mbedtls/include/psa/crypto_se_driver.h

962 lines
45 KiB
C

/**
* \file psa/crypto_se_driver.h
* \brief PSA external cryptoprocessor driver module
*
* This header declares types and function signatures for cryptography
* drivers that access key material via opaque references. This is
* meant for cryptoprocessors that have a separate key storage from the
* space in which the PSA Crypto implementation runs, typically secure
* elements.
*
* This file is part of the PSA Crypto Driver Model, containing functions for
* driver developers to implement to enable hardware to be called in a
* standardized way by a PSA Cryptographic API implementation. The functions
* comprising the driver model, which driver authors implement, are not
* intended to be called by application developers.
*/
/*
* Copyright (C) 2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef PSA_CRYPTO_SE_DRIVER_H
#define PSA_CRYPTO_SE_DRIVER_H
#include "crypto_driver_common.h"
#ifdef __cplusplus
extern "C" {
#endif
/** An internal designation of a key slot between the core part of the
* PSA Crypto implementation and the driver. The meaning of this value
* is driver-dependent. */
typedef uint32_t psa_key_slot_t;
/** \defgroup opaque_mac Opaque Message Authentication Code
* Generation and authentication of Message Authentication Codes (MACs) using
* opaque keys can be done either as a single function call (via the
* `psa_drv_mac_opaque_generate_t` or `psa_drv_mac_opaque_verify_t` functions), or in
* parts using the following sequence:
* - `psa_drv_mac_opaque_setup_t`
* - `psa_drv_mac_opaque_update_t`
* - `psa_drv_mac_opaque_update_t`
* - ...
* - `psa_drv_mac_opaque_finish_t` or `psa_drv_mac_opaque_finish_verify_t`
*
* If a previously started Opaque MAC operation needs to be terminated, it
* should be done so by the `psa_drv_mac_opaque_abort_t`. Failure to do so may
* result in allocated resources not being freed or in other undefined
* behavior.
*/
/**@{*/
/** \brief A function that starts a MAC operation for a PSA Crypto Driver
* implementation using an opaque key
*
* \param[in,out] p_context A structure that will contain the
* hardware-specific MAC context
* \param[in] key_slot The slot of the key to be used for the
* operation
* \param[in] algorithm The algorithm to be used to underly the MAC
* operation
*
* \retval PSA_SUCCESS
* Success.
*/
typedef psa_status_t (*psa_drv_mac_opaque_setup_t)(void *p_context,
psa_key_slot_t key_slot,
psa_algorithm_t algorithm);
/** \brief A function that continues a previously started MAC operation using
* an opaque key
*
* \param[in,out] p_context A hardware-specific structure for the
* previously-established MAC operation to be
* continued
* \param[in] p_input A buffer containing the message to be appended
* to the MAC operation
* \param[in] input_length The size in bytes of the input message buffer
*/
typedef psa_status_t (*psa_drv_mac_opaque_update_t)(void *p_context,
const uint8_t *p_input,
size_t input_length);
/** \brief a function that completes a previously started MAC operation by
* returning the resulting MAC using an opaque key
*
* \param[in,out] p_context A hardware-specific structure for the
* previously started MAC operation to be
* finished
* \param[out] p_mac A buffer where the generated MAC will be
* placed
* \param[in] mac_size The size in bytes of the buffer that has been
* allocated for the `output` buffer
* \param[out] p_mac_length After completion, will contain the number of
* bytes placed in the `p_mac` buffer
*
* \retval PSA_SUCCESS
* Success.
*/
typedef psa_status_t (*psa_drv_mac_opaque_finish_t)(void *p_context,
uint8_t *p_mac,
size_t mac_size,
size_t *p_mac_length);
/** \brief A function that completes a previously started MAC operation by
* comparing the resulting MAC against a known value using an opaque key
*
* \param[in,out] p_context A hardware-specific structure for the previously
* started MAC operation to be fiinished
* \param[in] p_mac The MAC value against which the resulting MAC will
* be compared against
* \param[in] mac_length The size in bytes of the value stored in `p_mac`
*
* \retval PSA_SUCCESS
* The operation completed successfully and the MACs matched each
* other
* \retval PSA_ERROR_INVALID_SIGNATURE
* The operation completed successfully, but the calculated MAC did
* not match the provided MAC
*/
typedef psa_status_t (*psa_drv_mac_opaque_finish_verify_t)(void *p_context,
const uint8_t *p_mac,
size_t mac_length);
/** \brief A function that aborts a previous started opaque-key MAC operation
* \param[in,out] p_context A hardware-specific structure for the previously
* started MAC operation to be aborted
*/
typedef psa_status_t (*psa_drv_mac_opaque_abort_t)(void *p_context);
/** \brief A function that performs a MAC operation in one command and returns
* the calculated MAC using an opaque key
*
* \param[in] p_input A buffer containing the message to be MACed
* \param[in] input_length The size in bytes of `p_input`
* \param[in] key_slot The slot of the key to be used
* \param[in] alg The algorithm to be used to underlie the MAC
* operation
* \param[out] p_mac A buffer where the generated MAC will be
* placed
* \param[in] mac_size The size in bytes of the `p_mac` buffer
* \param[out] p_mac_length After completion, will contain the number of
* bytes placed in the `output` buffer
*
* \retval PSA_SUCCESS
* Success.
*/
typedef psa_status_t (*psa_drv_mac_opaque_generate_t)(const uint8_t *p_input,
size_t input_length,
psa_key_slot_t key_slot,
psa_algorithm_t alg,
uint8_t *p_mac,
size_t mac_size,
size_t *p_mac_length);
/** \brief A function that performs an MAC operation in one command and
* compare the resulting MAC against a known value using an opaque key
*
* \param[in] p_input A buffer containing the message to be MACed
* \param[in] input_length The size in bytes of `input`
* \param[in] key_slot The slot of the key to be used
* \param[in] alg The algorithm to be used to underlie the MAC
* operation
* \param[in] p_mac The MAC value against which the resulting MAC will
* be compared against
* \param[in] mac_length The size in bytes of `mac`
*
* \retval PSA_SUCCESS
* The operation completed successfully and the MACs matched each
* other
* \retval PSA_ERROR_INVALID_SIGNATURE
* The operation completed successfully, but the calculated MAC did
* not match the provided MAC
*/
typedef psa_status_t (*psa_drv_mac_opaque_verify_t)(const uint8_t *p_input,
size_t input_length,
psa_key_slot_t key_slot,
psa_algorithm_t alg,
const uint8_t *p_mac,
size_t mac_length);
/** \brief A struct containing all of the function pointers needed to
* implement MAC operations using opaque keys.
*
* PSA Crypto API implementations should populate the table as appropriate
* upon startup.
*
* If one of the functions is not implemented (such as
* `psa_drv_mac_opaque_generate_t`), it should be set to NULL.
*
* Driver implementers should ensure that they implement all of the functions
* that make sense for their hardware, and that they provide a full solution
* (for example, if they support `p_setup`, they should also support
* `p_update` and at least one of `p_finish` or `p_finish_verify`).
*
*/
typedef struct {
/**The size in bytes of the hardware-specific Opaque-MAC Context structure
*/
size_t context_size;
/** Function that performs the setup operation
*/
psa_drv_mac_opaque_setup_t *p_setup;
/** Function that performs the update operation
*/
psa_drv_mac_opaque_update_t *p_update;
/** Function that completes the operation
*/
psa_drv_mac_opaque_finish_t *p_finish;
/** Function that completed a MAC operation with a verify check
*/
psa_drv_mac_opaque_finish_verify_t *p_finish_verify;
/** Function that aborts a previoustly started operation
*/
psa_drv_mac_opaque_abort_t *p_abort;
/** Function that performs the MAC operation in one call
*/
psa_drv_mac_opaque_generate_t *p_mac;
/** Function that performs the MAC and verify operation in one call
*/
psa_drv_mac_opaque_verify_t *p_mac_verify;
} psa_drv_mac_opaque_t;
/**@}*/
/** \defgroup opaque_cipher Opaque Symmetric Ciphers
*
* Encryption and Decryption using opaque keys in block modes other than ECB
* must be done in multiple parts, using the following flow:
* - `psa_drv_cipher_opaque_setup_t`
* - `psa_drv_cipher_opaque_set_iv_t` (optional depending upon block mode)
* - `psa_drv_cipher_opaque_update_t`
* - ...
