mbedtls/library/bignum_core.c
Gilles Peskine e162b4725c
Merge pull request #6777 from tom-cosgrove-arm/issue-6292-mod_inv
Bignum: Implement high level fixed width modular inversion
2022-12-17 13:26:02 +01:00

891 lines
26 KiB
C

/*
* Core bignum functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common.h"
#if defined(MBEDTLS_BIGNUM_C)
#include <string.h>
#include "mbedtls/error.h"
#include "mbedtls/platform_util.h"
#include "constant_time_internal.h"
#include "mbedtls/platform.h"
#include "bignum_core.h"
#include "bn_mul.h"
#include "constant_time_internal.h"
size_t mbedtls_mpi_core_clz( mbedtls_mpi_uint a )
{
size_t j;
mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
for( j = 0; j < biL; j++ )
{
if( a & mask ) break;
mask >>= 1;
}
return( j );
}
size_t mbedtls_mpi_core_bitlen( const mbedtls_mpi_uint *A, size_t A_limbs )
{
size_t i, j;
if( A_limbs == 0 )
return( 0 );
for( i = A_limbs - 1; i > 0; i-- )
if( A[i] != 0 )
break;
j = biL - mbedtls_mpi_core_clz( A[i] );
return( ( i * biL ) + j );
}
/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
* into the storage form used by mbedtls_mpi. */
static mbedtls_mpi_uint mpi_bigendian_to_host_c( mbedtls_mpi_uint a )
{
uint8_t i;
unsigned char *a_ptr;
mbedtls_mpi_uint tmp = 0;
for( i = 0, a_ptr = (unsigned char *) &a; i < ciL; i++, a_ptr++ )
{
tmp <<= CHAR_BIT;
tmp |= (mbedtls_mpi_uint) *a_ptr;
}
return( tmp );
}
static mbedtls_mpi_uint mpi_bigendian_to_host( mbedtls_mpi_uint a )
{
if ( MBEDTLS_IS_BIG_ENDIAN )
{
/* Nothing to do on bigendian systems. */
return( a );
}
else
{
switch( sizeof(mbedtls_mpi_uint) )
{
case 4:
return (mbedtls_mpi_uint) MBEDTLS_BSWAP32( (uint32_t)a );
case 8:
return (mbedtls_mpi_uint) MBEDTLS_BSWAP64( (uint64_t)a );
}
/* Fall back to C-based reordering if we don't know the byte order
* or we couldn't use a compiler-specific builtin. */
return( mpi_bigendian_to_host_c( a ) );
}
}
void mbedtls_mpi_core_bigendian_to_host( mbedtls_mpi_uint *A,
size_t A_limbs )
{
mbedtls_mpi_uint *cur_limb_left;
mbedtls_mpi_uint *cur_limb_right;
if( A_limbs == 0 )
return;
/*
* Traverse limbs and
* - adapt byte-order in each limb
* - swap the limbs themselves.
* For that, simultaneously traverse the limbs from left to right
* and from right to left, as long as the left index is not bigger
* than the right index (it's not a problem if limbs is odd and the
* indices coincide in the last iteration).
*/
for( cur_limb_left = A, cur_limb_right = A + ( A_limbs - 1 );
cur_limb_left <= cur_limb_right;
cur_limb_left++, cur_limb_right-- )
{
mbedtls_mpi_uint tmp;
/* Note that if cur_limb_left == cur_limb_right,
* this code effectively swaps the bytes only once. */
tmp = mpi_bigendian_to_host( *cur_limb_left );
*cur_limb_left = mpi_bigendian_to_host( *cur_limb_right );
*cur_limb_right = tmp;
}
}
/* Whether min <= A, in constant time.
