mbedtls/tests/suites/test_suite_pk.function
Gilles Peskine 35ef36b62f Rename psa_generate_random_key back to psa_generate_key
generate_key is a more classical name. The longer name was only
introduced to avoid confusion with getting a key from a generator,
which is key derivation, but we no longer use the generator
terminology so this reason no longer applies.

perl -i -pe 's/psa_generate_random_key/psa_generate_key/g' $(git ls-files)
2019-05-17 10:56:57 +02:00

1270 lines
50 KiB
Text

/* BEGIN_HEADER */
#include "mbedtls/pk.h"
/* For error codes */
#include "mbedtls/asn1.h"
#include "mbedtls/base64.h"
#include "mbedtls/ecp.h"
#include "mbedtls/rsa.h"
#include <limits.h>
#include <stdint.h>
static int rnd_std_rand( void *rng_state, unsigned char *output, size_t len );
#define RSA_KEY_SIZE 512
#define RSA_KEY_LEN 64
static int pk_genkey( mbedtls_pk_context *pk )
{
((void) pk);
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME)
if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_RSA )
return mbedtls_rsa_gen_key( mbedtls_pk_rsa( *pk ), rnd_std_rand, NULL, RSA_KEY_SIZE, 3 );
#endif
#if defined(MBEDTLS_ECP_C)
if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY ||
mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY_DH ||
mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECDSA )
{
int ret;
if( ( ret = mbedtls_ecp_group_load( &mbedtls_pk_ec( *pk )->grp,
MBEDTLS_ECP_DP_SECP192R1 ) ) != 0 )
return( ret );
return mbedtls_ecp_gen_keypair( &mbedtls_pk_ec( *pk )->grp, &mbedtls_pk_ec( *pk )->d,
&mbedtls_pk_ec( *pk )->Q, rnd_std_rand, NULL );
}
#endif
return( -1 );
}
#if defined(MBEDTLS_RSA_C)
int mbedtls_rsa_decrypt_func( void *ctx, int mode, size_t *olen,
const unsigned char *input, unsigned char *output,
size_t output_max_len )
{
return( mbedtls_rsa_pkcs1_decrypt( (mbedtls_rsa_context *) ctx,
rnd_std_rand, NULL, mode, olen,
input, output, output_max_len ) );
}
int mbedtls_rsa_sign_func( void *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
int mode, mbedtls_md_type_t md_alg, unsigned int hashlen,
const unsigned char *hash, unsigned char *sig )
{
((void) f_rng);
((void) p_rng);
return( mbedtls_rsa_pkcs1_sign( (mbedtls_rsa_context *) ctx, rnd_std_rand, NULL, mode,
md_alg, hashlen, hash, sig ) );
}
size_t mbedtls_rsa_key_len_func( void *ctx )
{
return( ((const mbedtls_rsa_context *) ctx)->len );
}
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#include "mbedtls/psa_util.h"
#define PK_PSA_INVALID_SLOT 0 /* guaranteed invalid */
/*
* Generate a key in a free key slot and return this key slot,
* or PK_PSA_INVALID_SLOT if no slot was available.
* The key uses NIST P-256 and is usable for signing with SHA-256.