* - `psa_drv_cipher_opaque_finish_t`
* If a previously started Opaque Cipher operation needs to be terminated, it
* should be done so by the `psa_drv_cipher_opaque_abort_t`. Failure to do so may
* result in allocated resources not being freed or in other undefined
* behavior.
*
* In situations where a PSA Cryptographic API implementation is using a block
* mode not-supported by the underlying hardware or driver, it can construct
* the block mode itself, while calling the `psa_drv_cipher_opaque_ecb_t` function
* pointer for the cipher operations.
*/
/**@{*/
/** \brief A function pointer that provides the cipher setup function for
* opaque-key operations
*
* \param[in,out] p_context A structure that will contain the
* hardware-specific cipher context.
* \param[in] key_slot The slot of the key to be used for the
* operation
* \param[in] algorithm The algorithm to be used in the cipher
* operation
* \param[in] direction Indicates whether the operation is an encrypt
* or decrypt
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_NOT_SUPPORTED
*/
typedef psa_status_t (*psa_drv_cipher_opaque_setup_t)(void *p_context,
psa_key_slot_t key_slot,
psa_algorithm_t algorithm,
psa_encrypt_or_decrypt_t direction);
/** \brief A function pointer that sets the initialization vector (if
* necessary) for an opaque cipher operation
*
* Rationale: The `psa_cipher_*` function in the PSA Cryptographic API has two
* IV functions: one to set the IV, and one to generate it internally. The
* generate function is not necessary for the drivers to implement as the PSA
* Crypto implementation can do the generation using its RNG features.
*
* \param[in,out] p_context A structure that contains the previously set up
* hardware-specific cipher context
* \param[in] p_iv A buffer containing the initialization vector
* \param[in] iv_length The size (in bytes) of the `p_iv` buffer
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_cipher_opaque_set_iv_t)(void *p_context,
const uint8_t *p_iv,
size_t iv_length);
/** \brief A function that continues a previously started opaque-key cipher
* operation
*
* \param[in,out] p_context A hardware-specific structure for the
* previously started cipher operation
* \param[in] p_input A buffer containing the data to be
* encrypted/decrypted
* \param[in] input_size The size in bytes of the buffer pointed to
* by `p_input`
* \param[out] p_output The caller-allocated buffer where the
* output will be placed
* \param[in] output_size The allocated size in bytes of the
* `p_output` buffer
* \param[out] p_output_length After completion, will contain the number
* of bytes placed in the `p_output` buffer
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_cipher_opaque_update_t)(void *p_context,
const uint8_t *p_input,
size_t input_size,
uint8_t *p_output,
size_t output_size,
size_t *p_output_length);
/** \brief A function that completes a previously started opaque-key cipher
* operation
*
* \param[in,out] p_context A hardware-specific structure for the
* previously started cipher operation
* \param[out] p_output The caller-allocated buffer where the output
* will be placed
* \param[in] output_size The allocated size in bytes of the `p_output`
* buffer
* \param[out] p_output_length After completion, will contain the number of
* bytes placed in the `p_output` buffer
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_cipher_opaque_finish_t)(void *p_context,
uint8_t *p_output,
size_t output_size,
size_t *p_output_length);
/** \brief A function that aborts a previously started opaque-key cipher
* operation
*
* \param[in,out] p_context A hardware-specific structure for the
* previously started cipher operation
*/
typedef psa_status_t (*psa_drv_cipher_opaque_abort_t)(void *p_context);
/** \brief A function that performs the ECB block mode for opaque-key cipher
* operations
*
* Note: this function should only be used with implementations that do not
* provide a needed higher-level operation.
*
* \param[in] key_slot The slot of the key to be used for the operation
* \param[in] algorithm The algorithm to be used in the cipher operation
* \param[in] direction Indicates whether the operation is an encrypt or
* decrypt
* \param[in] p_input A buffer containing the data to be
* encrypted/decrypted
* \param[in] input_size The size in bytes of the buffer pointed to by
* `p_input`
* \param[out] p_output The caller-allocated buffer where the output will
* be placed
* \param[in] output_size The allocated size in bytes of the `p_output`
* buffer
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_NOT_SUPPORTED
*/
typedef psa_status_t (*psa_drv_cipher_opaque_ecb_t)(psa_key_slot_t key_slot,
psa_algorithm_t algorithm,
psa_encrypt_or_decrypt_t direction,
const uint8_t *p_input,
size_t input_size,
uint8_t *p_output,
size_t output_size);
/**
* \brief A struct containing all of the function pointers needed to implement
* cipher operations using opaque keys.
*
* PSA Crypto API implementations should populate instances of the table as
* appropriate upon startup.
*
* If one of the functions is not implemented (such as
* `psa_drv_cipher_opaque_ecb_t`), it should be set to NULL.
*/
typedef struct {
/** The size in bytes of the hardware-specific Opaque Cipher context
* structure
*/
size_t size;
/** Function that performs the setup operation */
psa_drv_cipher_opaque_setup_t *p_setup;
/** Function that sets the IV (if necessary) */
psa_drv_cipher_opaque_set_iv_t *p_set_iv;
/** Function that performs the update operation */
psa_drv_cipher_opaque_update_t *p_update;
/** Function that completes the operation */
psa_drv_cipher_opaque_finish_t *p_finish;
/** Function that aborts the operation */
psa_drv_cipher_opaque_abort_t *p_abort;
/** Function that performs ECB mode for the cipher
* (Danger: ECB mode should not be used directly by clients of the PSA
* Crypto Client API)
*/
psa_drv_cipher_opaque_ecb_t *p_ecb;
} psa_drv_cipher_opaque_t;
/**@}*/
/** \defgroup opaque_asymmetric Opaque Asymmetric Cryptography
*
* Since the amount of data that can (or should) be encrypted or signed using
* asymmetric keys is limited by the key size, asymmetric key operations using
* opaque keys must be done in single function calls.
*/
/**@{*/
/**
* \brief A function that signs a hash or short message with a private key
*
* \param[in] key_slot Key slot of an asymmetric key pair
* \param[in] alg A signature algorithm that is compatible
* with the type of `key`
* \param[in] p_hash The hash to sign
* \param[in] hash_length Size of the `p_hash` buffer in bytes
* \param[out] p_signature Buffer where the signature is to be written
* \param[in] signature_size Size of the `p_signature` buffer in bytes
* \param[out] p_signature_length On success, the number of bytes
* that make up the returned signature value
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_asymmetric_opaque_sign_t)(psa_key_slot_t key_slot,
psa_algorithm_t alg,
const uint8_t *p_hash,
size_t hash_length,
uint8_t *p_signature,
size_t signature_size,
size_t *p_signature_length);
/**
* \brief A function that verifies the signature a hash or short message using
* an asymmetric public key
*
* \param[in] key_slot Key slot of a public key or an asymmetric key
* pair
* \param[in] alg A signature algorithm that is compatible with
* the type of `key`
* \param[in] p_hash The hash whose signature is to be verified
* \param[in] hash_length Size of the `p_hash` buffer in bytes
* \param[in] p_signature Buffer containing the signature to verify
* \param[in] signature_length Size of the `p_signature` buffer in bytes
*
* \retval PSA_SUCCESS
* The signature is valid.
*/
typedef psa_status_t (*psa_drv_asymmetric_opaque_verify_t)(psa_key_slot_t key_slot,
psa_algorithm_t alg,
const uint8_t *p_hash,
size_t hash_length,
const uint8_t *p_signature,
size_t signature_length);
/**
* \brief A function that encrypts a short message with an asymmetric public
* key
*
* \param[in] key_slot Key slot of a public key or an asymmetric key
* pair
* \param[in] alg An asymmetric encryption algorithm that is
* compatible with the type of `key`
* \param[in] p_input The message to encrypt
* \param[in] input_length Size of the `p_input` buffer in bytes
* \param[in] p_salt A salt or label, if supported by the
* encryption algorithm
* If the algorithm does not support a
* salt, pass `NULL`.
* If the algorithm supports an optional
* salt and you do not want to pass a salt,
* pass `NULL`.
* For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
* supported.
* \param[in] salt_length Size of the `p_salt` buffer in bytes
* If `p_salt` is `NULL`, pass 0.
* \param[out] p_output Buffer where the encrypted message is to
* be written
* \param[in] output_size Size of the `p_output` buffer in bytes
* \param[out] p_output_length On success, the number of bytes that make up
* the returned output
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_asymmetric_opaque_encrypt_t)(psa_key_slot_t key_slot,
psa_algorithm_t alg,
const uint8_t *p_input,
size_t input_length,
const uint8_t *p_salt,
size_t salt_length,
uint8_t *p_output,
size_t output_size,
size_t *p_output_length);
/**
* \brief Decrypt a short message with an asymmetric private key.
*
* \param[in] key_slot Key slot of an asymmetric key pair
* \param[in] alg An asymmetric encryption algorithm that is
* compatible with the type of `key`
* \param[in] p_input The message to decrypt
* \param[in] input_length Size of the `p_input` buffer in bytes
* \param[in] p_salt A salt or label, if supported by the
* encryption algorithm
* If the algorithm does not support a
* salt, pass `NULL`.
* If the algorithm supports an optional
* salt and you do not want to pass a salt,
* pass `NULL`.
* For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
* supported.
* \param[in] salt_length Size of the `p_salt` buffer in bytes
* If `p_salt` is `NULL`, pass 0.
* \param[out] p_output Buffer where the decrypted message is to
* be written
* \param[in] output_size Size of the `p_output` buffer in bytes
* \param[out] p_output_length On success, the number of bytes
* that make up the returned output
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_asymmetric_opaque_decrypt_t)(psa_key_slot_t key_slot,
psa_algorithm_t alg,
const uint8_t *p_input,
size_t input_length,
const uint8_t *p_salt,
size_t salt_length,
uint8_t *p_output,
size_t output_size,
size_t *p_output_length);
/**
* \brief A struct containing all of the function pointers needed to implement
* asymmetric cryptographic operations using opaque keys.
*
* PSA Crypto API implementations should populate instances of the table as
* appropriate upon startup.
*
* If one of the functions is not implemented, it should be set to NULL.
*/
typedef struct {
/** Function that performs the asymmetric sign operation */
psa_drv_asymmetric_opaque_sign_t *p_sign;
/** Function that performs the asymmetric verify operation */
psa_drv_asymmetric_opaque_verify_t *p_verify;
/** Function that performs the asymmetric encrypt operation */
psa_drv_asymmetric_opaque_encrypt_t *p_encrypt;
/** Function that performs the asymmetric decrypt operation */
psa_drv_asymmetric_opaque_decrypt_t *p_decrypt;
} psa_drv_asymmetric_opaque_t;
/**@}*/
/** \defgroup aead_opaque AEAD Opaque
* Authenticated Encryption with Additional Data (AEAD) operations with opaque
* keys must be done in one function call. While this creates a burden for
* implementers as there must be sufficient space in memory for the entire
* message, it prevents decrypted data from being made available before the
* authentication operation is complete and the data is known to be authentic.
*/
/**@{*/
/** \brief Process an authenticated encryption operation using an opaque key
*
* \param[in] key_slot Slot containing the key to use.
* \param[in] algorithm The AEAD algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(`alg`) is true)
* \param[in] p_nonce Nonce or IV to use
* \param[in] nonce_length Size of the `p_nonce` buffer in bytes
* \param[in] p_additional_data Additional data that will be
* authenticated but not encrypted
* \param[in] additional_data_length Size of `p_additional_data` in bytes
* \param[in] p_plaintext Data that will be authenticated and
* encrypted
* \param[in] plaintext_length Size of `p_plaintext` in bytes
* \param[out] p_ciphertext Output buffer for the authenticated and
* encrypted data. The additional data is
* not part of this output. For algorithms
* where the encrypted data and the
* authentication tag are defined as
* separate outputs, the authentication
* tag is appended to the encrypted data.
* \param[in] ciphertext_size Size of the `p_ciphertext` buffer in
* bytes
* \param[out] p_ciphertext_length On success, the size of the output in
* the `p_ciphertext` buffer
*
* \retval #PSA_SUCCESS
* Success.
*/
typedef psa_status_t (*psa_drv_aead_opaque_encrypt_t)(psa_key_slot_t key_slot,
psa_algorithm_t algorithm,
const uint8_t *p_nonce,
size_t nonce_length,
const uint8_t *p_additional_data,
size_t additional_data_length,
const uint8_t *p_plaintext,
size_t plaintext_length,
uint8_t *p_ciphertext,
size_t ciphertext_size,
size_t *p_ciphertext_length);
/** Process an authenticated decryption operation using an opaque key
*
* \param[in] key_slot Slot containing the key to use
* \param[in] algorithm The AEAD algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(`alg`) is true)
* \param[in] p_nonce Nonce or IV to use
* \param[in] nonce_length Size of the `p_nonce` buffer in bytes
* \param[in] p_additional_data Additional data that has been
* authenticated but not encrypted
* \param[in] additional_data_length Size of `p_additional_data` in bytes
* \param[in] p_ciphertext Data that has been authenticated and
* encrypted.
* For algorithms where the encrypted data
* and the authentication tag are defined
* as separate inputs, the buffer must
* contain the encrypted data followed by
* the authentication tag.
* \param[in] ciphertext_length Size of `p_ciphertext` in bytes
* \param[out] p_plaintext Output buffer for the decrypted data
* \param[in] plaintext_size Size of the `p_plaintext` buffer in
* bytes
* \param[out] p_plaintext_length On success, the size of the output in
* the `p_plaintext` buffer
*
* \retval #PSA_SUCCESS
* Success.
*/
typedef psa_status_t (*psa_drv_aead_opaque_decrypt_t)(psa_key_slot_t key_slot,
psa_algorithm_t algorithm,
const uint8_t *p_nonce,
size_t nonce_length,
const uint8_t *p_additional_data,
size_t additional_data_length,
const uint8_t *p_ciphertext,
size_t ciphertext_length,
uint8_t *p_plaintext,
size_t plaintext_size,
size_t *p_plaintext_length);
/**
* \brief A struct containing all of the function pointers needed to implement
* Authenticated Encryption with Additional Data operations using opaque keys
*
* PSA Crypto API implementations should populate instances of the table as
* appropriate upon startup.
*
* If one of the functions is not implemented, it should be set to NULL.
*/
typedef struct {
/** Function that performs the AEAD encrypt operation */
psa_drv_aead_opaque_encrypt_t *p_encrypt;
/** Function that performs the AEAD decrypt operation */
psa_drv_aead_opaque_decrypt_t *p_decrypt;
} psa_drv_aead_opaque_t;
/**@}*/
/** \defgroup driver_key_management Key Management
* Currently, key management is limited to importing keys in the clear,
* destroying keys, and exporting keys in the clear.
* Whether a key may be exported is determined by the key policies in place
* on the key slot.
*/
/**@{*/
/** \brief Import a key in binary format
*
* This function can support any output from psa_export_key(). Refer to the
* documentation of psa_export_key() for the format for each key type.
*
* \param[in] key_slot Slot where the key will be stored
* This must be a valid slot for a key of the chosen
* type. It must be unoccupied.
* \param[in] type Key type (a \c PSA_KEY_TYPE_XXX value)
* \param[in] algorithm Key algorithm (a \c PSA_ALG_XXX value)
* \param[in] usage The allowed uses of the key
* \param[in] p_data Buffer containing the key data
* \param[in] data_length Size of the `data` buffer in bytes
*
* \retval #PSA_SUCCESS
* Success.
*/
typedef psa_status_t (*psa_drv_opaque_import_key_t)(psa_key_slot_t key_slot,
psa_key_type_t type,
psa_algorithm_t algorithm,
psa_key_usage_t usage,
const uint8_t *p_data,
size_t data_length);
/**
* \brief Destroy a key and restore the slot to its default state
*
* This function destroys the content of the key slot from both volatile
* memory and, if applicable, non-volatile storage. Implementations shall
* make a best effort to ensure that any previous content of the slot is
* unrecoverable.
*
* This function also erases any metadata such as policies. It returns the
* specified slot to its default state.
*
* \param[in] key_slot The key slot to erase.
*
* \retval #PSA_SUCCESS
* The slot's content, if any, has been erased.
*/
typedef psa_status_t (*psa_drv_destroy_key_t)(psa_key_slot_t key);
/**
* \brief Export a key in binary format
*
* The output of this function can be passed to psa_import_key() to
* create an equivalent object.
*
* If a key is created with `psa_import_key()` and then exported with
* this function, it is not guaranteed that the resulting data is
* identical: the implementation may choose a different representation
* of the same key if the format permits it.
*
* For standard key types, the output format is as follows:
*
* - For symmetric keys (including MAC keys), the format is the
* raw bytes of the key.
* - For DES, the key data consists of 8 bytes. The parity bits must be
* correct.
* - For Triple-DES, the format is the concatenation of the
* two or three DES keys.
* - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format
* is the non-encrypted DER representation defined by PKCS\#1 (RFC 8017)
* as RSAPrivateKey.
* - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), the format
* is the DER representation defined by RFC 5280 as SubjectPublicKeyInfo.
*
* \param[in] key Slot whose content is to be exported. This must
* be an occupied key slot.
* \param[out] p_data Buffer where the key data is to be written.
* \param[in] data_size Size of the `p_data` buffer in bytes.
* \param[out] p_data_length On success, the number of bytes
* that make up the key data.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_DOES_NOT_EXIST
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
typedef psa_status_t (*psa_drv_export_key_t)(psa_key_slot_t key,
uint8_t *p_data,
size_t data_size,
size_t *p_data_length);
/**
* \brief Export a public key or the public part of a key pair in binary format
*
* The output of this function can be passed to psa_import_key() to
* create an object that is equivalent to the public key.
*
* For standard key types, the output format is as follows:
*
* - For RSA keys (#PSA_KEY_TYPE_RSA_KEYPAIR or #PSA_KEY_TYPE_RSA_PUBLIC_KEY),
* the format is the DER representation of the public key defined by RFC 5280
* as SubjectPublicKeyInfo.
*
* \param[in] key_slot Slot whose content is to be exported. This must
* be an occupied key slot.
* \param[out] p_data Buffer where the key data is to be written.
* \param[in] data_size Size of the `data` buffer in bytes.
* \param[out] p_data_length On success, the number of bytes
* that make up the key data.
*
* \retval #PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_export_public_key_t)(psa_key_slot_t key,
uint8_t *p_data,
size_t data_size,
size_t *p_data_length);
/**
* \brief A struct containing all of the function pointers needed to for key
* management using opaque keys
*
* PSA Crypto API implementations should populate instances of the table as
* appropriate upon startup.
*
* If one of the functions is not implemented, it should be set to NULL.
*/
typedef struct {
/** Function that performs the key import operation */
psa_drv_opaque_import_key_t *p_import;
/** Function that performs the key destroy operation */
psa_drv_destroy_key_t *p_destroy;
/** Function that performs the key export operation */
psa_drv_export_key_t *p_export;
/** Function that perforsm the public key export operation */
psa_drv_export_public_key_t *p_export_public;
} psa_drv_key_management_t;
/**@}*/
/** \defgroup driver_derivation Key Derivation and Agreement
* Key derivation is the process of generating new key material using an
* existing key and additional parameters, iterating through a basic
* cryptographic function, such as a hash.
* Key agreement is a part of cryptographic protocols that allows two parties
* to agree on the same key value, but starting from different original key
* material.
* The flows are similar, and the PSA Crypto Driver Model uses the same functions
* for both of the flows.
*
* There are two different final functions for the flows,
* `psa_drv_key_derivation_derive` and `psa_drv_key_derivation_export`.
* `psa_drv_key_derivation_derive` is used when the key material should be placed
* in a slot on the hardware and not exposed to the caller.
* `psa_drv_key_derivation_export` is used when the key material should be returned
* to the PSA Cryptographic API implementation.
*
* Different key derivation algorithms require a different number of inputs.
* Instead of having an API that takes as input variable length arrays, which
* can be problemmatic to manage on embedded platforms, the inputs are passed
* to the driver via a function, `psa_drv_key_derivation_collateral`, that is
* called multiple times with different `collateral_id`s. Thus, for a key
* derivation algorithm that required 3 paramter inputs, the flow would look
* something like:
* ~~~~~~~~~~~~~{.c}
* psa_drv_key_derivation_setup(kdf_algorithm, source_key, dest_key_size_bytes);
* psa_drv_key_derivation_collateral(kdf_algorithm_collateral_id_0,
* p_collateral_0,
* collateral_0_size);
* psa_drv_key_derivation_collateral(kdf_algorithm_collateral_id_1,
* p_collateral_1,
* collateral_1_size);
* psa_drv_key_derivation_collateral(kdf_algorithm_collateral_id_2,
* p_collateral_2,
* collateral_2_size);
* psa_drv_key_derivation_derive();
* ~~~~~~~~~~~~~
*
* key agreement example:
* ~~~~~~~~~~~~~{.c}
* psa_drv_key_derivation_setup(alg, source_key. dest_key_size_bytes);
* psa_drv_key_derivation_collateral(DHE_PUBKEY, p_pubkey, pubkey_size);
* psa_drv_key_derivation_export(p_session_key,
* session_key_size,
* &session_key_length);
* ~~~~~~~~~~~~~
*/
/**@{*/
/** \brief The hardware-specific key derivation context structure
*
* The contents of this structure are implementation dependent and are
* therefore not described here
*/
typedef struct psa_drv_key_derivation_context_s psa_drv_key_derivation_context_t;
/** \brief Set up a key derivation operation by specifying the algorithm and
* the source key sot
*
* \param[in,out] p_context A hardware-specific structure containing any
* context information for the implementation
* \param[in] kdf_alg The algorithm to be used for the key derivation
* \param[in] souce_key The key to be used as the source material for the
* key derivation
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_key_derivation_setup_t)(psa_drv_key_derivation_context_t *p_context,
psa_algorithm_t kdf_alg,
psa_key_slot_t source_key);
/** \brief Provide collateral (parameters) needed for a key derivation or key
* agreement operation
*
* Since many key derivation algorithms require multiple parameters, it is
* expeced that this function may be called multiple times for the same
* operation, each with a different algorithm-specific `collateral_id`
*
* \param[in,out] p_context A hardware-specific structure containing any
* context information for the implementation
* \param[in] collateral_id An ID for the collateral being provided
* \param[in] p_collateral A buffer containing the collateral data
* \param[in] collateral_size The size in bytes of the collateral
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_key_derivation_collateral_t)(psa_drv_key_derivation_context_t *p_context,
uint32_t collateral_id,
const uint8_t *p_collateral,
size_t collateral_size);
/** \brief Perform the final key derivation step and place the generated key
* material in a slot
* \param[in,out] p_context A hardware-specific structure containing any
* context information for the implementation
* \param[in] dest_key The slot where the generated key material
* should be placed
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_key_derivation_derive_t)(psa_drv_key_derivation_context_t *p_context,
psa_key_slot_t dest_key);
/** \brief Perform the final step of a key agreement and place the generated
* key material in a buffer
*
* \param[out] p_output Buffer in which to place the generated key
* material
* \param[in] output_size The size in bytes of `p_output`
* \param[out] p_output_length Upon success, contains the number of bytes of
* key material placed in `p_output`
*
* \retval PSA_SUCCESS
*/
typedef psa_status_t (*psa_drv_key_derivation_export_t)(uint8_t *p_output,
size_t output_size,
size_t *p_output_length);
/**
* \brief A struct containing all of the function pointers needed to for key
* derivation and agreement
*
* PSA Crypto API implementations should populate instances of the table as
* appropriate upon startup.
*
* If one of the functions is not implemented, it should be set to NULL.
*/
typedef struct {
/** Function that performs the key derivation setup */
psa_drv_key_derivation_setup_t *p_setup;
/** Function that sets the key derivation collateral */
psa_drv_key_derivation_collateral_t *p_collateral;
/** Function that performs the final key derivation step */
psa_drv_key_derivation_derive_t *p_derive;
/** Function that perforsm the final key derivation or agreement and
* exports the key */
psa_drv_key_derivation_export_t *p_export;
} psa_drv_key_derivation_t;
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* PSA_CRYPTO_SE_DRIVER_H */