mbedtls/programs/pkey/dh_client.c
Minos Galanakis b6a96195fb programs_dh_client/server: Updated programs to use mbedtls_rsa_get_len()
Signed-off-by: Minos Galanakis <minos.galanakis@arm.com>
2024-01-18 14:29:41 +00:00

283 lines
8.2 KiB
C

/*
* Diffie-Hellman-Merkle key exchange (client side)
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#include "mbedtls/build_info.h"
#include "mbedtls/platform.h"
/* md.h is included this early since MD_CAN_XXX macros are defined there. */
#include "mbedtls/md.h"
#if defined(MBEDTLS_AES_C) && defined(MBEDTLS_DHM_C) && \
defined(MBEDTLS_ENTROPY_C) && defined(MBEDTLS_NET_C) && \
defined(MBEDTLS_RSA_C) && defined(MBEDTLS_MD_CAN_SHA256) && \
defined(MBEDTLS_FS_IO) && defined(MBEDTLS_CTR_DRBG_C)
#include "mbedtls/net_sockets.h"
#include "mbedtls/aes.h"
#include "mbedtls/dhm.h"
#include "mbedtls/rsa.h"
#include "mbedtls/sha1.h"
#include "mbedtls/entropy.h"
#include "mbedtls/ctr_drbg.h"
#include <stdio.h>
#include <string.h>
#endif
#define SERVER_NAME "localhost"
#define SERVER_PORT "11999"
#define MBEDTLS_MD_CAN_SHA256_MAX_SIZE 32
#if !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_DHM_C) || \
!defined(MBEDTLS_ENTROPY_C) || !defined(MBEDTLS_NET_C) || \
!defined(MBEDTLS_RSA_C) || !defined(MBEDTLS_MD_CAN_SHA256) || \
!defined(MBEDTLS_FS_IO) || !defined(MBEDTLS_CTR_DRBG_C)
int main(void)
{
mbedtls_printf("MBEDTLS_AES_C and/or MBEDTLS_DHM_C and/or MBEDTLS_ENTROPY_C "
"and/or MBEDTLS_NET_C and/or MBEDTLS_RSA_C and/or "
"MBEDTLS_MD_CAN_SHA256 and/or MBEDTLS_FS_IO and/or "
"MBEDTLS_CTR_DRBG_C not defined.\n");
mbedtls_exit(0);
}
#elif defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
int main(void)
{
mbedtls_printf("MBEDTLS_BLOCK_CIPHER_NO_DECRYPT defined.\n");
mbedtls_exit(0);
}
#else
int main(void)
{
FILE *f;
int ret = 1;
int exit_code = MBEDTLS_EXIT_FAILURE;
size_t n, buflen;
mbedtls_net_context server_fd;
unsigned char *p, *end;
unsigned char buf[2048];
unsigned char hash[MBEDTLS_MD_CAN_SHA256_MAX_SIZE];
mbedtls_mpi N, E;
const char *pers = "dh_client";
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
mbedtls_rsa_context rsa;
mbedtls_dhm_context dhm;
mbedtls_aes_context aes;
mbedtls_net_init(&server_fd);
mbedtls_dhm_init(&dhm);
mbedtls_aes_init(&aes);
mbedtls_ctr_drbg_init(&ctr_drbg);
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&E);
/*
* 1. Setup the RNG
*/
mbedtls_printf("\n . Seeding the random number generator");
fflush(stdout);
mbedtls_entropy_init(&entropy);
if ((ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,
(const unsigned char *) pers,
strlen(pers))) != 0) {
mbedtls_printf(" failed\n ! mbedtls_ctr_drbg_seed returned %d\n", ret);
goto exit;
}
/*
* 2. Read the server's public RSA key
*/
mbedtls_printf("\n . Reading public key from rsa_pub.txt");
fflush(stdout);
if ((f = fopen("rsa_pub.txt", "rb")) == NULL) {
mbedtls_printf(" failed\n ! Could not open rsa_pub.txt\n" \
" ! Please run rsa_genkey first\n\n");
goto exit;
}
mbedtls_rsa_init(&rsa);
if ((ret = mbedtls_mpi_read_file(&N, 16, f)) != 0 ||
(ret = mbedtls_mpi_read_file(&E, 16, f)) != 0 ||
(ret = mbedtls_rsa_import(&rsa, &N, NULL, NULL, NULL, &E) != 0)) {
mbedtls_printf(" failed\n ! mbedtls_mpi_read_file returned %d\n\n", ret);
fclose(f);
goto exit;
}
fclose(f);
/*
* 3. Initiate the connection
*/
mbedtls_printf("\n . Connecting to tcp/%s/%s", SERVER_NAME,
SERVER_PORT);
fflush(stdout);
if ((ret = mbedtls_net_connect(&server_fd, SERVER_NAME,
SERVER_PORT, MBEDTLS_NET_PROTO_TCP)) != 0) {
mbedtls_printf(" failed\n ! mbedtls_net_connect returned %d\n\n", ret);
goto exit;
}
/*
* 4a. First get the buffer length
*/
mbedtls_printf("\n . Receiving the server's DH parameters");
fflush(stdout);
memset(buf, 0, sizeof(buf));
if ((ret = mbedtls_net_recv(&server_fd, buf, 2)) != 2) {
mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret);
goto exit;
}
n = buflen = (buf[0] << 8) | buf[1];
if (buflen < 1 || buflen > sizeof(buf)) {
mbedtls_printf(" failed\n ! Got an invalid buffer length\n\n");
goto exit;
}
/*
* 4b. Get the DHM parameters: P, G and Ys = G^Xs mod P
*/
memset(buf, 0, sizeof(buf));
if ((ret = mbedtls_net_recv(&server_fd, buf, n)) != (int) n) {
mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret);
goto exit;
}
p = buf, end = buf + buflen;
if ((ret = mbedtls_dhm_read_params(&dhm, &p, end)) != 0) {
mbedtls_printf(" failed\n ! mbedtls_dhm_read_params returned %d\n\n", ret);
goto exit;
}
n = mbedtls_dhm_get_len(&dhm);
if (n < 64 || n > 512) {
mbedtls_printf(" failed\n ! Invalid DHM modulus size\n\n");
goto exit;
}
/*
* 5. Check that the server's RSA signature matches
* the SHA-256 hash of (P,G,Ys)
*/
mbedtls_printf("\n . Verifying the server's RSA signature");
fflush(stdout);
p += 2;
if ((n = (size_t) (end - p)) != mbedtls_rsa_get_len(&rsa)) {
mbedtls_printf(" failed\n ! Invalid RSA signature size\n\n");
goto exit;
}
if ((ret = mbedtls_sha256(buf, (int) (p - 2 - buf), hash, 0)) != 0) {
mbedtls_printf(" failed\n ! mbedtls_sha1 returned %d\n\n", ret);
goto exit;
}
if ((ret = mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA256,
MBEDTLS_MD_CAN_SHA256_MAX_SIZE, hash, p)) != 0) {
mbedtls_printf(" failed\n ! mbedtls_rsa_pkcs1_verify returned %d\n\n", ret);
goto exit;
}
/*
* 6. Send our public value: Yc = G ^ Xc mod P
*/
mbedtls_printf("\n . Sending own public value to server");
fflush(stdout);
n = mbedtls_dhm_get_len(&dhm);
if ((ret = mbedtls_dhm_make_public(&dhm, (int) n, buf, n,
mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) {
mbedtls_printf(" failed\n ! mbedtls_dhm_make_public returned %d\n\n", ret);
goto exit;
}
if ((ret = mbedtls_net_send(&server_fd, buf, n)) != (int) n) {
mbedtls_printf(" failed\n ! mbedtls_net_send returned %d\n\n", ret);
goto exit;
}
/*
* 7. Derive the shared secret: K = Ys ^ Xc mod P
*/
mbedtls_printf("\n . Shared secret: ");
fflush(stdout);
if ((ret = mbedtls_dhm_calc_secret(&dhm, buf, sizeof(buf), &n,
mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) {
mbedtls_printf(" failed\n ! mbedtls_dhm_calc_secret returned %d\n\n", ret);
goto exit;
}
for (n = 0; n < 16; n++) {
mbedtls_printf("%02x", buf[n]);
}
/*
* 8. Setup the AES-256 decryption key
*
* This is an overly simplified example; best practice is
* to hash the shared secret with a random value to derive
* the keying material for the encryption/decryption keys,
* IVs and MACs.
*/
mbedtls_printf("...\n . Receiving and decrypting the ciphertext");
fflush(stdout);
ret = mbedtls_aes_setkey_dec(&aes, buf, 256);
if (ret != 0) {
goto exit;
}
memset(buf, 0, sizeof(buf));
if ((ret = mbedtls_net_recv(&server_fd, buf, 16)) != 16) {
mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret);
goto exit;
}
ret = mbedtls_aes_crypt_ecb(&aes, MBEDTLS_AES_DECRYPT, buf, buf);
if (ret != 0) {
goto exit;
}
buf[16] = '\0';
mbedtls_printf("\n . Plaintext is \"%s\"\n\n", (char *) buf);
exit_code = MBEDTLS_EXIT_SUCCESS;
exit:
mbedtls_net_free(&server_fd);
mbedtls_aes_free(&aes);
mbedtls_rsa_free(&rsa);
mbedtls_dhm_free(&dhm);
mbedtls_ctr_drbg_free(&ctr_drbg);
mbedtls_entropy_free(&entropy);
mbedtls_mpi_free(&N);
mbedtls_mpi_free(&E);
mbedtls_exit(exit_code);
}
#endif /* MBEDTLS_AES_C && MBEDTLS_DHM_C && MBEDTLS_ENTROPY_C &&
MBEDTLS_NET_C && MBEDTLS_RSA_C && MBEDTLS_MD_CAN_SHA256 &&
MBEDTLS_FS_IO && MBEDTLS_CTR_DRBG_C */