*/
psa_key_handle_t pk_psa_genkey( void )
{
psa_key_handle_t key;
const int curve = PSA_ECC_CURVE_SECP256R1;
const psa_key_type_t type = PSA_KEY_TYPE_ECC_KEY_PAIR(curve);
const size_t bits = 256;
psa_key_policy_t policy;
/* Allocate a key slot */
if( PSA_SUCCESS != psa_allocate_key( &key ) )
return( PK_PSA_INVALID_SLOT );
/* set up policy on key slot */
policy = psa_key_policy_init();
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN,
PSA_ALG_ECDSA(PSA_ALG_SHA_256) );
if( PSA_SUCCESS != psa_set_key_policy( key, &policy ) )
return( PK_PSA_INVALID_SLOT );
/* generate key */
if( PSA_SUCCESS != psa_generate_key_to_handle( key, type, bits, NULL, 0 ) )
return( PK_PSA_INVALID_SLOT );
return( key );
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PK_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE depends_on:MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_ECDSA_C:MBEDTLS_ECP_DP_SECP256R1_ENABLED */
void pk_psa_utils( )
{
mbedtls_pk_context pk, pk2;
psa_key_handle_t key;
const char * const name = "Opaque";
const size_t bitlen = 256; /* harcoded in genkey() */
mbedtls_md_type_t md_alg = MBEDTLS_MD_NONE;
unsigned char b1[1], b2[1];
size_t len;
mbedtls_pk_debug_item dbg;
TEST_ASSERT( psa_crypto_init() == 0 );
mbedtls_pk_init( &pk );
mbedtls_pk_init( &pk2 );
TEST_ASSERT( mbedtls_pk_setup_opaque( &pk, 0 ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
mbedtls_pk_free( &pk );
mbedtls_pk_init( &pk );
key = pk_psa_genkey();
TEST_ASSERT( key != 0 );
TEST_ASSERT( mbedtls_pk_setup_opaque( &pk, key ) == 0 );
TEST_ASSERT( mbedtls_pk_get_type( &pk ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 );
TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == bitlen );
TEST_ASSERT( mbedtls_pk_get_len( &pk ) == bitlen / 8 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECKEY ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_RSA ) == 0 );
/* unsupported operations: verify, decrypt, encrypt */
TEST_ASSERT( mbedtls_pk_verify( &pk, md_alg,
b1, sizeof( b1), b2, sizeof( b2 ) )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_decrypt( &pk, b1, sizeof( b1 ),
b2, &len, sizeof( b2 ),
NULL, NULL )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_encrypt( &pk, b1, sizeof( b1 ),
b2, &len, sizeof( b2 ),
NULL, NULL )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
/* unsupported functions: check_pair, debug */
TEST_ASSERT( mbedtls_pk_setup( &pk2,
mbedtls_pk_info_from_type( MBEDTLS_PK_ECKEY ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pk, &pk2 )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_debug( &pk, &dbg )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
/* test that freeing the context does not destroy the key */
mbedtls_pk_free( &pk );
TEST_ASSERT( PSA_SUCCESS == psa_get_key_information( key, NULL, NULL ) );
TEST_ASSERT( PSA_SUCCESS == psa_destroy_key( key ) );
exit:
mbedtls_pk_free( &pk ); /* redundant except upon error */
mbedtls_pk_free( &pk2 );
}
/* END_CASE */
/* BEGIN_CASE */
void valid_parameters( )
{
mbedtls_pk_context pk;
unsigned char buf[1];
size_t len;
void *options = NULL;
mbedtls_pk_init( &pk );
TEST_VALID_PARAM( mbedtls_pk_free( NULL ) );
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
TEST_VALID_PARAM( mbedtls_pk_restart_free( NULL ) );
#endif
TEST_ASSERT( mbedtls_pk_setup( &pk, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
/* In informational functions, we accept NULL where a context pointer
* is expected because that's what the library has done forever.
* We do not document that NULL is accepted, so we may wish to change
* the behavior in a future version. */
TEST_ASSERT( mbedtls_pk_get_bitlen( NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_get_len( NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_can_do( NULL, MBEDTLS_PK_NONE ) == 0 );
TEST_ASSERT( mbedtls_pk_sign_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, &len,
rnd_std_rand, NULL,
NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_sign_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, &len,
rnd_std_rand, NULL,
NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_sign( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, &len,
rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ),
NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_verify( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ) ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options,
&pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ) ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_encrypt( &pk,
NULL, 0,
NULL, &len, 0,
rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_decrypt( &pk,
NULL, 0,
NULL, &len, 0,
rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#if defined(MBEDTLS_PK_PARSE_C)
TEST_ASSERT( mbedtls_pk_parse_key( &pk, NULL, 0, NULL, 1 ) ==
MBEDTLS_ERR_PK_KEY_INVALID_FORMAT );
TEST_ASSERT( mbedtls_pk_parse_public_key( &pk, NULL, 0 ) ==
MBEDTLS_ERR_PK_KEY_INVALID_FORMAT );
#endif /* MBEDTLS_PK_PARSE_C */
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PK_WRITE_C */
void valid_parameters_pkwrite( data_t *key_data )
{
mbedtls_pk_context pk;
/* For the write tests to be effective, we need a valid key pair. */
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_parse_key( &pk,
key_data->x, key_data->len,
NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_pk_write_key_der( &pk, NULL, 0 ) ==
MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
TEST_ASSERT( mbedtls_pk_write_pubkey_der( &pk, NULL, 0 ) ==
MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
#if defined(MBEDTLS_PEM_WRITE_C)
TEST_ASSERT( mbedtls_pk_write_key_pem( &pk, NULL, 0 ) ==
MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL );
TEST_ASSERT( mbedtls_pk_write_pubkey_pem( &pk, NULL, 0 ) ==
MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL );
#endif /* MBEDTLS_PEM_WRITE_C */
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CHECK_PARAMS:!MBEDTLS_PARAM_FAILED_ALT */
void invalid_parameters( )
{
size_t len;
unsigned char *null_buf = NULL;
unsigned char buf[1];
unsigned char *p = buf;
char str[1] = {0};
mbedtls_pk_context pk;
mbedtls_md_type_t valid_md = MBEDTLS_MD_SHA256;
void *options = buf;
(void) null_buf;
(void) p;
(void) str;
mbedtls_pk_init( &pk );
TEST_INVALID_PARAM( mbedtls_pk_init( NULL ) );
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
TEST_INVALID_PARAM( mbedtls_pk_restart_init( NULL ) );
#endif
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_setup( NULL, NULL ) );
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_setup_rsa_alt( NULL, buf,
NULL, NULL, NULL ) );
#endif
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_restartable( NULL,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
buf, sizeof( buf ),
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, sizeof( buf ),
buf, sizeof( buf ),
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_restartable( &pk,
valid_md,
NULL, 0,
buf, sizeof( buf ),
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_restartable( &pk,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
NULL, sizeof( buf ),
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify( NULL,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify( &pk,
MBEDTLS_MD_NONE,
NULL, sizeof( buf ),
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify( &pk,
valid_md,
NULL, 0,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify( &pk,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
NULL, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options,
NULL,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options,
&pk,
MBEDTLS_MD_NONE,
NULL, sizeof( buf ),
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options,
&pk,
valid_md,
NULL, 0,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options,
&pk,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
NULL, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign_restartable( NULL,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
buf, &len,
rnd_std_rand, NULL,
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, sizeof( buf ),
buf, &len,
rnd_std_rand, NULL,
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign_restartable( &pk,
valid_md,
NULL, 0,
buf, &len,
rnd_std_rand, NULL,
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign_restartable( &pk,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
NULL, &len,
rnd_std_rand, NULL,
NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign( NULL,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
buf, &len,
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign( &pk,
MBEDTLS_MD_NONE,
NULL, sizeof( buf ),
buf, &len,
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign( &pk,
valid_md,
NULL, 0,
buf, &len,
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_sign( &pk,
MBEDTLS_MD_NONE,
buf, sizeof( buf ),
NULL, &len,
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_decrypt( NULL,
buf, sizeof( buf ),
buf, &len, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_decrypt( &pk,
NULL, sizeof( buf ),
buf, &len, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_decrypt( &pk,
buf, sizeof( buf ),
NULL, &len, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_decrypt( &pk,
buf, sizeof( buf ),
buf, NULL, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_encrypt( NULL,
buf, sizeof( buf ),
buf, &len, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_encrypt( &pk,
NULL, sizeof( buf ),
buf, &len, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_encrypt( &pk,
buf, sizeof( buf ),
NULL, &len, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_encrypt( &pk,
buf, sizeof( buf ),
buf, NULL, sizeof( buf ),
rnd_std_rand, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_check_pair( NULL, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_check_pair( &pk, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_debug( NULL, NULL ) );
#if defined(MBEDTLS_PK_PARSE_C)
#if defined(MBEDTLS_FS_IO)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_load_file( NULL, &p, &len ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_load_file( str, NULL, &len ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_load_file( str, &p, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_keyfile( NULL, str, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_keyfile( &pk, NULL, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_public_keyfile( NULL, str ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_public_keyfile( &pk, NULL ) );
#endif
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_subpubkey( NULL, buf, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_subpubkey( &null_buf, buf, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_subpubkey( &p, NULL, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_subpubkey( &p, buf, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_key( NULL,
buf, sizeof( buf ),
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_key( &pk,
NULL, sizeof( buf ),
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_public_key( NULL,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_parse_public_key( &pk,
NULL, sizeof( buf ) ) );
#endif /* MBEDTLS_PK_PARSE_C */
#if defined(MBEDTLS_PK_WRITE_C)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey( NULL, p, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey( &null_buf, p, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey( &p, NULL, &pk ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey( &p, p, NULL ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey_der( NULL,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey_der( &pk,
NULL, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_key_der( NULL,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_key_der( &pk,
NULL, sizeof( buf ) ) );
#if defined(MBEDTLS_PEM_WRITE_C)
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey_pem( NULL,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_pubkey_pem( &pk,
NULL, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_key_pem( NULL,
buf, sizeof( buf ) ) );
TEST_INVALID_PARAM_RET( MBEDTLS_ERR_PK_BAD_INPUT_DATA,
mbedtls_pk_write_key_pem( &pk,
NULL, sizeof( buf ) ) );
#endif /* MBEDTLS_PEM_WRITE_C */
#endif /* MBEDTLS_PK_WRITE_C */
}
/* END_CASE */
/* BEGIN_CASE */
void pk_utils( int type, int size, int len, char * name )
{
mbedtls_pk_context pk;
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( pk_genkey( &pk ) == 0 );
TEST_ASSERT( (int) mbedtls_pk_get_type( &pk ) == type );
TEST_ASSERT( mbedtls_pk_can_do( &pk, type ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == (unsigned) size );
TEST_ASSERT( mbedtls_pk_get_len( &pk ) == (unsigned) len );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PK_PARSE_C:MBEDTLS_FS_IO */
void mbedtls_pk_check_pair( char * pub_file, char * prv_file, int ret )
{
mbedtls_pk_context pub, prv, alt;
mbedtls_pk_init( &pub );
mbedtls_pk_init( &prv );
mbedtls_pk_init( &alt );
TEST_ASSERT( mbedtls_pk_parse_public_keyfile( &pub, pub_file ) == 0 );
TEST_ASSERT( mbedtls_pk_parse_keyfile( &prv, prv_file, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &prv ) == ret );
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
if( mbedtls_pk_get_type( &prv ) == MBEDTLS_PK_RSA )
{
TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, mbedtls_pk_rsa( prv ),
mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func,
mbedtls_rsa_key_len_func ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &alt ) == ret );
}
#endif
mbedtls_pk_free( &pub );
mbedtls_pk_free( &prv );
mbedtls_pk_free( &alt );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_verify_test_vec( data_t * message_str, int digest, int mod,
int radix_N, char * input_N, int radix_E,
char * input_E, data_t * result_str,
int result )
{
unsigned char hash_result[1000];
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
mbedtls_pk_restart_ctx *rs_ctx = NULL;
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_ctx ctx;
rs_ctx = &ctx;
mbedtls_pk_restart_init( rs_ctx );
// this setting would ensure restart would happen if ECC was used
mbedtls_ecp_set_max_ops( 1 );
#endif
mbedtls_pk_init( &pk );
memset( hash_result, 0x00, 1000 );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
rsa->len = mod / 8;
TEST_ASSERT( mbedtls_mpi_read_string( &rsa->N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &rsa->E, radix_E, input_E ) == 0 );
if( mbedtls_md_info_from_type( digest ) != NULL )
TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str->x, message_str->len, hash_result ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &pk, digest, hash_result, 0,
result_str->x, mbedtls_pk_get_len( &pk ) ) == result );
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, digest, hash_result, 0,
result_str->x, mbedtls_pk_get_len( &pk ), rs_ctx ) == result );
exit:
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_free( rs_ctx );
#endif
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_verify_ext_test_vec( data_t * message_str, int digest,
int mod, int radix_N, char * input_N,
int radix_E, char * input_E,
data_t * result_str, int pk_type,
int mgf1_hash_id, int salt_len, int result )
{
unsigned char hash_result[1000];
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
mbedtls_pk_rsassa_pss_options pss_opts;
void *options;
size_t hash_len;
mbedtls_pk_init( &pk );
memset( hash_result, 0x00, 1000 );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
rsa->len = mod / 8;
TEST_ASSERT( mbedtls_mpi_read_string( &rsa->N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &rsa->E, radix_E, input_E ) == 0 );
if( digest != MBEDTLS_MD_NONE )
{
TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ),
message_str->x, message_str->len, hash_result ) == 0 );
hash_len = 0;
}
else
{
memcpy( hash_result, message_str->x, message_str->len );
hash_len = message_str->len;
}
if( mgf1_hash_id < 0 )
{
options = NULL;
}
else
{
options = &pss_opts;
pss_opts.mgf1_hash_id = mgf1_hash_id;
pss_opts.expected_salt_len = salt_len;
}
TEST_ASSERT( mbedtls_pk_verify_ext( pk_type, options, &pk,
digest, hash_result, hash_len,
result_str->x, mbedtls_pk_get_len( &pk ) ) == result );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECDSA_C */
void pk_ec_test_vec( int type, int id, data_t * key, data_t * hash,
data_t * sig, int ret )
{
mbedtls_pk_context pk;
mbedtls_ecp_keypair *eckey;
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) );
eckey = mbedtls_pk_ec( pk );
TEST_ASSERT( mbedtls_ecp_group_load( &eckey->grp, id ) == 0 );
TEST_ASSERT( mbedtls_ecp_point_read_binary( &eckey->grp, &eckey->Q,
key->x, key->len ) == 0 );
// MBEDTLS_MD_SHA1 is a dummy - it is ignored, but has to be other than MBEDTLS_MD_NONE.
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA1,
hash->x, hash->len, sig->x, sig->len ) == ret );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE:MBEDTLS_ECDSA_C:MBEDTLS_ECDSA_DETERMINISTIC */
void pk_sign_verify_restart( int pk_type, int grp_id, char *d_str,
char *QX_str, char *QY_str,
int md_alg, char *msg, char *sig_str,
int max_ops, int min_restart, int max_restart )
{
int ret, cnt_restart;
mbedtls_pk_restart_ctx rs_ctx;
mbedtls_pk_context prv, pub;
unsigned char hash[MBEDTLS_MD_MAX_SIZE];
unsigned char sig[MBEDTLS_ECDSA_MAX_LEN];
unsigned char sig_check[MBEDTLS_ECDSA_MAX_LEN];
size_t hlen, slen, slen_check;
const mbedtls_md_info_t *md_info;
mbedtls_pk_restart_init( &rs_ctx );
mbedtls_pk_init( &prv );
mbedtls_pk_init( &pub );
memset( hash, 0, sizeof( hash ) );
memset( sig, 0, sizeof( sig ) );
memset( sig_check, 0, sizeof( sig_check ) );
TEST_ASSERT( mbedtls_pk_setup( &prv, mbedtls_pk_info_from_type( pk_type ) ) == 0 );
TEST_ASSERT( mbedtls_ecp_group_load( &mbedtls_pk_ec( prv )->grp, grp_id ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &mbedtls_pk_ec( prv )->d, 16, d_str ) == 0 );
TEST_ASSERT( mbedtls_pk_setup( &pub, mbedtls_pk_info_from_type( pk_type ) ) == 0 );
TEST_ASSERT( mbedtls_ecp_group_load( &mbedtls_pk_ec( pub )->grp, grp_id ) == 0 );
TEST_ASSERT( mbedtls_ecp_point_read_string( &mbedtls_pk_ec( pub )->Q, 16, QX_str, QY_str ) == 0 );
slen_check = unhexify( sig_check, sig_str );
md_info = mbedtls_md_info_from_type( md_alg );
TEST_ASSERT( md_info != NULL );
hlen = mbedtls_md_get_size( md_info );
mbedtls_md( md_info, (const unsigned char *) msg, strlen( msg ), hash );
mbedtls_ecp_set_max_ops( max_ops );
slen = sizeof( sig );
cnt_restart = 0;
do {
ret = mbedtls_pk_sign_restartable( &prv, md_alg, hash, hlen,
sig, &slen, NULL, NULL, &rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart );
TEST_ASSERT( ret == 0 );
TEST_ASSERT( slen == slen_check );
TEST_ASSERT( memcmp( sig, sig_check, slen ) == 0 );
TEST_ASSERT( cnt_restart >= min_restart );
TEST_ASSERT( cnt_restart <= max_restart );
cnt_restart = 0;
do {
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash, hlen, sig, slen, &rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart );
TEST_ASSERT( ret == 0 );
TEST_ASSERT( cnt_restart >= min_restart );
TEST_ASSERT( cnt_restart <= max_restart );
hash[0]++;
do {
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash, hlen, sig, slen, &rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
TEST_ASSERT( ret != 0 );
hash[0]--;
sig[0]++;
do {
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash, hlen, sig, slen, &rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
TEST_ASSERT( ret != 0 );
sig[0]--;
/* Do we leak memory when aborting? try verify then sign
* This test only makes sense when we actually restart */
if( min_restart > 0 )
{
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash, hlen, sig, slen, &rs_ctx );
TEST_ASSERT( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
mbedtls_pk_restart_free( &rs_ctx );
slen = sizeof( sig );
ret = mbedtls_pk_sign_restartable( &prv, md_alg, hash, hlen,
sig, &slen, NULL, NULL, &rs_ctx );
TEST_ASSERT( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
}
exit:
mbedtls_pk_restart_free( &rs_ctx );
mbedtls_pk_free( &prv );
mbedtls_pk_free( &pub );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */
void pk_sign_verify( int type, int sign_ret, int verify_ret )
{
mbedtls_pk_context pk;
unsigned char hash[50], sig[5000];
size_t sig_len;
void *rs_ctx = NULL;
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_ctx ctx;
rs_ctx = &ctx;
mbedtls_pk_restart_init( rs_ctx );
/* This value is large enough that the operation will complete in one run.
* See comments at the top of ecp_test_vect_restart in
* test_suite_ecp.function for estimates of operation counts. */
mbedtls_ecp_set_max_ops( 42000 );
#endif
mbedtls_pk_init( &pk );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( pk_genkey( &pk ) == 0 );
TEST_ASSERT( mbedtls_pk_sign_restartable( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, &sig_len,
rnd_std_rand, NULL, rs_ctx ) == sign_ret );
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len ) == verify_ret );
if( verify_ret == 0 )
{
hash[0]++;
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len ) != 0 );
hash[0]--;
sig[0]++;
