mbedtls/tests/include/test/macros.h
Agathiyan Bragadeesh 2d310deace Add cast in test macros.h
Signed-off-by: Agathiyan Bragadeesh <agathiyan.bragadeesh2@arm.com>
2023-07-17 18:27:03 +01:00

218 lines
9.1 KiB
C

/**
* \file macros.h
*
* \brief This file contains generic macros for the purpose of testing.
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TEST_MACROS_H
#define TEST_MACROS_H
#include "mbedtls/build_info.h"
#include <stdlib.h>
#include "mbedtls/platform.h"
#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
#include "mbedtls/memory_buffer_alloc.h"
#endif
#include "common.h"
/**
* \brief This macro tests the expression passed to it as a test step or
* individual test in a test case.
*
* It allows a library function to return a value and return an error
* code that can be tested.
*
* Failing the test means:
* - Mark this test case as failed.
* - Print a message identifying the failure.
* - Jump to the \c exit label.
*
* This macro expands to an instruction, not an expression.
* It may jump to the \c exit label.
*
* \param TEST The test expression to be tested.
*/
#define TEST_ASSERT(TEST) \
do { \
if (!(TEST)) \
{ \
mbedtls_test_fail( #TEST, __LINE__, __FILE__); \
goto exit; \
} \
} while (0)
/** Evaluate two integer expressions and fail the test case if they have
* different values.
*
* The two expressions should have the same signedness, otherwise the
* comparison is not meaningful if the signed value is negative.
*
* \param expr1 An integral-typed expression to evaluate.
* \param expr2 Another integral-typed expression to evaluate.
*/
#define TEST_EQUAL(expr1, expr2) \
do { \
if (!mbedtls_test_equal( #expr1 " == " #expr2, __LINE__, __FILE__, \
(unsigned long long) (expr1), (unsigned long long) (expr2))) \
goto exit; \
} while (0)
/** Evaluate two unsigned integer expressions and fail the test case
* if they are not in increasing order (left <= right).
*
* \param expr1 An integral-typed expression to evaluate.
* \param expr2 Another integral-typed expression to evaluate.
*/
#define TEST_LE_U(expr1, expr2) \
do { \
if (!mbedtls_test_le_u( #expr1 " <= " #expr2, __LINE__, __FILE__, \
expr1, expr2)) \
goto exit; \
} while (0)
/** Evaluate two signed integer expressions and fail the test case
* if they are not in increasing order (left <= right).
*
* \param expr1 An integral-typed expression to evaluate.
* \param expr2 Another integral-typed expression to evaluate.
*/
#define TEST_LE_S(expr1, expr2) \
do { \
if (!mbedtls_test_le_s( #expr1 " <= " #expr2, __LINE__, __FILE__, \
expr1, expr2)) \
goto exit; \
} while (0)
/** Allocate memory dynamically and fail the test case if this fails.
* The allocated memory will be filled with zeros.
*
* You must set \p pointer to \c NULL before calling this macro and
* put `mbedtls_free( pointer )` in the test's cleanup code.
*
* If \p length is zero, the resulting \p pointer will be \c NULL.
* This is usually what we want in tests since API functions are
* supposed to accept null pointers when a buffer size is zero.
*
* This macro expands to an instruction, not an expression.
* It may jump to the \c exit label.
*
* \param pointer An lvalue where the address of the allocated buffer
* will be stored.
* This expression may be evaluated multiple times.
* \param length Number of elements to allocate.
* This expression may be evaluated multiple times.
*
*/
#define ASSERT_ALLOC(pointer, length) \
do \
{ \
TEST_ASSERT((pointer) == NULL); \
if ((length) != 0) \
{ \
(pointer) = mbedtls_calloc(sizeof(*(pointer)), \
(length)); \
TEST_ASSERT((pointer) != NULL); \
} \
} \
while (0)
/** Allocate memory dynamically. If the allocation fails, skip the test case.
*
* This macro behaves like #ASSERT_ALLOC, except that if the allocation
* fails, it marks the test as skipped rather than failed.
*/
#define ASSERT_ALLOC_WEAK(pointer, length) \
do \
{ \
TEST_ASSERT((pointer) == NULL); \
if ((length) != 0) \
{ \
(pointer) = mbedtls_calloc(sizeof(*(pointer)), \
(length)); \
TEST_ASSUME((pointer) != NULL); \
} \
} \
while (0)
/** Compare two buffers and fail the test case if they differ.
*
* This macro expands to an instruction, not an expression.
* It may jump to the \c exit label.
*
* \param p1 Pointer to the start of the first buffer.
* \param size1 Size of the first buffer in bytes.
* This expression may be evaluated multiple times.
* \param p2 Pointer to the start of the second buffer.
* \param size2 Size of the second buffer in bytes.
* This expression may be evaluated multiple times.
*/
#define ASSERT_COMPARE(p1, size1, p2, size2) \
do \
{ \
TEST_EQUAL((size1), (size2)); \
if ((size1) != 0) \
TEST_ASSERT(memcmp((p1), (p2), (size1)) == 0); \
} \
while (0)
/**
* \brief This macro tests the expression passed to it and skips the
* running test if it doesn't evaluate to 'true'.
*
* \param TEST The test expression to be tested.
*/
#define TEST_ASSUME(TEST) \
do { \
if (!(TEST)) \
{ \
mbedtls_test_skip( #TEST, __LINE__, __FILE__); \
goto exit; \
} \
} while (0)
#define TEST_HELPER_ASSERT(a) if (!(a)) \
{ \
mbedtls_fprintf(stderr, "Assertion Failed at %s:%d - %s\n", \
__FILE__, __LINE__, #a); \
mbedtls_exit(1); \
}
/** Return the smaller of two values.
*
* \param x An integer-valued expression without side effects.
* \param y An integer-valued expression without side effects.
*
* \return The smaller of \p x and \p y.
*/
#define MIN(x, y) ((x) < (y) ? (x) : (y))
/** Return the larger of two values.
*
* \param x An integer-valued expression without side effects.
* \param y An integer-valued expression without side effects.
*
* \return The larger of \p x and \p y.
*/
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#endif /* TEST_MACROS_H */