mbedtls/programs
Gilles Peskine f65ed6f254 Change key types to a 16-bit encoding
All key types now have an encoding on 32 bits where the bottom 16 bits
are zero. Change to using 16 bits only.

Keep 32 bits for key types in storage, but move the significant
half-word from the top to the bottom.

Likewise, change EC curve and DH group families from 32 bits out of
which the top 8 and bottom 16 bits are zero, to 8 bits only.

Reorder psa_core_key_attributes_t to avoid padding.
2020-01-31 10:24:21 +01:00
..
aes Merge remote-tracking branch 'tls/development' into development 2019-07-31 10:37:53 +01:00
hash Merge remote-tracking branch 'tls/development' into development 2019-07-31 10:37:53 +01:00
pkey Merge remote-tracking branch 'myfork-public/development' into merge-crypto-development-20191115 2019-11-15 11:47:14 +01:00
psa Change key types to a 16-bit encoding 2020-01-31 10:24:21 +01:00
random Merge remote-tracking branch 'tls/development' into development 2019-07-31 10:37:53 +01:00
test Declare new config.h option MBEDTLS_SHA512_NO_SHA384 2020-01-06 11:40:23 +01:00
util Merge remote-tracking branch 'tls/development' into development 2019-07-31 10:37:53 +01:00
.gitignore Remove programs that depend on TLS or X.509 2019-04-25 11:46:08 +01:00
CMakeLists.txt Do not build fuzz on windows 2019-07-10 20:37:57 +02:00
Makefile Merge remote-tracking branch 'myfork-public/development' into merge-crypto-development-20191115 2019-11-15 11:47:14 +01:00
README.md Remove programs that depend on TLS or X.509 2019-04-25 11:46:08 +01:00
wince_main.c Change main license to Apache 2.0 2015-09-04 14:21:07 +02:00

Mbed TLS sample programs

This subdirectory mostly contains sample programs that illustrate specific features of the library, as well as a few test and support programs.

Symmetric cryptography (AES) examples

  • aes/aescrypt2.c: file encryption and authentication with a key derived from a low-entropy secret, demonstrating the low-level AES interface, the digest interface and HMAC.
    Warning: this program illustrates how to use low-level functions in the library. It should not be taken as an example of how to build a secure encryption mechanism. To derive a key from a low-entropy secret such as a password, use a standard key stretching mechanism such as PBKDF2 (provided by the pkcs5 module). To encrypt and authenticate data, use a standard mode such as GCM or CCM (both available as library module).

  • aes/crypt_and_hash.c: file encryption and authentication, demonstrating the generic cipher interface and the generic hash interface.

Hash (digest) examples

Public-key cryptography examples

Generic public-key cryptography (pk) examples

  • pkey/gen_key.c: generates a key for any of the supported public-key algorithms (RSA or ECC) and writes it to a file that can be used by the other pk sample programs.

  • pkey/key_app.c: loads a PEM or DER public key or private key file and dumps its content.

  • pkey/key_app_writer.c: loads a PEM or DER public key or private key file and writes it to a new PEM or DER file.

  • pkey/pk_encrypt.c, pkey/pk_decrypt.c: loads a PEM or DER public/private key file and uses the key to encrypt/decrypt a short string through the generic public-key interface.

  • pkey/pk_sign.c, pkey/pk_verify.c: loads a PEM or DER private/public key file and uses the key to sign/verify a short string.

ECDSA and RSA signature examples

Diffie-Hellman key exchange examples

Bignum (mpi) usage examples

Random number generator (RNG) examples

  • random/gen_entropy.c: shows how to use the default entropy sources to generate random data.
    Note: most applications should only use the entropy generator to seed a cryptographic pseudorandom generator, as illustrated by random/gen_random_ctr_drbg.c.

  • random/gen_random_ctr_drbg.c: shows how to use the default entropy sources to seed a pseudorandom generator, and how to use the resulting random generator to generate random data.

  • random/gen_random_havege.c: demonstrates the HAVEGE entropy collector.

Test utilities

Development utilities

  • util/pem2der.c: a PEM to DER converter. Mbed TLS can read PEM files directly, but this utility can be useful for interacting with other tools or with minimal Mbed TLS builds that lack PEM support.

  • util/strerror.c: prints the error description corresponding to an integer status returned by an Mbed TLS function.