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len ) != 0 );
sig[0]--;
}
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, sizeof hash,
sig, &sig_len, rnd_std_rand, NULL ) == sign_ret );
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len, rs_ctx ) == verify_ret );
if( verify_ret == 0 )
{
hash[0]++;
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len, rs_ctx ) != 0 );
hash[0]--;
sig[0]++;
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len, rs_ctx ) != 0 );
sig[0]--;
}
exit:
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_free( rs_ctx );
#endif
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_encrypt_test_vec( data_t * message, int mod, int radix_N,
char * input_N, int radix_E, char * input_E,
data_t * result, int ret )
{
unsigned char output[1000];
rnd_pseudo_info rnd_info;
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
size_t olen;
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
memset( output, 0, sizeof( output ) );
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
rsa->len = mod / 8;
TEST_ASSERT( mbedtls_mpi_read_string( &rsa->N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &rsa->E, radix_E, input_E ) == 0 );
TEST_ASSERT( mbedtls_pk_encrypt( &pk, message->x, message->len,
output, &olen, sizeof( output ),
rnd_pseudo_rand, &rnd_info ) == ret );
TEST_ASSERT( olen == result->len );
TEST_ASSERT( memcmp( output, result->x, olen ) == 0 );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_decrypt_test_vec( data_t * cipher, int mod, int radix_P,
char * input_P, int radix_Q, char * input_Q,
int radix_N, char * input_N, int radix_E,
char * input_E, data_t * clear, int ret )
{
unsigned char output[1000];
rnd_pseudo_info rnd_info;
mbedtls_mpi N, P, Q, E;
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
size_t olen;
mbedtls_pk_init( &pk );
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
/* init pk-rsa context */
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
/* load public key */
TEST_ASSERT( mbedtls_mpi_read_string( &N, radix_N, input_N ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &E, radix_E, input_E ) == 0 );
/* load private key */
TEST_ASSERT( mbedtls_mpi_read_string( &P, radix_P, input_P ) == 0 );
TEST_ASSERT( mbedtls_mpi_read_string( &Q, radix_Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( rsa, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( rsa ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( rsa ) == 0 );
/* decryption test */
memset( output, 0, sizeof( output ) );
olen = 0;
TEST_ASSERT( mbedtls_pk_decrypt( &pk, cipher->x, cipher->len,
output, &olen, sizeof( output ),
rnd_pseudo_rand, &rnd_info ) == ret );
if( ret == 0 )
{
TEST_ASSERT( olen == clear->len );
TEST_ASSERT( memcmp( output, clear->x, olen ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE */
void pk_ec_nocrypt( int type )
{
mbedtls_pk_context pk;
unsigned char output[100];
unsigned char input[100];
rnd_pseudo_info rnd_info;
size_t olen = 0;
int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH;
mbedtls_pk_init( &pk );
memset( &rnd_info, 0, sizeof( rnd_pseudo_info ) );
memset( output, 0, sizeof( output ) );
memset( input, 0, sizeof( input ) );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( mbedtls_pk_encrypt( &pk, input, sizeof( input ),
output, &olen, sizeof( output ),
rnd_pseudo_rand, &rnd_info ) == ret );
TEST_ASSERT( mbedtls_pk_decrypt( &pk, input, sizeof( input ),
output, &olen, sizeof( output ),
rnd_pseudo_rand, &rnd_info ) == ret );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_overflow( )
{
mbedtls_pk_context pk;
size_t hash_len = SIZE_MAX, sig_len = SIZE_MAX;
unsigned char hash[50], sig[100];
if( SIZE_MAX <= UINT_MAX )
return;
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
#if defined(MBEDTLS_PKCS1_V21)
TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_RSASSA_PSS, NULL, &pk,
MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* MBEDTLS_PKCS1_V21 */
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, hash, hash_len,
sig, sig_len ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_NONE, hash, hash_len, sig, &sig_len,
rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */
void pk_rsa_alt( )
{
/*
* An rsa_alt context can only do private operations (decrypt, sign).
* Test it against the public operations (encrypt, verify) of a
* corresponding rsa context.
*/
mbedtls_rsa_context raw;
mbedtls_pk_context rsa, alt;
mbedtls_pk_debug_item dbg_items[10];
unsigned char hash[50], sig[1000];
unsigned char msg[50], ciph[1000], test[1000];
size_t sig_len, ciph_len, test_len;
int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH;
mbedtls_rsa_init( &raw, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE );
mbedtls_pk_init( &rsa ); mbedtls_pk_init( &alt );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
memset( msg, 0x2a, sizeof msg );
memset( ciph, 0, sizeof ciph );
memset( test, 0, sizeof test );
/* Initiliaze PK RSA context with random key */
TEST_ASSERT( mbedtls_pk_setup( &rsa,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( pk_genkey( &rsa ) == 0 );
/* Extract key to the raw rsa context */
TEST_ASSERT( mbedtls_rsa_copy( &raw, mbedtls_pk_rsa( rsa ) ) == 0 );
/* Initialize PK RSA_ALT context */
TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, (void *) &raw,
mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 );
/* Test administrative functions */
TEST_ASSERT( mbedtls_pk_can_do( &alt, MBEDTLS_PK_RSA ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( &alt ) == RSA_KEY_SIZE );
TEST_ASSERT( mbedtls_pk_get_len( &alt ) == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_get_type( &alt ) == MBEDTLS_PK_RSA_ALT );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &alt ), "RSA-alt" ) == 0 );
/* Test signature */
#if SIZE_MAX > UINT_MAX
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, SIZE_MAX,
sig, &sig_len, rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, sizeof hash,
sig, &sig_len, rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( sig_len == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_verify( &rsa, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == 0 );
/* Test decrypt */
TEST_ASSERT( mbedtls_pk_encrypt( &rsa, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_decrypt( &alt, ciph, ciph_len,
test, &test_len, sizeof test,
rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( test_len == sizeof msg );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
/* Test forbidden operations */
TEST_ASSERT( mbedtls_pk_encrypt( &alt, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
rnd_std_rand, NULL ) == ret );
TEST_ASSERT( mbedtls_pk_verify( &alt, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == ret );
TEST_ASSERT( mbedtls_pk_debug( &alt, dbg_items ) == ret );
exit:
mbedtls_rsa_free( &raw );
mbedtls_pk_free( &rsa ); mbedtls_pk_free( &alt );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SHA256_C:MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_ECDSA_C:MBEDTLS_ECP_DP_SECP256R1_ENABLED */
void pk_psa_sign( )
{
mbedtls_pk_context pk;
unsigned char hash[50], sig[100], pkey_legacy[100], pkey_psa[100];
unsigned char *pkey_legacy_start, *pkey_psa_start;
size_t sig_len, klen_legacy, klen_psa;
int ret;
psa_key_handle_t handle;
/*
* This tests making signatures with a wrapped PSA key:
* - generate a fresh ECP legacy PK context
* - wrap it in a PK context and make a signature this way
* - extract the public key
* - parse it to a PK context and verify the signature this way
*/
/* Create legacy EC public/private key in PK context. */
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_ECKEY ) ) == 0 );
TEST_ASSERT( mbedtls_ecp_gen_key( MBEDTLS_ECP_DP_SECP256R1,
(mbedtls_ecp_keypair*) pk.pk_ctx,
rnd_std_rand, NULL ) == 0 );
/* Export underlying public key for re-importing in a legacy context. */
ret = mbedtls_pk_write_pubkey_der( &pk, pkey_legacy,
sizeof( pkey_legacy ) );
TEST_ASSERT( ret >= 0 );
klen_legacy = (size_t) ret;
/* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */
pkey_legacy_start = pkey_legacy + sizeof( pkey_legacy ) - klen_legacy;
/* Turn PK context into an opaque one. */
TEST_ASSERT( psa_allocate_key( &handle ) == PSA_SUCCESS );
TEST_ASSERT( mbedtls_pk_wrap_as_opaque( &pk, &handle,
PSA_ALG_SHA_256 ) == 0 );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, &sig_len,
NULL, NULL ) == 0 );
/* Export underlying public key for re-importing in a psa context. */
ret = mbedtls_pk_write_pubkey_der( &pk, pkey_psa,
sizeof( pkey_psa ) );
TEST_ASSERT( ret >= 0 );
klen_psa = (size_t) ret;
/* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */
pkey_psa_start = pkey_psa + sizeof( pkey_psa ) - klen_psa;
TEST_ASSERT( klen_psa == klen_legacy );
TEST_ASSERT( memcmp( pkey_psa_start, pkey_legacy_start, klen_psa ) == 0 );
mbedtls_pk_free( &pk );
TEST_ASSERT( PSA_SUCCESS == psa_destroy_key( handle ) );
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_parse_public_key( &pk, pkey_legacy_start,
klen_legacy ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len ) == 0 );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */