mbedtls/tests/suites/test_suite_gcm.function
Mateusz Starzyk 33d01ffe60 Remove redundant value assignemnt to olen.
Signed-off-by: Mateusz Starzyk <mateusz.starzyk@mobica.com>
2021-10-21 14:55:59 +02:00

462 lines
15 KiB
C

/* BEGIN_HEADER */
#include "mbedtls/gcm.h"
/* Use the multipart interface to process the encrypted data in two parts
* and check that the output matches the expected output.
* The context must have been set up with the key. */
static int check_multipart( mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *add,
const data_t *input,
const data_t *expected_output,
const data_t *tag,
size_t n1,
size_t n1_add)
{
int ok = 0;
uint8_t *output = NULL;
size_t n2 = input->len - n1;
size_t n2_add = add->len - n1_add;
size_t olen;
/* Sanity checks on the test data */
TEST_ASSERT( n1 <= input->len );
TEST_ASSERT( n1_add <= add->len );
TEST_EQUAL( input->len, expected_output->len );
TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode,
iv->x, iv->len ) );
TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, add->x, n1_add ) );
TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, add->x + n1_add, n2_add ) );
/* Allocate a tight buffer for each update call. This way, if the function
* tries to write beyond the advertised required buffer size, this will
* count as an overflow for memory sanitizers and static checkers. */
ASSERT_ALLOC( output, n1 );
olen = 0xdeadbeef;
TEST_EQUAL( 0, mbedtls_gcm_update( ctx, input->x, n1, output, n1, &olen ) );
TEST_EQUAL( n1, olen );
ASSERT_COMPARE( output, olen, expected_output->x, n1 );
mbedtls_free( output );
output = NULL;
ASSERT_ALLOC( output, n2 );
olen = 0xdeadbeef;
TEST_EQUAL( 0, mbedtls_gcm_update( ctx, input->x + n1, n2, output, n2, &olen ) );
TEST_EQUAL( n2, olen );
ASSERT_COMPARE( output, olen, expected_output->x + n1, n2 );
mbedtls_free( output );
output = NULL;
ASSERT_ALLOC( output, tag->len );
TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output, tag->len ) );
TEST_EQUAL( 0, olen );
ASSERT_COMPARE( output, tag->len, tag->x, tag->len );
mbedtls_free( output );
output = NULL;
ok = 1;
exit:
mbedtls_free( output );
return( ok );
}
static void check_cipher_with_empty_ad( mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *input,
const data_t *expected_output,
const data_t *tag,
size_t ad_update_count)
{
size_t n;
uint8_t *output = NULL;
size_t olen;
/* Sanity checks on the test data */
TEST_EQUAL( input->len, expected_output->len );
TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode,
iv->x, iv->len ) );
for( n = 0; n < ad_update_count; n++ )
{
TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, NULL, 0 ) );
}
/* Allocate a tight buffer for each update call. This way, if the function
* tries to write beyond the advertised required buffer size, this will
* count as an overflow for memory sanitizers and static checkers. */
ASSERT_ALLOC( output, input->len );
olen = 0xdeadbeef;
TEST_EQUAL( 0, mbedtls_gcm_update( ctx, input->x, input->len, output, input->len, &olen ) );
TEST_EQUAL( input->len, olen );
ASSERT_COMPARE( output, olen, expected_output->x, input->len );
mbedtls_free( output );
output = NULL;
ASSERT_ALLOC( output, tag->len );
TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output, tag->len ) );
TEST_EQUAL( 0, olen );
ASSERT_COMPARE( output, tag->len, tag->x, tag->len );
exit:
mbedtls_free( output );
}
static void check_empty_cipher_with_ad( mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *add,
const data_t *tag,
size_t cipher_update_count)
{
size_t olen;
size_t n;
uint8_t* output_tag = NULL;
TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode, iv->x, iv->len ) );
TEST_EQUAL( 0, mbedtls_gcm_update_ad( ctx, add->x, add->len ) );
for( n = 0; n < cipher_update_count; n++ )
{
olen = 0xdeadbeef;
TEST_EQUAL( 0, mbedtls_gcm_update( ctx, NULL, 0, NULL, 0, &olen ) );
TEST_EQUAL( 0, olen );
}
ASSERT_ALLOC( output_tag, tag->len );
TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen,
output_tag, tag->len ) );
TEST_EQUAL( 0, olen );
ASSERT_COMPARE( output_tag, tag->len, tag->x, tag->len );
exit:
mbedtls_free( output_tag );
}
static void check_no_cipher_no_ad( mbedtls_gcm_context *ctx,
int mode,
const data_t *iv,
const data_t *tag )
{
uint8_t *output = NULL;
size_t olen = 0;
TEST_EQUAL( 0, mbedtls_gcm_starts( ctx, mode,
iv->x, iv->len ) );
ASSERT_ALLOC( output, tag->len );
TEST_EQUAL( 0, mbedtls_gcm_finish( ctx, NULL, 0, &olen, output, tag->len ) );
TEST_EQUAL( 0, olen );
ASSERT_COMPARE( output, tag->len, tag->x, tag->len );
exit:
mbedtls_free( output );
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_GCM_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void gcm_bad_parameters( int cipher_id, int direction,
data_t *key_str, data_t *src_str,
data_t *iv_str, data_t *add_str,
int tag_len_bits, int gcm_result )
{
unsigned char output[128];
unsigned char tag_output[16];
mbedtls_gcm_context ctx;
size_t tag_len = tag_len_bits / 8;
mbedtls_gcm_init( &ctx );
memset( output, 0x00, sizeof( output ) );
memset( tag_output, 0x00, sizeof( tag_output ) );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
TEST_ASSERT( mbedtls_gcm_crypt_and_tag( &ctx, direction, src_str->len, iv_str->x, iv_str->len,
add_str->x, add_str->len, src_str->x, output, tag_len, tag_output ) == gcm_result );
exit:
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_tag( int cipher_id, data_t * key_str,
data_t * src_str, data_t * iv_str,
data_t * add_str, data_t * dst,
int tag_len_bits, data_t * tag,
int init_result )
{
unsigned char output[128];
unsigned char tag_output[16];
mbedtls_gcm_context ctx;
size_t tag_len = tag_len_bits / 8;
size_t n1;
size_t n1_add;
mbedtls_gcm_init( &ctx );
memset(output, 0x00, 128);
memset(tag_output, 0x00, 16);
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == init_result );
if( init_result == 0 )
{
TEST_ASSERT( mbedtls_gcm_crypt_and_tag( &ctx, MBEDTLS_GCM_ENCRYPT, src_str->len, iv_str->x, iv_str->len, add_str->x, add_str->len, src_str->x, output, tag_len, tag_output ) == 0 );
ASSERT_COMPARE( output, src_str->len, dst->x, dst->len );
ASSERT_COMPARE( tag_output, tag_len, tag->x, tag->len );
for( n1 = 0; n1 <= src_str->len; n1 += 1 )
{
for( n1_add = 0; n1_add <= add_str->len; n1_add += 1 )
{
mbedtls_test_set_step( n1 * 10000 + n1_add );
if( !check_multipart( &ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, add_str, src_str,
dst, tag,
n1, n1_add ) )
goto exit;
}
}
}
exit:
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify( int cipher_id, data_t * key_str,
data_t * src_str, data_t * iv_str,
data_t * add_str, int tag_len_bits,
data_t * tag_str, char * result,
data_t * pt_result, int init_result )
{
unsigned char output[128];
mbedtls_gcm_context ctx;
int ret;
size_t tag_len = tag_len_bits / 8;
size_t n1;
size_t n1_add;
mbedtls_gcm_init( &ctx );
memset(output, 0x00, 128);
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == init_result );
if( init_result == 0 )
{
ret = mbedtls_gcm_auth_decrypt( &ctx, src_str->len, iv_str->x, iv_str->len, add_str->x, add_str->len, tag_str->x, tag_len, src_str->x, output );
if( strcmp( "FAIL", result ) == 0 )
{
TEST_ASSERT( ret == MBEDTLS_ERR_GCM_AUTH_FAILED );
}
else
{
TEST_ASSERT( ret == 0 );
ASSERT_COMPARE( output, src_str->len, pt_result->x, pt_result->len );
for( n1 = 0; n1 <= src_str->len; n1 += 1 )
{
for( n1_add = 0; n1_add <= add_str->len; n1_add += 1 )
{
mbedtls_test_set_step( n1 * 10000 + n1_add );
if( !check_multipart( &ctx, MBEDTLS_GCM_DECRYPT,
iv_str, add_str, src_str,
pt_result, tag_str,
n1, n1_add ) )
goto exit;
}
}
}
}
exit:
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify_empty_cipher( int cipher_id,
data_t * key_str,
data_t * iv_str,
data_t * add_str,
data_t * tag_str,
int cipher_update_calls )
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init( &ctx );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
check_empty_cipher_with_ad( &ctx, MBEDTLS_GCM_DECRYPT,
iv_str, add_str, tag_str,
cipher_update_calls );
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify_empty_ad( int cipher_id,
data_t * key_str,
data_t * iv_str,
data_t * src_str,
data_t * tag_str,
data_t * pt_result,
int ad_update_calls )
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init( &ctx );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
check_cipher_with_empty_ad( &ctx, MBEDTLS_GCM_DECRYPT,
iv_str, src_str, pt_result, tag_str,
ad_update_calls );
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_decrypt_and_verify_no_ad_no_cipher( int cipher_id,
data_t * key_str,
data_t * iv_str,
data_t * tag_str )
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init( &ctx );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
check_no_cipher_no_ad( &ctx, MBEDTLS_GCM_DECRYPT,
iv_str, tag_str );
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_tag_empty_cipher( int cipher_id,
data_t * key_str,
data_t * iv_str,
data_t * add_str,
data_t * tag_str,
int cipher_update_calls )
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init( &ctx );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
check_empty_cipher_with_ad( &ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, add_str, tag_str,
cipher_update_calls );
exit:
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_tag_empty_ad( int cipher_id,
data_t * key_str,
data_t * iv_str,
data_t * src_str,
data_t * dst,
data_t * tag_str,
int ad_update_calls )
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init( &ctx );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
check_cipher_with_empty_ad( &ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, src_str, dst, tag_str,
ad_update_calls );
exit:
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_encrypt_and_verify_no_ad_no_cipher( int cipher_id,
data_t * key_str,
data_t * iv_str,
data_t * tag_str )
{
mbedtls_gcm_context ctx;
mbedtls_gcm_init( &ctx );
TEST_ASSERT( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ) == 0 );
check_no_cipher_no_ad( &ctx, MBEDTLS_GCM_ENCRYPT,
iv_str, tag_str );
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:NOT_DEFINED */
void gcm_invalid_param( )
{
mbedtls_gcm_context ctx;
unsigned char valid_buffer[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 };
mbedtls_cipher_id_t valid_cipher = MBEDTLS_CIPHER_ID_AES;
int invalid_bitlen = 1;
mbedtls_gcm_init( &ctx );
/* mbedtls_gcm_setkey */
TEST_EQUAL(
MBEDTLS_ERR_GCM_BAD_INPUT,
mbedtls_gcm_setkey( &ctx, valid_cipher, valid_buffer, invalid_bitlen ) );
exit:
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE */
void gcm_update_output_buffer_too_small( int cipher_id, int mode,
data_t * key_str, const data_t *input,
const data_t *iv )
{
mbedtls_gcm_context ctx;
uint8_t *output = NULL;
size_t olen = 0;
size_t output_len = input->len - 1;
mbedtls_gcm_init( &ctx );
TEST_EQUAL( mbedtls_gcm_setkey( &ctx, cipher_id, key_str->x, key_str->len * 8 ), 0 );
TEST_EQUAL( 0, mbedtls_gcm_starts( &ctx, mode, iv->x, iv->len ) );
ASSERT_ALLOC( output, output_len );
TEST_EQUAL( MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL, mbedtls_gcm_update( &ctx, input->x, input->len, output, output_len, &olen ) );
exit:
mbedtls_free( output );
mbedtls_gcm_free( &ctx );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */
void gcm_selftest( )
{
TEST_ASSERT( mbedtls_gcm_self_test( 1 ) == 0 );
}
/* END_CASE */