mbedtls/tests/suites/test_suite_psa_crypto_init.function
Gilles Peskine 69971662bf CTR_DRBG: define a constant for the default entropy nonce length
The default entropy nonce length is either zero or nonzero depending
on the desired security strength and the entropy length.

The implementation calculates the actual entropy nonce length from the
actual entropy length, and therefore it doesn't need a constant that
indicates the default entropy nonce length. A portable application may
be interested in this constant, however. And our test code could
definitely use it.

Define a constant MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN and use it in
test code. Previously, test_suite_ctr_drbg had knowledge about the
default entropy nonce length built in and test_suite_psa_crypto_init
failed. Now both use MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN.

This change means that the test ctr_drbg_entropy_usage no longer
validates that the default entropy nonce length is sensible. So add a
new test that checks that the default entropy length and the default
entropy nonce length are sufficient to ensure the expected security
strength.
2019-10-23 19:47:05 +02:00

291 lines
8.8 KiB
Text

/* BEGIN_HEADER */
#include <stdint.h>
#include "psa_crypto_helpers.h"
/* Some tests in this module configure entropy sources. */
#include "psa_crypto_invasive.h"
#include "mbedtls/entropy.h"
#include "mbedtls/entropy_poll.h"
#define ENTROPY_MIN_NV_SEED_SIZE \
MAX(MBEDTLS_ENTROPY_MIN_PLATFORM, MBEDTLS_ENTROPY_BLOCK_SIZE)
/* PSA crypto uses the CTR_DRBG module. In some configurations, it needs
* to read from the entropy source twice: once for the initial entropy
* and once for a nonce. */
#include "mbedtls/ctr_drbg.h"
#define ENTROPY_NONCE_LEN MBEDTLS_CTR_DRBG_ENTROPY_NONCE_LEN
typedef struct
{
size_t threshold; /* Minimum bytes to make mbedtls_entropy_func happy */
size_t max_steps;
size_t *length_sequence;
size_t step;
} fake_entropy_state_t;
static int fake_entropy_source( void *state_arg,
unsigned char *output, size_t len,
size_t *olen )
{
fake_entropy_state_t *state = state_arg;
size_t i;
if( state->step >= state->max_steps )
return( MBEDTLS_ERR_ENTROPY_SOURCE_FAILED );
*olen = MIN( len, state->length_sequence[state->step] );
for( i = 0; i < *olen; i++ )
output[i] = i;
++state->step;
return( 0 );
}
#define ENTROPY_SOURCE_PLATFORM 0x00000001
#define ENTROPY_SOURCE_TIMING 0x00000002
#define ENTROPY_SOURCE_HAVEGE 0x00000004
#define ENTROPY_SOURCE_HARDWARE 0x00000008
#define ENTROPY_SOURCE_NV_SEED 0x00000010
#define ENTROPY_SOURCE_FAKE 0x40000000
static uint32_t custom_entropy_sources_mask;
static fake_entropy_state_t fake_entropy_state;
/* This is a modified version of mbedtls_entropy_init() from entropy.c
* which chooses entropy sources dynamically. */
static void custom_entropy_init( mbedtls_entropy_context *ctx )
{
ctx->source_count = 0;
memset( ctx->source, 0, sizeof( ctx->source ) );
#if defined(MBEDTLS_THREADING_C)
mbedtls_mutex_init( &ctx->mutex );
#endif
ctx->accumulator_started = 0;
#if defined(MBEDTLS_ENTROPY_SHA512_ACCUMULATOR)
mbedtls_sha512_init( &ctx->accumulator );
#else
mbedtls_sha256_init( &ctx->accumulator );
#endif
#if defined(MBEDTLS_HAVEGE_C)
mbedtls_havege_init( &ctx->havege_data );
#endif
#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
if( custom_entropy_sources_mask & ENTROPY_SOURCE_PLATFORM )
mbedtls_entropy_add_source( ctx, mbedtls_platform_entropy_poll, NULL,
MBEDTLS_ENTROPY_MIN_PLATFORM,
MBEDTLS_ENTROPY_SOURCE_STRONG );
#endif
#if defined(MBEDTLS_TIMING_C)
if( custom_entropy_sources_mask & ENTROPY_SOURCE_TIMING )
mbedtls_entropy_add_source( ctx, mbedtls_hardclock_poll, NULL,
MBEDTLS_ENTROPY_MIN_HARDCLOCK,
MBEDTLS_ENTROPY_SOURCE_WEAK );
#endif
#if defined(MBEDTLS_HAVEGE_C)
if( custom_entropy_sources_mask & ENTROPY_SOURCE_HAVEGE )
mbedtls_entropy_add_source( ctx, mbedtls_havege_poll, &ctx->havege_data,
MBEDTLS_ENTROPY_MIN_HAVEGE,
MBEDTLS_ENTROPY_SOURCE_STRONG );
#endif
#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
if( custom_entropy_sources_mask & ENTROPY_SOURCE_HARDWARE )
mbedtls_entropy_add_source( ctx, mbedtls_hardware_poll, NULL,
MBEDTLS_ENTROPY_MIN_HARDWARE,
MBEDTLS_ENTROPY_SOURCE_STRONG );
#endif
#if defined(MBEDTLS_ENTROPY_NV_SEED)
if( custom_entropy_sources_mask & ENTROPY_SOURCE_NV_SEED )
{