* A_limbs must be at least 1. */
unsigned mbedtls_mpi_core_uint_le_mpi( mbedtls_mpi_uint min,
const mbedtls_mpi_uint *A,
size_t A_limbs )
{
/* min <= least significant limb? */
unsigned min_le_lsl = 1 ^ mbedtls_ct_mpi_uint_lt( A[0], min );
/* limbs other than the least significant one are all zero? */
mbedtls_mpi_uint msll_mask = 0;
for( size_t i = 1; i < A_limbs; i++ )
msll_mask |= A[i];
/* The most significant limbs of A are not all zero iff msll_mask != 0. */
unsigned msll_nonzero = mbedtls_ct_mpi_uint_mask( msll_mask ) & 1;
/* min <= A iff the lowest limb of A is >= min or the other limbs
* are not all zero. */
return( min_le_lsl | msll_nonzero );
}
void mbedtls_mpi_core_cond_assign( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
unsigned char assign )
{
if( X == A )
return;
mbedtls_ct_mpi_uint_cond_assign( limbs, X, A, assign );
}
void mbedtls_mpi_core_cond_swap( mbedtls_mpi_uint *X,
mbedtls_mpi_uint *Y,
size_t limbs,
unsigned char swap )
{
if( X == Y )
return;
/* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask( swap );
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint tmp = X[i];
X[i] = ( X[i] & ~limb_mask ) | ( Y[i] & limb_mask );
Y[i] = ( Y[i] & ~limb_mask ) | ( tmp & limb_mask );
}
}
int mbedtls_mpi_core_read_le( mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length )
{
const size_t limbs = CHARS_TO_LIMBS( input_length );
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
if( X != NULL )
{
memset( X, 0, X_limbs * ciL );
for( size_t i = 0; i < input_length; i++ )
{
size_t offset = ( ( i % ciL ) << 3 );
X[i / ciL] |= ( (mbedtls_mpi_uint) input[i] ) << offset;
}
}
return( 0 );
}
int mbedtls_mpi_core_read_be( mbedtls_mpi_uint *X,
size_t X_limbs,
const unsigned char *input,
size_t input_length )
{
const size_t limbs = CHARS_TO_LIMBS( input_length );
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
/* If X_limbs is 0, input_length must also be 0 (from previous test).
* Nothing to do. */
if( X_limbs == 0 )
return( 0 );
memset( X, 0, X_limbs * ciL );
/* memcpy() with (NULL, 0) is undefined behaviour */
if( input_length != 0 )
{
size_t overhead = ( X_limbs * ciL ) - input_length;
unsigned char *Xp = (unsigned char *) X;
memcpy( Xp + overhead, input, input_length );
}
mbedtls_mpi_core_bigendian_to_host( X, X_limbs );
return( 0 );
}
int mbedtls_mpi_core_write_le( const mbedtls_mpi_uint *A,
size_t A_limbs,
unsigned char *output,
size_t output_length )
{
size_t stored_bytes = A_limbs * ciL;
size_t bytes_to_copy;
if( stored_bytes < output_length )
{
bytes_to_copy = stored_bytes;
}
else
{
bytes_to_copy = output_length;
/* The output buffer is smaller than the allocated size of A.
* However A may fit if its leading bytes are zero. */
for( size_t i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( A, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( size_t i = 0; i < bytes_to_copy; i++ )
output[i] = GET_BYTE( A, i );
if( stored_bytes < output_length )
{
/* Write trailing 0 bytes */
memset( output + stored_bytes, 0, output_length - stored_bytes );
}
return( 0 );
}
int mbedtls_mpi_core_write_be( const mbedtls_mpi_uint *X,
size_t X_limbs,
unsigned char *output,
size_t output_length )
{
size_t stored_bytes;
size_t bytes_to_copy;
unsigned char *p;
stored_bytes = X_limbs * ciL;
if( stored_bytes < output_length )
{
/* There is enough space in the output buffer. Write initial
* null bytes and record the position at which to start
* writing the significant bytes. In this case, the execution
* trace of this function does not depend on the value of the
* number. */
bytes_to_copy = stored_bytes;
p = output + output_length - stored_bytes;
memset( output, 0, output_length - stored_bytes );
}
else
{
/* The output buffer is smaller than the allocated size of X.
* However X may fit if its leading bytes are zero. */
bytes_to_copy = output_length;
p = output;
for( size_t i = bytes_to_copy; i < stored_bytes; i++ )
{
if( GET_BYTE( X, i ) != 0 )
return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
}
}
for( size_t i = 0; i < bytes_to_copy; i++ )
p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
return( 0 );
}
void mbedtls_mpi_core_shift_r( mbedtls_mpi_uint *X, size_t limbs,
size_t count )
{
size_t i, v0, v1;
mbedtls_mpi_uint r0 = 0, r1;
v0 = count / biL;
v1 = count & (biL - 1);
if( v0 > limbs || ( v0 == limbs && v1 > 0 ) )
{
memset( X, 0, limbs * ciL );
return;
}
/*
* shift by count / limb_size
*/
if( v0 > 0 )
{
for( i = 0; i < limbs - v0; i++ )
X[i] = X[i + v0];
for( ; i < limbs; i++ )
X[i] = 0;
}
/*
* shift by count % limb_size
*/
if( v1 > 0 )
{
for( i = limbs; i > 0; i-- )
{
r1 = X[i - 1] << (biL - v1);
X[i - 1] >>= v1;
X[i - 1] |= r0;
r0 = r1;
}
}
}
mbedtls_mpi_uint mbedtls_mpi_core_add( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs )
{
mbedtls_mpi_uint c = 0;
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint t = c + A[i];
c = ( t < A[i] );
t += B[i];
c += ( t < B[i] );
X[i] = t;
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
size_t limbs,
unsigned cond )
{
mbedtls_mpi_uint c = 0;
/* all-bits 0 if cond is 0, all-bits 1 if cond is non-0 */
const mbedtls_mpi_uint mask = mbedtls_ct_mpi_uint_mask( cond );
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint add = mask & A[i];
mbedtls_mpi_uint t = c + X[i];
c = ( t < X[i] );
t += add;
c += ( t < add );
X[i] = t;
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs )
{
mbedtls_mpi_uint c = 0;
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint z = ( A[i] < c );
mbedtls_mpi_uint t = A[i] - c;
c = ( t < B[i] ) + z;
X[i] = t - B[i];
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
const mbedtls_mpi_uint *s, size_t s_len,
mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0; /* carry */
/*
* It is a documented precondition of this function that d_len >= s_len.
