SECP_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP521R1)
case MBEDTLS_ECP_DP_SECP521R1:
*bits = 521;
return PSA_ECC_FAMILY_SECP_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_BP256R1)
case MBEDTLS_ECP_DP_BP256R1:
*bits = 256;
return PSA_ECC_FAMILY_BRAINPOOL_P_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_BP384R1)
case MBEDTLS_ECP_DP_BP384R1:
*bits = 384;
return PSA_ECC_FAMILY_BRAINPOOL_P_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_BP512R1)
case MBEDTLS_ECP_DP_BP512R1:
*bits = 512;
return PSA_ECC_FAMILY_BRAINPOOL_P_R1;
#endif
#if defined(MBEDTLS_ECP_HAVE_CURVE25519)
case MBEDTLS_ECP_DP_CURVE25519:
*bits = 255;
return PSA_ECC_FAMILY_MONTGOMERY;
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP192K1)
case MBEDTLS_ECP_DP_SECP192K1:
*bits = 192;
return PSA_ECC_FAMILY_SECP_K1;
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP224K1)
/* secp224k1 is not and will not be supported in PSA (#3541). */
#endif
#if defined(MBEDTLS_ECP_HAVE_SECP256K1)
case MBEDTLS_ECP_DP_SECP256K1:
*bits = 256;
return PSA_ECC_FAMILY_SECP_K1;
#endif
#if defined(MBEDTLS_ECP_HAVE_CURVE448)
case MBEDTLS_ECP_DP_CURVE448:
*bits = 448;
return PSA_ECC_FAMILY_MONTGOMERY;
#endif
default:
*bits = 0;
return 0;
}
}
mbedtls_ecp_group_id mbedtls_ecc_group_from_psa(psa_ecc_family_t family,
size_t bits)
{
switch (family) {
case PSA_ECC_FAMILY_SECP_R1:
switch (bits) {
#if defined(PSA_WANT_ECC_SECP_R1_192)
case 192:
return MBEDTLS_ECP_DP_SECP192R1;
#endif
#if defined(PSA_WANT_ECC_SECP_R1_224)
case 224:
return MBEDTLS_ECP_DP_SECP224R1;
#endif
#if defined(PSA_WANT_ECC_SECP_R1_256)
case 256:
return MBEDTLS_ECP_DP_SECP256R1;
#endif
#if defined(PSA_WANT_ECC_SECP_R1_384)
case 384:
return MBEDTLS_ECP_DP_SECP384R1;
#endif
#if defined(PSA_WANT_ECC_SECP_R1_521)
case 521:
return MBEDTLS_ECP_DP_SECP521R1;
#endif
}
break;
case PSA_ECC_FAMILY_BRAINPOOL_P_R1:
switch (bits) {
#if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_256)
case 256:
return MBEDTLS_ECP_DP_BP256R1;
#endif
#if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_384)
case 384:
return MBEDTLS_ECP_DP_BP384R1;
#endif
#if defined(PSA_WANT_ECC_BRAINPOOL_P_R1_512)
case 512:
return MBEDTLS_ECP_DP_BP512R1;
#endif
}
break;
case PSA_ECC_FAMILY_MONTGOMERY:
switch (bits) {
#if defined(PSA_WANT_ECC_MONTGOMERY_255)
case 255:
return MBEDTLS_ECP_DP_CURVE25519;
#endif
#if defined(PSA_WANT_ECC_MONTGOMERY_448)
case 448:
return MBEDTLS_ECP_DP_CURVE448;
#endif
}
break;
case PSA_ECC_FAMILY_SECP_K1:
switch (bits) {
#if defined(PSA_WANT_ECC_SECP_K1_192)
case 192:
return MBEDTLS_ECP_DP_SECP192K1;
#endif
#if defined(PSA_WANT_ECC_SECP_K1_224)
/* secp224k1 is not and will not be supported in PSA (#3541). */
#endif
#if defined(PSA_WANT_ECC_SECP_K1_256)
case 256:
return MBEDTLS_ECP_DP_SECP256K1;
#endif
}
break;
}
return MBEDTLS_ECP_DP_NONE;
}
#endif /* PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY */
#endif /* MBEDTLS_PSA_CRYPTO_C */
#if defined(MBEDTLS_PSA_UTIL_HAVE_ECDSA)
/**
* \brief Convert a single raw coordinate to DER ASN.1 format. The output der
* buffer is filled backward (i.e. starting from its end).
*
* \param raw_buf Buffer containing the raw coordinate to be
* converted.
* \param raw_len Length of raw_buf in bytes. This must be > 0.
* \param der_buf_start Pointer to the beginning of the buffer which
* will be filled with the DER converted data.
* \param der_buf_end End of the buffer used to store the DER output.
*
* \return On success, the amount of data (in bytes) written to
* the DER buffer.
* \return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL if the provided der
* buffer is too small to contain all the converted data.
* \return MBEDTLS_ERR_ASN1_INVALID_DATA if the input raw
* coordinate is null (i.e. all zeros).
*
* \warning Raw and der buffer must not be overlapping.
*/
static int convert_raw_to_der_single_int(const unsigned char *raw_buf, size_t raw_len,
unsigned char *der_buf_start,
unsigned char *der_buf_end)
{
unsigned char *p = der_buf_end;
int len;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/* ASN.1 DER encoding requires minimal length, so skip leading 0s.
* Provided input MPIs should not be 0, but as a failsafe measure, still
* detect that and return error in case. */
while (*raw_buf == 0x00) {
++raw_buf;
--raw_len;
if (raw_len == 0) {
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
}
len = (int) raw_len;
/* Copy the raw coordinate to the end of der_buf. */
if ((p - der_buf_start) < len) {
return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
}
p -= len;
memcpy(p, raw_buf, len);
/* If MSb is 1, ASN.1 requires that we prepend a 0. */
if (*p & 0x80) {
if ((p - der_buf_start) < 1) {
return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
}
--p;
*p = 0x00;
++len;
}
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, der_buf_start, len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, der_buf_start, MBEDTLS_ASN1_INTEGER));
return len;
}
int mbedtls_ecdsa_raw_to_der(size_t bits, const unsigned char *raw, size_t raw_len,
unsigned char *der, size_t der_size, size_t *der_len)
{
unsigned char r[PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS)];
unsigned char s[PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS)];
const size_t coordinate_len = PSA_BITS_TO_BYTES(bits);
size_t len = 0;
unsigned char *p = der + der_size;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
if (raw_len < 2 * coordinate_len) {
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
/* Since raw and der buffers might overlap, dump r and s before starting
* the conversion. */
memcpy(r, raw, coordinate_len);
memcpy(s, raw + coordinate_len, coordinate_len);
/* der buffer will initially be written starting from its end so we pick s
* first and then r. */
ret = convert_raw_to_der_single_int(s, coordinate_len, der, p);
if (ret < 0) {
return ret;
}
p -= ret;
len += ret;
ret = convert_raw_to_der_single_int(r, coordinate_len, der, p);
if (ret < 0) {
return ret;
}
p -= ret;
len += ret;
/* Add ASN.1 header (len + tag). */
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, der, len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, der,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE));
/* memmove the content of der buffer to its beginnig. */
memmove(der, p, len);
*der_len = len;
return 0;
}
/**
* \brief Convert a single integer from ASN.1 DER format to raw.
*
* \param der Buffer containing the DER integer value to be
* converted.
* \param der_len Length of the der buffer in bytes.
* \param raw Output buffer that will be filled with the
* converted data. This should be at least
* coordinate_size bytes and it must be zeroed before
* calling this function.
* \param coordinate_size Size (in bytes) of a single coordinate in raw
* format.
*
* \return On success, the amount of DER data parsed from the
* provided der buffer.
* \return MBEDTLS_ERR_ASN1_UNEXPECTED_TAG if the integer tag
* is missing in the der buffer.
* \return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH if the integer
* is null (i.e. all zeros) or if the output raw buffer
* is too small to contain the converted raw value.
*
* \warning Der and raw buffers must not be overlapping.
*/
static int convert_der_to_raw_single_int(unsigned char *der, size_t der_len,
unsigned char *raw, size_t coordinate_size)
{
unsigned char *p = der;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t unpadded_len, padding_len = 0;
/* Get the length of ASN.1 element (i.e. the integer we need to parse). */
ret = mbedtls_asn1_get_tag(&p, p + der_len, &unpadded_len,
MBEDTLS_ASN1_INTEGER);
if (ret != 0) {
return ret;
}
/* It's invalid to have MSb set without a leading 0x00 (leading 0x00 is
* checked below). */
if ((*p & 0x80) != 0) {
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
/* Skip possible leading zero */
if ((unpadded_len > 0) && (*p == 0x00)) {
p++;
unpadded_len--;
/* Only 1 leading zero is allowed, otherwise that's an error. */
if (*p == 0x00) {
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
}
if (unpadded_len > coordinate_size) {
/* Parsed number is longer than the maximum expected value. */
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
padding_len = coordinate_size - unpadded_len;
/* raw buffer was already zeroed by the calling function so zero-padding
* operation is skipped here. */
memcpy(raw + padding_len, p, unpadded_len);
p += unpadded_len;
return (int) (p - der);
}
int mbedtls_ecdsa_der_to_raw(size_t bits, const unsigned char *der, size_t der_len,
unsigned char *raw, size_t raw_size, size_t *raw_len)
{
unsigned char raw_tmp[PSA_VENDOR_ECDSA_SIGNATURE_MAX_SIZE];
unsigned char *p = (unsigned char *) der;
size_t data_len;
size_t coordinate_size = PSA_BITS_TO_BYTES(bits);
int ret;
/* The output raw buffer should be at least twice the size of a raw
* coordinate in order to store r and s. */
if (raw_size < coordinate_size * 2) {
return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
}
/* Check that the provided input DER buffer has the right header. */
ret = mbedtls_asn1_get_tag(&p, der + der_len, &data_len,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
if (ret != 0) {
return ret;
}
memset(raw_tmp, 0, 2 * coordinate_size);
/* Extract r */
ret = convert_der_to_raw_single_int(p, data_len, raw_tmp, coordinate_size);
if (ret < 0) {
return ret;
}
p += ret;
data_len -= ret;
/* Extract s */
ret = convert_der_to_raw_single_int(p, data_len, raw_tmp + coordinate_size,
coordinate_size);
if (ret < 0) {
return ret;
}
p += ret;
data_len -= ret;
/* Check that we consumed all the input der data. */
if ((size_t) (p - der) != der_len) {
return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
}
memcpy(raw, raw_tmp, 2 * coordinate_size);
*raw_len = 2 * coordinate_size;
return 0;
}
#endif /* MBEDTLS_PSA_UTIL_HAVE_ECDSA */