mbedtls_entropy_add_source( ctx, mbedtls_nv_seed_poll, NULL,
MBEDTLS_ENTROPY_BLOCK_SIZE,
MBEDTLS_ENTROPY_SOURCE_STRONG );
ctx->initial_entropy_run = 0;
}
else
{
/* Skip the NV seed even though it's compiled in. */
ctx->initial_entropy_run = 1;
}
#endif
if( custom_entropy_sources_mask & ENTROPY_SOURCE_FAKE )
mbedtls_entropy_add_source( ctx,
fake_entropy_source, &fake_entropy_state,
fake_entropy_state.threshold,
MBEDTLS_ENTROPY_SOURCE_STRONG );
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PSA_CRYPTO_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_NV_SEED */
void create_nv_seed( )
{
static unsigned char seed[ENTROPY_MIN_NV_SEED_SIZE];
TEST_ASSERT( mbedtls_nv_seed_write( seed, sizeof( seed ) ) >= 0 );
}
/* END_CASE */
/* BEGIN_CASE */
void init_deinit( int count )
{
psa_status_t status;
int i;
for( i = 0; i < count; i++ )
{
status = psa_crypto_init( );
PSA_ASSERT( status );
status = psa_crypto_init( );
PSA_ASSERT( status );
PSA_DONE( );
}
}
/* END_CASE */
/* BEGIN_CASE */
void deinit_without_init( int count )
{
int i;
for( i = 0; i < count; i++ )
{
PSA_ASSERT( psa_crypto_init( ) );
PSA_DONE( );
}
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void validate_module_init_generate_random( int count )
{
psa_status_t status;
uint8_t random[10] = { 0 };
int i;
for( i = 0; i < count; i++ )
{
status = psa_crypto_init( );
PSA_ASSERT( status );
PSA_DONE( );
}
status = psa_generate_random( random, sizeof( random ) );
TEST_EQUAL( status, PSA_ERROR_BAD_STATE );
}
/* END_CASE */
/* BEGIN_CASE */
void validate_module_init_key_based( int count )
{
psa_status_t status;
uint8_t data[10] = { 0 };
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_handle_t handle = 0xdead;
int i;
for( i = 0; i < count; i++ )
{
status = psa_crypto_init( );
PSA_ASSERT( status );
PSA_DONE( );
}
psa_set_key_type( &attributes, PSA_KEY_TYPE_RAW_DATA );
status = psa_import_key( &attributes, data, sizeof( data ), &handle );
TEST_EQUAL( status, PSA_ERROR_BAD_STATE );
TEST_EQUAL( handle, 0 );
}
/* END_CASE */
/* BEGIN_CASE */
void custom_entropy_sources( int sources_arg, int expected_init_status_arg )
{
psa_status_t expected_init_status = expected_init_status_arg;
uint8_t random[10] = { 0 };
custom_entropy_sources_mask = sources_arg;
PSA_ASSERT( mbedtls_psa_crypto_configure_entropy_sources(
custom_entropy_init, mbedtls_entropy_free ) );
TEST_EQUAL( psa_crypto_init( ), expected_init_status );
if( expected_init_status != PSA_SUCCESS )
goto exit;
PSA_ASSERT( psa_generate_random( random, sizeof( random ) ) );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void fake_entropy_source( int threshold,
int amount1,
int amount2,
int amount3,
int amount4,
int expected_init_status_arg )
{
psa_status_t expected_init_status = expected_init_status_arg;
uint8_t random[10] = { 0 };
size_t lengths[4];
fake_entropy_state.threshold = threshold;
fake_entropy_state.step = 0;
fake_entropy_state.max_steps = 0;
if( amount1 >= 0 )
lengths[fake_entropy_state.max_steps++] = amount1;
if( amount2 >= 0 )
lengths[fake_entropy_state.max_steps++] = amount2;
if( amount3 >= 0 )
lengths[fake_entropy_state.max_steps++] = amount3;
if( amount4 >= 0 )
lengths[fake_entropy_state.max_steps++] = amount4;
fake_entropy_state.length_sequence = lengths;
custom_entropy_sources_mask = ENTROPY_SOURCE_FAKE;
PSA_ASSERT( mbedtls_psa_crypto_configure_entropy_sources(
custom_entropy_init, mbedtls_entropy_free ) );
TEST_EQUAL( psa_crypto_init( ), expected_init_status );
if( expected_init_status != PSA_SUCCESS )
goto exit;
PSA_ASSERT( psa_generate_random( random, sizeof( random ) ) );
exit:
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_NV_SEED */
void entropy_from_nv_seed( int seed_size_arg,
int expected_init_status_arg )
{
psa_status_t expected_init_status = expected_init_status_arg;
uint8_t random[10] = { 0 };
uint8_t *seed = NULL;
size_t seed_size = seed_size_arg;
ASSERT_ALLOC( seed, seed_size );
TEST_ASSERT( mbedtls_nv_seed_write( seed, seed_size ) >= 0 );
custom_entropy_sources_mask = ENTROPY_SOURCE_NV_SEED;
PSA_ASSERT( mbedtls_psa_crypto_configure_entropy_sources(
custom_entropy_init, mbedtls_entropy_free ) );
TEST_EQUAL( psa_crypto_init( ), expected_init_status );
if( expected_init_status != PSA_SUCCESS )
goto exit;
PSA_ASSERT( psa_generate_random( random, sizeof( random ) ) );
exit:
mbedtls_free( seed );
PSA_DONE( );
}
/* END_CASE */