* If that's not the case, we swap these round: this turns what would be
* a buffer overflow into an incorrect result.
*/
if( d_len < s_len )
s_len = d_len;
size_t excess_len = d_len - s_len;
size_t steps_x8 = s_len / 8;
size_t steps_x1 = s_len & 7;
while( steps_x8-- )
{
MULADDC_X8_INIT
MULADDC_X8_CORE
MULADDC_X8_STOP
}
while( steps_x1-- )
{
MULADDC_X1_INIT
MULADDC_X1_CORE
MULADDC_X1_STOP
}
while( excess_len-- )
{
*d += c;
c = ( *d < c );
d++;
}
return( c );
}
/*
* Fast Montgomery initialization (thanks to Tom St Denis).
*/
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init( const mbedtls_mpi_uint *N )
{
mbedtls_mpi_uint x = N[0];
x += ( ( N[0] + 2 ) & 4 ) << 1;
for( unsigned int i = biL; i >= 8; i /= 2 )
x *= ( 2 - ( N[0] * x ) );
return( ~x + 1 );
}
void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t B_limbs,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T )
{
memset( T, 0, ( 2 * AN_limbs + 1 ) * ciL );
for( size_t i = 0; i < AN_limbs; i++ )
{
/* T = (T + u0*B + u1*N) / 2^biL */
mbedtls_mpi_uint u0 = A[i];
mbedtls_mpi_uint u1 = ( T[0] + u0 * B[0] ) * mm;
(void) mbedtls_mpi_core_mla( T, AN_limbs + 2, B, B_limbs, u0 );
(void) mbedtls_mpi_core_mla( T, AN_limbs + 2, N, AN_limbs, u1 );
T++;
}
/*
* The result we want is (T >= N) ? T - N : T.
*
* For better constant-time properties in this function, we always do the
* subtraction, with the result in X.
*
* We also look to see if there was any carry in the final additions in the
* loop above.
*/
mbedtls_mpi_uint carry = T[AN_limbs];
mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub( X, T, N, AN_limbs );
/*
* Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
*
* T can be in one of 3 ranges:
*
* 1) T < N : (carry, borrow) = (0, 1): we want T
* 2) N <= T < R : (carry, borrow) = (0, 0): we want X
* 3) T >= R : (carry, borrow) = (1, 1): we want X
*
* and (carry, borrow) = (1, 0) can't happen.
*
* So the correct return value is already in X if (carry ^ borrow) = 0,
* but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
*/
mbedtls_ct_mpi_uint_cond_assign( AN_limbs, X, T, (unsigned char) ( carry ^ borrow ) );
}
int mbedtls_mpi_core_get_mont_r2_unsafe( mbedtls_mpi *X,
const mbedtls_mpi *N )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, N->n * 2 * biL ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( X, X, N ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( X, N->n ) );
cleanup:
return( ret );
}
MBEDTLS_STATIC_TESTABLE
void mbedtls_mpi_core_ct_uint_table_lookup( mbedtls_mpi_uint *dest,
const mbedtls_mpi_uint *table,
size_t limbs,
size_t count,
size_t index )
{
for( size_t i = 0; i < count; i++, table += limbs )
{
unsigned char assign = mbedtls_ct_size_bool_eq( i, index );
mbedtls_mpi_core_cond_assign( dest, table, limbs, assign );
}
}
/* Fill X with n_bytes random bytes.
* X must already have room for those bytes.
* The ordering of the bytes returned from the RNG is suitable for
* deterministic ECDSA (see RFC 6979 §3.3 and the specification of
* mbedtls_mpi_core_random()).
*/
int mbedtls_mpi_core_fill_random(
mbedtls_mpi_uint *X, size_t X_limbs,
size_t n_bytes,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
const size_t limbs = CHARS_TO_LIMBS( n_bytes );
const size_t overhead = ( limbs * ciL ) - n_bytes;
if( X_limbs < limbs )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
memset( X, 0, overhead );
memset( (unsigned char *) X + limbs * ciL, 0, ( X_limbs - limbs ) * ciL );
MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X + overhead, n_bytes ) );
mbedtls_mpi_core_bigendian_to_host( X, limbs );
cleanup:
return( ret );
}
int mbedtls_mpi_core_random( mbedtls_mpi_uint *X,
mbedtls_mpi_uint min,
const mbedtls_mpi_uint *N,
size_t limbs,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
unsigned ge_lower = 1, lt_upper = 0;
size_t n_bits = mbedtls_mpi_core_bitlen( N, limbs );
size_t n_bytes = ( n_bits + 7 ) / 8;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
/*
* When min == 0, each try has at worst a probability 1/2 of failing
* (the msb has a probability 1/2 of being 0, and then the result will
* be < N), so after 30 tries failure probability is a most 2**(-30).
*
* When N is just below a power of 2, as is the case when generating
* a random scalar on most elliptic curves, 1 try is enough with
* overwhelming probability. When N is just above a power of 2,
* as when generating a random scalar on secp224k1, each try has
* a probability of failing that is almost 1/2.
*
* The probabilities are almost the same if min is nonzero but negligible
* compared to N. This is always the case when N is crypto-sized, but
* it's convenient to support small N for testing purposes. When N
* is small, use a higher repeat count, otherwise the probability of
* failure is macroscopic.
*/
int count = ( n_bytes > 4 ? 30 : 250 );
/*
* Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
* when f_rng is a suitably parametrized instance of HMAC_DRBG:
* - use the same byte ordering;
* - keep the leftmost n_bits bits of the generated octet string;
* - try until result is in the desired range.
* This also avoids any bias, which is especially important for ECDSA.
*/
do
{
MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X, limbs,
n_bytes,
f_rng, p_rng ) );
mbedtls_mpi_core_shift_r( X, limbs, 8 * n_bytes - n_bits );
if( --count == 0 )
{
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
goto cleanup;
}
ge_lower = mbedtls_mpi_core_uint_le_mpi( min, X, limbs );
lt_upper = mbedtls_mpi_core_lt_ct( X, N, limbs );
}
while( ge_lower == 0 || lt_upper == 0 );
cleanup:
return( ret );
}
/* BEGIN MERGE SLOT 1 */
static size_t exp_mod_get_window_size( size_t Ebits )
{
size_t wsize = ( Ebits > 671 ) ? 6 : ( Ebits > 239 ) ? 5 :
( Ebits > 79 ) ? 4 : 1;
#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
wsize = MBEDTLS_MPI_WINDOW_SIZE;
#endif
return( wsize );
}
size_t mbedtls_mpi_core_exp_mod_working_limbs( size_t AN_limbs, size_t E_limbs )
{
const size_t wsize = exp_mod_get_window_size( E_limbs * biL );
const size_t welem = ( (size_t) 1 ) << wsize;
/* How big does each part of the working memory pool need to be? */
const size_t table_limbs = welem * AN_limbs;
const size_t select_limbs = AN_limbs;
const size_t temp_limbs = 2 * AN_limbs + 1;
return( table_limbs + select_limbs + temp_limbs );
}
static void exp_mod_precompute_window( const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *RR,
size_t welem,
mbedtls_mpi_uint *Wtable,
mbedtls_mpi_uint *temp )
{
/* W[0] = 1 (in Montgomery presentation) */
memset( Wtable, 0, AN_limbs * ciL );
Wtable[0] = 1;
mbedtls_mpi_core_montmul( Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp );
/* W[1] = A (already in Montgomery presentation) */
mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
memcpy( W1, A, AN_limbs * ciL );
/* W[i+1] = W[i] * W[1], i >= 2 */
mbedtls_mpi_uint *Wprev = W1;
for( size_t i = 2; i < welem; i++ )
{
mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
mbedtls_mpi_core_montmul( Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp );
Wprev = Wcur;
}
}
/* Exponentiation: X := A^E mod N.
*
* A must already be in Montgomery form.
*
* As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
*
* RR must contain 2^{2*biL} mod N.
*
* The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
* (The difference is that the body in our loop processes a single bit instead
* of a full window.)
*/
void mbedtls_mpi_core_exp_mod( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
const mbedtls_mpi_uint *E,
size_t E_limbs,
const mbedtls_mpi_uint *RR,
mbedtls_mpi_uint *T )
{
const size_t wsize = exp_mod_get_window_size( E_limbs * biL );
const size_t welem = ( (size_t) 1 ) << wsize;
/* This is how we will use the temporary storage T, which must have space
* for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
const size_t table_limbs = welem * AN_limbs;
const size_t select_limbs = AN_limbs;
/* Pointers to specific parts of the temporary working memory pool */
mbedtls_mpi_uint *const Wtable = T;
mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
mbedtls_mpi_uint *const temp = Wselect + select_limbs;
/*
* Window precomputation
*/
const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init( N );
/* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
exp_mod_precompute_window( A, N, AN_limbs,
mm, RR,
welem, Wtable, temp );
/*
* Fixed window exponentiation
*/
/* X = 1 (in Montgomery presentation) initially */
memcpy( X, Wtable, AN_limbs * ciL );
/* We'll process the bits of E from most significant
* (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
* (limb_index=0, E_bit_index=0). */
size_t E_limb_index = E_limbs;
size_t E_bit_index = 0;
/* At any given time, window contains window_bits bits from E.
* window_bits can go up to wsize. */
size_t window_bits = 0;
mbedtls_mpi_uint window = 0;
do
{
/* Square */
mbedtls_mpi_core_montmul( X, X, X, AN_limbs, N, AN_limbs, mm, temp );
/* Move to the next bit of the exponent */
if( E_bit_index == 0 )
{
--E_limb_index;
E_bit_index = biL - 1;
}
else
{
--E_bit_index;
}
/* Insert next exponent bit into window */
++window_bits;
window <<= 1;
window |= ( E[E_limb_index] >> E_bit_index ) & 1;
/* Clear window if it's full. Also clear the window at the end,
* when we've finished processing the exponent. */
if( window_bits == wsize ||
( E_bit_index == 0 && E_limb_index == 0 ) )
{
/* Select Wtable[window] without leaking window through
* memory access patterns. */
mbedtls_mpi_core_ct_uint_table_lookup( Wselect, Wtable,
AN_limbs, welem, window );
/* Multiply X by the selected element. */
mbedtls_mpi_core_montmul( X, X, Wselect, AN_limbs, N, AN_limbs, mm,
temp );
window = 0;
window_bits = 0;
}
}
while( ! ( E_bit_index == 0 && E_limb_index == 0 ) );
}
/* END MERGE SLOT 1 */
/* BEGIN MERGE SLOT 2 */
/* END MERGE SLOT 2 */
/* BEGIN MERGE SLOT 3 */
mbedtls_mpi_uint mbedtls_mpi_core_sub_int( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
mbedtls_mpi_uint c, /* doubles as carry */
size_t limbs )
{
for( size_t i = 0; i < limbs; i++ )
{
mbedtls_mpi_uint s = A[i];
mbedtls_mpi_uint t = s - c;
c = ( t > s );
X[i] = t;
}
return( c );
}
mbedtls_mpi_uint mbedtls_mpi_core_check_zero_ct( const mbedtls_mpi_uint *A,
size_t limbs )
{
mbedtls_mpi_uint bits = 0;
for( size_t i = 0; i < limbs; i++ )
bits |= A[i];
return( bits );
}
void mbedtls_mpi_core_to_mont_rep( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
const mbedtls_mpi_uint *rr,
mbedtls_mpi_uint *T )
{
mbedtls_mpi_core_montmul( X, A, rr, AN_limbs, N, AN_limbs, mm, T );
}
void mbedtls_mpi_core_from_mont_rep( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *N,
size_t AN_limbs,
mbedtls_mpi_uint mm,
mbedtls_mpi_uint *T )
{
const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
mbedtls_mpi_core_montmul( X, A, &Rinv, 1, N, AN_limbs, mm, T );
}
/* END MERGE SLOT 3 */
/* BEGIN MERGE SLOT 4 */
/* END MERGE SLOT 4 */
/* BEGIN MERGE SLOT 5 */
/* END MERGE SLOT 5 */
/* BEGIN MERGE SLOT 6 */
/* END MERGE SLOT 6 */
/* BEGIN MERGE SLOT 7 */
/* END MERGE SLOT 7 */
/* BEGIN MERGE SLOT 8 */
/* END MERGE SLOT 8 */
/* BEGIN MERGE SLOT 9 */
/* END MERGE SLOT 9 */
/* BEGIN MERGE SLOT 10 */
/* END MERGE SLOT 10 */
#endif /* MBEDTLS_BIGNUM_C */