mbedtls/library/aesni.c
Dave Rodgman d47186d6e3 Disable automatic setting of clang target flags on old clang
Old versions of clang don't support this pragma, so we have to assume
that the user will have set the flags.

Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
2023-12-19 13:11:47 +00:00

835 lines
32 KiB
C

/*
* AES-NI support functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
/*
* [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
* [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
*/
#include "common.h"
#if defined(MBEDTLS_AESNI_C)
#include "aesni.h"
#include <string.h>
#if defined(MBEDTLS_AESNI_HAVE_CODE)
#if MBEDTLS_AESNI_HAVE_CODE == 2
#if defined(__GNUC__)
#include <cpuid.h>
#elif defined(_MSC_VER)
#include <intrin.h>
#else
#error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
#endif
#include <immintrin.h>
#endif
#if defined(MBEDTLS_ARCH_IS_X86)
#if defined(MBEDTLS_COMPILER_IS_GCC)
#pragma GCC push_options
#pragma GCC target ("pclmul,sse2,aes")
#define MBEDTLS_POP_TARGET_PRAGMA
#elif defined(__clang__) && (__clang_major__ >= 5)
#pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
#define MBEDTLS_POP_TARGET_PRAGMA
#endif
#endif
#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
/*
* AES-NI support detection routine
*/
int mbedtls_aesni_has_support(unsigned int what)
{
static int done = 0;
static unsigned int c = 0;
if (!done) {
#if MBEDTLS_AESNI_HAVE_CODE == 2
static int info[4] = { 0, 0, 0, 0 };
#if defined(_MSC_VER)
__cpuid(info, 1);
#else
__cpuid(1, info[0], info[1], info[2], info[3]);
#endif
c = info[2];
#else /* AESNI using asm */
asm ("movl $1, %%eax \n\t"
"cpuid \n\t"
: "=c" (c)
:
: "eax", "ebx", "edx");
#endif /* MBEDTLS_AESNI_HAVE_CODE */
done = 1;
}
return (c & what) != 0;
}
#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
#if MBEDTLS_AESNI_HAVE_CODE == 2
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
unsigned nr = ctx->nr; // Number of remaining rounds
// Load round key 0
__m128i state;
memcpy(&state, input, 16);
state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
++rk;
--nr;
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
if (mode == MBEDTLS_AES_DECRYPT) {
while (nr != 0) {
state = _mm_aesdec_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesdeclast_si128(state, *rk);
} else
#else
(void) mode;
#endif
{
while (nr != 0) {
state = _mm_aesenc_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesenclast_si128(state, *rk);
}
memcpy(output, &state, 16);
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
static void gcm_clmul(const __m128i aa, const __m128i bb,
__m128i *cc, __m128i *dd)
{
/*
* Caryless multiplication dd:cc = aa * bb
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
*cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
*dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
__m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
__m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
ee = ff; // e1+f1:e0+f0
ff = _mm_srli_si128(ff, 8); // 0:e1+f1
ee = _mm_slli_si128(ee, 8); // e0+f0:0
*dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
*cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
}
static void gcm_shift(__m128i *cc, __m128i *dd)
{
/* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18). */
// // *cc = r1:r0
// // *dd = r3:r2
__m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
__m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
__m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
__m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
__m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
*cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
*dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
}
static __m128i gcm_reduce(__m128i xx)
{
// // xx = x1:x0
/* [CLMUL-WP] Algorithm 5 Step 2 */
__m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
__m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
__m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
__m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
}
static __m128i gcm_mix(__m128i dx)
{
/* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
__m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
__m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
__m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
// bits carried from d. Now get those bits back in.
__m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
__m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
__m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
__m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
}
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
__m128i aa = { 0 }, bb = { 0 }, cc, dd;
/* The inputs are in big-endian order, so byte-reverse them */
for (size_t i = 0; i < 16; i++) {
((uint8_t *) &aa)[i] = a[15 - i];
((uint8_t *) &bb)[i] = b[15 - i];
}
gcm_clmul(aa, bb, &cc, &dd);
gcm_shift(&cc, &dd);
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently dd:cc holds x3:x2:x1:x0 (already shifted).
*/
__m128i dx = gcm_reduce(cc);
__m128i xh = gcm_mix(dx);
cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
/* Now byte-reverse the outputs */
for (size_t i = 0; i < 16; i++) {
c[i] = ((uint8_t *) &cc)[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
__m128i *ik = (__m128i *) invkey;
const __m128i *fk = (const __m128i *) fwdkey + nr;
*ik = *fk;
for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
*ik = _mm_aesimc_si128(*fk);
}
*ik = *fk;
}
#endif
/*
* Key expansion, 128-bit case
*/
static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
{
/*
* Finish generating the next round key.
*
* On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
*
* On exit, xword is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and this is returned, to be written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
state = _mm_slli_si128(state, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
state = _mm_slli_si128(state, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
state = _mm_slli_si128(state, 4); // r0:0:0:0
state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
return state;
}
static void aesni_setkey_enc_128(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
}
/*
* Key expansion, 192-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
unsigned char *rk)
{
/*
* Finish generating the next 6 quarter-keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
* and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = xword; // = r9:r8:r7:r6
xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
*state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
*state1 = xword; // = stuff:stuff:r11:r10
/* Store state0 and the low half of state1 into rk, which is conceptually
* an array of 24-byte elements. Since 24 is not a multiple of 16,
* rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
memcpy(rk, state0, 16);
memcpy(rk + 16, state1, 8);
}
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
/* First round: use original key */
memcpy(rk, key, 24);
/* aes.c guarantees that rk is aligned on a 16-byte boundary. */
__m128i state0 = ((__m128i *) rk)[0];
__m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
/*
* Key expansion, 256-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
__m128i *rk0, __m128i *rk1)
{
/*
* Finish generating the next two round keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
* xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
*/
xword = _mm_shuffle_epi32(xword, 0xff);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
state0 = _mm_xor_si128(state0, xword);
*rk0 = state0;
/* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
xword = _mm_aeskeygenassist_si128(state0, 0x00);
xword = _mm_shuffle_epi32(xword, 0xaa);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
state1 = _mm_xor_si128(state1, xword);
*rk1 = state1;
}
static void aesni_setkey_enc_256(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
memcpy(&rk[1], key + 16, 16);
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
#if defined(MBEDTLS_POP_TARGET_PRAGMA)
#if defined(__clang__)
#pragma clang attribute pop
#elif defined(__GNUC__)
#pragma GCC pop_options
#endif
#undef MBEDTLS_POP_TARGET_PRAGMA
#endif
#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#warning \
"MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
#endif
#endif
/*
* Binutils needs to be at least 2.19 to support AES-NI instructions.
* Unfortunately, a lot of users have a lower version now (2014-04).
* Emit bytecode directly in order to support "old" version of gas.
*
* Opcodes from the Intel architecture reference manual, vol. 3.
* We always use registers, so we don't need prefixes for memory operands.
* Operand macros are in gas order (src, dst) as opposed to Intel order
* (dst, src) in order to blend better into the surrounding assembly code.
*/
#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
#define xmm0_xmm0 "0xC0"
#define xmm0_xmm1 "0xC8"
#define xmm0_xmm2 "0xD0"
#define xmm0_xmm3 "0xD8"
#define xmm0_xmm4 "0xE0"
#define xmm1_xmm0 "0xC1"
#define xmm1_xmm2 "0xD1"
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
asm ("movdqu (%3), %%xmm0 \n\t" // load input
"movdqu (%1), %%xmm1 \n\t" // load round key 0
"pxor %%xmm1, %%xmm0 \n\t" // round 0
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // normal rounds = nr - 1
"test %2, %2 \n\t" // mode?
"jz 2f \n\t" // 0 = decrypt
"1: \n\t" // encryption loop
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENC(xmm1_xmm0) // do round
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // loop
"jnz 1b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENCLAST(xmm1_xmm0) // last round
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
"jmp 3f \n\t"
"2: \n\t" // decryption loop
"movdqu (%1), %%xmm1 \n\t"
AESDEC(xmm1_xmm0) // do round
"add $16, %1 \n\t"
"subl $1, %0 \n\t"
"jnz 2b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESDECLAST(xmm1_xmm0) // last round
#endif
"3: \n\t"
"movdqu %%xmm0, (%4) \n\t" // export output
:
: "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
: "memory", "cc", "xmm0", "xmm1");
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
unsigned char aa[16], bb[16], cc[16];
size_t i;
/* The inputs are in big-endian order, so byte-reverse them */
for (i = 0; i < 16; i++) {
aa[i] = a[15 - i];
bb[i] = b[15 - i];
}
asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
"movdqu (%1), %%xmm1 \n\t" // b1:b0
/*
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
"movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
"movdqa %%xmm1, %%xmm3 \n\t" // same
"movdqa %%xmm1, %%xmm4 \n\t" // same
PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
"pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
"movdqa %%xmm4, %%xmm3 \n\t" // same
"psrldq $8, %%xmm4 \n\t" // 0:e1+f1
"pslldq $8, %%xmm3 \n\t" // e0+f0:0
"pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
"pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
/*
* Now shift the result one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18)
*/
"movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
"movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
"psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
"psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
"psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
"psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
"movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
"pslldq $8, %%xmm3 \n\t" // r0>>63:0
"pslldq $8, %%xmm4 \n\t" // r2>>63:0
"psrldq $8, %%xmm5 \n\t" // 0:r1>>63
"por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
"por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
"por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
*/
/* Step 2 (1) */
"movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
"movdqa %%xmm1, %%xmm4 \n\t" // same
"movdqa %%xmm1, %%xmm5 \n\t" // same
"psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
"psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
"psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
/* Step 2 (2) */
"pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
"pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
"pslldq $8, %%xmm3 \n\t" // a+b+c:0
"pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
/* Steps 3 and 4 */
"movdqa %%xmm1,%%xmm0 \n\t" // d:x0
"movdqa %%xmm1,%%xmm4 \n\t" // same
"movdqa %%xmm1,%%xmm5 \n\t" // same
"psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
"psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
"psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
"pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
"pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
// e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
// bits carried from d. Now get those\t bits back in.
"movdqa %%xmm1,%%xmm3 \n\t" // d:x0
"movdqa %%xmm1,%%xmm4 \n\t" // same
"movdqa %%xmm1,%%xmm5 \n\t" // same
"psllq $63, %%xmm3 \n\t" // d<<63:stuff
"psllq $62, %%xmm4 \n\t" // d<<62:stuff
"psllq $57, %%xmm5 \n\t" // d<<57:stuff
"pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
"pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
"psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
"pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
"pxor %%xmm1, %%xmm0 \n\t" // h1:h0
"pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
"movdqu %%xmm0, (%2) \n\t" // done
:
: "r" (aa), "r" (bb), "r" (cc)
: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
/* Now byte-reverse the outputs */
for (i = 0; i < 16; i++) {
c[i] = cc[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
unsigned char *ik = invkey;
const unsigned char *fk = fwdkey + 16 * nr;
memcpy(ik, fk, 16);
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
asm ("movdqu (%0), %%xmm0 \n\t"
AESIMC(xmm0_xmm0)
"movdqu %%xmm0, (%1) \n\t"
:
: "r" (fk), "r" (ik)
: "memory", "xmm0");
}
memcpy(ik, fk, 16);
}
#endif
/*
* Key expansion, 128-bit case
*/
static void aesni_setkey_enc_128(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
"movdqu %%xmm0, (%0) \n\t" // as round key 0
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next round key.
*
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
"pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm1 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
"add $16, %0 \n\t" // point to next round key
"movdqu %%xmm0, (%0) \n\t" // write it
"ret \n\t"
/* Main "loop" */
"2: \n\t"
AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
/*
* Key expansion, 192-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movq 16(%1), %%xmm1 \n\t"
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next 6 quarter-keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
"pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
"pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
"pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"ret \n\t"
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
/*
* Key expansion, 256-bit case
*/
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
static void aesni_setkey_enc_256(unsigned char *rk,
const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movdqu 16(%1), %%xmm1 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next two round keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
*
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
* and those have been written to the output buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
AESKEYGENA(xmm0_xmm2, "0x00")
"pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm2, %%xmm1 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"ret \n\t"
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
#endif /* MBEDTLS_AESNI_HAVE_CODE */
/*
* Key expansion, wrapper
*/
int mbedtls_aesni_setkey_enc(unsigned char *rk,
const unsigned char *key,
size_t bits)
{
switch (bits) {
case 128: aesni_setkey_enc_128(rk, key); break;
#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
case 192: aesni_setkey_enc_192(rk, key); break;
case 256: aesni_setkey_enc_256(rk, key); break;
#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
return 0;
}
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */