mbedtls/include/psa/crypto.h
Gilles Peskine 159ebf3b8e
Merge pull request #142 from ARMmbed/psa-metadata_validation
Algorithm and key type encoding validation
2018-09-24 10:38:39 +02:00

3067 lines
132 KiB
C

/**
* \file psa/crypto.h
* \brief Platform Security Architecture cryptography module
*/
/*
* Copyright (C) 2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef PSA_CRYPTO_H
#define PSA_CRYPTO_H
#include "crypto_platform.h"
#include <stddef.h>
#ifdef __DOXYGEN_ONLY__
/* This __DOXYGEN_ONLY__ block contains mock definitions for things that
* must be defined in the crypto_platform.h header. These mock definitions
* are present in this file as a convenience to generate pretty-printed
* documentation that includes those definitions. */
/** \defgroup platform Implementation-specific definitions
* @{
*/
/** \brief Key slot number.
*
* This type represents key slots. It must be an unsigned integral
* type. The choice of type is implementation-dependent.
* 0 is not a valid key slot number. The meaning of other values is
* implementation dependent.
*
* At any given point in time, each key slot either contains a
* cryptographic object, or is empty. Key slots are persistent:
* once set, the cryptographic object remains in the key slot until
* explicitly destroyed.
*/
typedef _unsigned_integral_type_ psa_key_slot_t;
/**@}*/
#endif /* __DOXYGEN_ONLY__ */
#ifdef __cplusplus
extern "C" {
#endif
/** \defgroup basic Basic definitions
* @{
*/
#if defined(PSA_SUCCESS)
/* If PSA_SUCCESS is defined, assume that PSA crypto is being used
* together with PSA IPC, which also defines the identifier
* PSA_SUCCESS. We must not define PSA_SUCCESS ourselves in that case;
* the other error code names don't clash. Also define psa_status_t as
* an alias for the type used by PSA IPC. This is a temporary hack
* until we unify error reporting in PSA IPC and PSA crypto.
*
* Note that psa_defs.h must be included before this header!
*/
typedef psa_error_t psa_status_t;
#else /* defined(PSA_SUCCESS) */
/**
* \brief Function return status.
*
* This is either #PSA_SUCCESS (which is zero), indicating success,
* or a nonzero value indicating that an error occurred. Errors are
* encoded as one of the \c PSA_ERROR_xxx values defined here.
*/
typedef int32_t psa_status_t;
/** The action was completed successfully. */
#define PSA_SUCCESS ((psa_status_t)0)
#endif /* !defined(PSA_SUCCESS) */
/** An error occurred that does not correspond to any defined
* failure cause.
*
* Implementations may use this error code if none of the other standard
* error codes are applicable. */
#define PSA_ERROR_UNKNOWN_ERROR ((psa_status_t)1)
/** The requested operation or a parameter is not supported
* by this implementation.
*
* Implementations should return this error code when an enumeration
* parameter such as a key type, algorithm, etc. is not recognized.
* If a combination of parameters is recognized and identified as
* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)2)
/** The requested action is denied by a policy.
*
* Implementations should return this error code when the parameters
* are recognized as valid and supported, and a policy explicitly
* denies the requested operation.
*
* If a subset of the parameters of a function call identify a
* forbidden operation, and another subset of the parameters are
* not valid or not supported, it is unspecified whether the function
* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
* #PSA_ERROR_INVALID_ARGUMENT. */
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)3)
/** An output buffer is too small.
*
* Applications can call the \c PSA_xxx_SIZE macro listed in the function
* description to determine a sufficient buffer size.
*
* Implementations should preferably return this error code only
* in cases when performing the operation with a larger output
* buffer would succeed. However implementations may return this
* error if a function has invalid or unsupported parameters in addition
* to the parameters that determine the necessary output buffer size. */
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)4)
/** A slot is occupied, but must be empty to carry out the
* requested action.
*
* If the slot number is invalid (i.e. the requested action could
* not be performed even after erasing the slot's content),
* implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */
#define PSA_ERROR_OCCUPIED_SLOT ((psa_status_t)5)
/** A slot is empty, but must be occupied to carry out the
* requested action.
*
* If the slot number is invalid (i.e. the requested action could
* not be performed even after creating appropriate content in the slot),
* implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */
#define PSA_ERROR_EMPTY_SLOT ((psa_status_t)6)
/** The requested action cannot be performed in the current state.
*
* Multipart operations return this error when one of the
* functions is called out of sequence. Refer to the function
* descriptions for permitted sequencing of functions.
*
* Implementations shall not return this error code to indicate
* that a key slot is occupied when it needs to be free or vice versa,
* but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
* as applicable. */
#define PSA_ERROR_BAD_STATE ((psa_status_t)7)
/** The parameters passed to the function are invalid.
*
* Implementations may return this error any time a parameter or
* combination of parameters are recognized as invalid.
*
* Implementations shall not return this error code to indicate
* that a key slot is occupied when it needs to be free or vice versa,
* but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
* as applicable. */
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)8)
/** There is not enough runtime memory.
*
* If the action is carried out across multiple security realms, this
* error can refer to available memory in any of the security realms. */
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)9)
/** There is not enough persistent storage.
*
* Functions that modify the key storage return this error code if
* there is insufficient storage space on the host media. In addition,
* many functions that do not otherwise access storage may return this
* error code if the implementation requires a mandatory log entry for
* the requested action and the log storage space is full. */
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)10)
/** There was a communication failure inside the implementation.
*
* This can indicate a communication failure between the application
* and an external cryptoprocessor or between the cryptoprocessor and
* an external volatile or persistent memory. A communication failure
* may be transient or permanent depending on the cause.
*
* \warning If a function returns this error, it is undetermined
* whether the requested action has completed or not. Implementations
* should return #PSA_SUCCESS on successful completion whenver
* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
* if the requested action was completed successfully in an external
* cryptoprocessor but there was a breakdown of communication before
* the cryptoprocessor could report the status to the application.
*/
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)11)
/** There was a storage failure that may have led to data loss.
*
* This error indicates that some persistent storage is corrupted.
* It should not be used for a corruption of volatile memory
* (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
* between the cryptoprocessor and its external storage (use
* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
*
* Note that a storage failure does not indicate that any data that was
* previously read is invalid. However this previously read data may no
* longer be readable from storage.
*
* When a storage failure occurs, it is no longer possible to ensure
* the global integrity of the keystore. Depending on the global
* integrity guarantees offered by the implementation, access to other
* data may or may not fail even if the data is still readable but
* its integrity canont be guaranteed.
*
* Implementations should only use this error code to report a
* permanent storage corruption. However application writers should
* keep in mind that transient errors while reading the storage may be
* reported using this error code. */
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)12)
/** A hardware failure was detected.
*
* A hardware failure may be transient or permanent depending on the
* cause. */
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)13)
/** A tampering attempt was detected.
*
* If an application receives this error code, there is no guarantee
* that previously accessed or computed data was correct and remains
* confidential. Applications should not perform any security function
* and should enter a safe failure state.
*
* Implementations may return this error code if they detect an invalid
* state that cannot happen during normal operation and that indicates
* that the implementation's security guarantees no longer hold. Depending
* on the implementation architecture and on its security and safety goals,
* the implementation may forcibly terminate the application.
*
* This error code is intended as a last resort when a security breach
* is detected and it is unsure whether the keystore data is still
* protected. Implementations shall only return this error code
* to report an alarm from a tampering detector, to indicate that
* the confidentiality of stored data can no longer be guaranteed,
* or to indicate that the integrity of previously returned data is now
* considered compromised. Implementations shall not use this error code
* to indicate a hardware failure that merely makes it impossible to
* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
* instead).
*
* This error indicates an attack against the application. Implementations
* shall not return this error code as a consequence of the behavior of
* the application itself. */
#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)14)
/** There is not enough entropy to generate random data needed
* for the requested action.
*
* This error indicates a failure of a hardware random generator.
* Application writers should note that this error can be returned not
* only by functions whose purpose is to generate random data, such
* as key, IV or nonce generation, but also by functions that execute
* an algorithm with a randomized result, as well as functions that
* use randomization of intermediate computations as a countermeasure
* to certain attacks.
*
* Implementations should avoid returning this error after psa_crypto_init()
* has succeeded. Implementations should generate sufficient
* entropy during initialization and subsequently use a cryptographically
* secure pseudorandom generator (PRNG). However implementations may return
* this error at any time if a policy requires the PRNG to be reseeded
* during normal operation. */
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)15)
/** The signature, MAC or hash is incorrect.
*
* Verification functions return this error if the verification
* calculations completed successfully, and the value to be verified
* was determined to be incorrect.
*
* If the value to verify has an invalid size, implementations may return
* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)16)
/** The decrypted padding is incorrect.
*
* \warning In some protocols, when decrypting data, it is essential that
* the behavior of the application does not depend on whether the padding
* is correct, down to precise timing. Applications should prefer
* protocols that use authenticated encryption rather than plain
* encryption. If the application must perform a decryption of
* unauthenticated data, the application writer should take care not
* to reveal whether the padding is invalid.
*
* Implementations should strive to make valid and invalid padding
* as close as possible to indistinguishable to an external observer.
* In particular, the timing of a decryption operation should not
* depend on the validity of the padding. */
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)17)
/** The generator has insufficient capacity left.
*
* Once a function returns this error, attempts to read from the
* generator will always return this error. */
#define PSA_ERROR_INSUFFICIENT_CAPACITY ((psa_status_t)18)
/**
* \brief Library initialization.
*
* Applications must call this function before calling any other
* function in this module.
*
* Applications may call this function more than once. Once a call
* succeeds, subsequent calls are guaranteed to succeed.
*
* If the application calls other functions before calling psa_crypto_init(),
* the behavior is undefined. Implementations are encouraged to either perform
* the operation as if the library had been initialized or to return
* #PSA_ERROR_BAD_STATE or some other applicable error. In particular,
* implementations should not return a success status if the lack of
* initialization may have security implications, for example due to improper
* seeding of the random number generator.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
*/
psa_status_t psa_crypto_init(void);
#define PSA_BITS_TO_BYTES(bits) (((bits) + 7) / 8)
#define PSA_BYTES_TO_BITS(bytes) ((bytes) * 8)
/**@}*/
/** \defgroup crypto_types Key and algorithm types
* @{
*/
/** \brief Encoding of a key type.
*/
typedef uint32_t psa_key_type_t;
/** An invalid key type value.
*
* Zero is not the encoding of any key type.
*/
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
/** Vendor-defined flag
*
* Key types defined by this standard will never have the
* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
* respect the bitwise structure used by standard encodings whenever practical.
*/
#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
/** Whether a key type is vendor-defined. */
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
/** Whether a key type is an unstructured array of bytes.
*
* This encompasses both symmetric keys and non-key data.
*/
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
/** Whether a key type is asymmetric: either a key pair or a public key. */
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK \
& ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
/** Whether a key type is the public part of a key pair. */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
/** Whether a key type is a key pair containing a private part and a public
* part. */
#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
/** The key pair type corresponding to a public key type.
*
* You may also pass a key pair type as \p type, it will be left unchanged.
*
* \param type A public key type or key pair type.
*
* \return The corresponding key pair type.
* If \p type is not a public key or a key pair,
* the return value is undefined.
*/
#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
/** The public key type corresponding to a key pair type.
*
* You may also pass a key pair type as \p type, it will be left unchanged.
*
* \param type A public key type or key pair type.
*
* \return The corresponding public key type.
* If \p type is not a public key or a key pair,
* the return value is undefined.
*/
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
/** Raw data.
*
* A "key" of this type cannot be used for any cryptographic operation.
* Applications may use this type to store arbitrary data in the keystore. */
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
/** HMAC key.
*
* The key policy determines which underlying hash algorithm the key can be
* used for.
*
* HMAC keys should generally have the same size as the underlying hash.
* This size can be calculated with #PSA_HASH_SIZE(\c alg) where
* \c alg is the HMAC algorithm or the underlying hash algorithm. */
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
/** A secret for key derivation.
*
* The key policy determines which key derivation algorithm the key
* can be used for.
*/
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
*
* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
* 32 bytes (AES-256).
*/
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
*
* The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
* 24 bytes (3-key 3DES).
*
* Note that single DES and 2-key 3DES are weak and strongly
* deprecated and should only be used to decrypt legacy data. 3-key 3DES
* is weak and deprecated and should only be used in legacy protocols.
*/
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
/** Key for an cipher, AEAD or MAC algorithm based on the
* Camellia block cipher. */
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
/** Key for the RC4 stream cipher.
*
* Note that RC4 is weak and deprecated and should only be used in
* legacy protocols. */
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
/** RSA public key. */
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
/** RSA key pair (private and public key). */
#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
/** Whether a key type is an RSA key (pair or public-only). */
#define PSA_KEY_TYPE_IS_RSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
/** DSA public key. */
#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
/** DSA key pair (private and public key). */
#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000)
/** Whether a key type is an DSA key (pair or public-only). */
#define PSA_KEY_TYPE_IS_DSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY)
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
/** Elliptic curve key pair. */
#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
(PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
/** Elliptic curve public key. */
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
/** Whether a key type is an elliptic curve key (pair or public-only). */
#define PSA_KEY_TYPE_IS_ECC(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
(((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
/** The type of PSA elliptic curve identifiers. */
typedef uint16_t psa_ecc_curve_t;
/** Extract the curve from an elliptic curve key type. */
#define PSA_KEY_TYPE_GET_CURVE(type) \
((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
0))
/* The encoding of curve identifiers is currently aligned with the
* TLS Supported Groups Registry (formerly known as the
* TLS EC Named Curve Registry)
* https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
* The values are defined by RFC 8422 and RFC 7027. */
#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
/** The block size of a block cipher.
*
* \param type A cipher key type (value of type #psa_key_type_t).
*
* \return The block size for a block cipher, or 1 for a stream cipher.
* The return value is undefined if \p type is not a supported
* cipher key type.
*
* \note It is possible to build stream cipher algorithms on top of a block
* cipher, for example CTR mode (#PSA_ALG_CTR).
* This macro only takes the key type into account, so it cannot be
* used to determine the size of the data that #psa_cipher_update()
* might buffer for future processing in general.
*
* \note This macro returns a compile-time constant if its argument is one.
*
* \warning This macro may evaluate its argument multiple times.
*/
#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
( \
(type) == PSA_KEY_TYPE_AES ? 16 : \
(type) == PSA_KEY_TYPE_DES ? 8 : \
(type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
(type) == PSA_KEY_TYPE_ARC4 ? 1 : \
0)
/** \brief Encoding of a cryptographic algorithm.
*
* For algorithms that can be applied to multiple key types, this type
* does not encode the key type. For example, for symmetric ciphers
* based on a block cipher, #psa_algorithm_t encodes the block cipher
* mode and the padding mode while the block cipher itself is encoded
* via #psa_key_type_t.
*/
typedef uint32_t psa_algorithm_t;
#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000)
#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000)
#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
(((alg) & PSA_ALG_VENDOR_FLAG) != 0)
/** Whether the specified algorithm is a hash algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a hash algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_HASH(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
/** Whether the specified algorithm is a MAC algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a MAC algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_MAC(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
/** Whether the specified algorithm is a symmetric cipher algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_CIPHER(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
/** Whether the specified algorithm is an authenticated encryption
* with associated data (AEAD) algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_AEAD(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
/** Whether the specified algorithm is a public-key signature algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_SIGN(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
/** Whether the specified algorithm is a public-key encryption algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
/** Whether the specified algorithm is a key agreement algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
/** Whether the specified algorithm is a key derivation algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_KEY_DERIVATION(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
/** SHA2-224 */
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
/** SHA2-256 */
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
/** SHA2-384 */
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
/** SHA2-512 */
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
/** SHA2-512/224 */
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
/** SHA2-512/256 */
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
/** SHA3-224 */
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
/** SHA3-256 */
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
/** SHA3-384 */
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
/** SHA3-512 */
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
/** Macro to build an HMAC algorithm.
*
* For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding HMAC algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_HMAC(hash_alg) \
(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is an HMAC algorithm.
*
* HMAC is a family of MAC algorithms that are based on a hash function.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_HMAC(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
PSA_ALG_HMAC_BASE)
#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier.
*/
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
PSA_ALG_CIPHER_MAC_BASE)
#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
/** Whether the specified algorithm is a stream cipher.
*
* A stream cipher is a symmetric cipher that encrypts or decrypts messages
* by applying a bitwise-xor with a stream of bytes that is generated
* from a key.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \p alg is not a supported
* algorithm identifier or if it is not a symmetric cipher algorithm.
*/
#define PSA_ALG_IS_STREAM_CIPHER(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
(PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
/** The ARC4 stream cipher algorithm.
*/
#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
/** The CTR stream cipher mode.
*
* CTR is a stream cipher which is built from a block cipher.
* The underlying block cipher is determined by the key type.
* For example, to use AES-128-CTR, use this algorithm with
* a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
*/
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
/** The XTS cipher mode.
*
* XTS is a cipher mode which is built from a block cipher. It requires at
* least one full block of input, but beyond this minimum the input
* does not need to be a whole number of blocks.
*/
#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
/** The CBC block cipher chaining mode, with no padding.
*
* The underlying block cipher is determined by the key type.
*
* This symmetric cipher mode can only be used with messages whose lengths
* are whole number of blocks for the chosen block cipher.
*/
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
/** The CBC block cipher chaining mode with PKCS#7 padding.
*
* The underlying block cipher is determined by the key type.
*
* This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
*/
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
#define PSA_ALG_CCM ((psa_algorithm_t)0x06000001)
#define PSA_ALG_GCM ((psa_algorithm_t)0x06000002)
#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
/** RSA PKCS#1 v1.5 signature with hashing.
*
* This is the signature scheme defined by RFC 8017
* (PKCS#1: RSA Cryptography Specifications) under the name
* RSASSA-PKCS1-v1_5.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
(PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Raw PKCS#1 v1.5 signature.
*
* The input to this algorithm is the DigestInfo structure used by
* RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
* steps 3&ndash;6.
*/
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
/** RSA PSS signature with hashing.
*
* This is the signature scheme defined by RFC 8017
* (PKCS#1: RSA Cryptography Specifications) under the name
* RSASSA-PSS, with the message generation function MGF1, and with
* a salt length equal to the length of the hash. The specified
* hash algorithm is used to hash the input message, to create the
* salted hash, and for the mask generation.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding RSA PSS signature algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_PSS(hash_alg) \
(PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_PSS(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
#define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000)
/** DSA signature with hashing.
*
* This is the signature scheme defined by FIPS 186-4,
* with a random per-message secret number (*k*).
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding DSA signature algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_DSA(hash_alg) \
(PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000)
#define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
#define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \
(PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_DSA(alg) \
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
PSA_ALG_DSA_BASE)
#define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \
(((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
#define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \
(PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg))
#define PSA_ALG_IS_RANDOMIZED_DSA(alg) \
(PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg))
#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
/** ECDSA signature with hashing.
*
* This is the ECDSA signature scheme defined by ANSI X9.62,
* with a random per-message secret number (*k*).
*
* The representation of the signature as a byte string consists of
* the concatentation of the signature values *r* and *s*. Each of
* *r* and *s* is encoded as an *N*-octet string, where *N* is the length
* of the base point of the curve in octets. Each value is represented
* in big-endian order (most significant octet first).
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding ECDSA signature algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_ECDSA(hash_alg) \
(PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** ECDSA signature without hashing.
*
* This is the same signature scheme as #PSA_ALG_ECDSA(), but
* without specifying a hash algorithm. This algorithm may only be
* used to sign or verify a sequence of bytes that should be an
* already-calculated hash. Note that the input is padded with
* zeros on the left or truncated on the left as required to fit
* the curve size.
*/
#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
/** Deterministic ECDSA signature with hashing.
*
* This is the deterministic ECDSA signature scheme defined by RFC 6979.
*
* The representation of a signature is the same as with #PSA_ALG_ECDSA().
*
* Note that when this algorithm is used for verification, signatures
* made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
* same private key are accepted. In other words,
* #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
* #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding deterministic ECDSA signature
* algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
(PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_ECDSA(alg) \
(((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
PSA_ALG_ECDSA_BASE)
#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
(((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
(PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
(PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
/** Get the hash used by a hash-and-sign signature algorithm.
*
* A hash-and-sign algorithm is a signature algorithm which is
* composed of two phases: first a hashing phase which does not use
* the key and produces a hash of the input message, then a signing
* phase which only uses the hash and the key and not the message
* itself.
*
* \param alg A signature algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_SIGN(\p alg) is true).
*
* \return The underlying hash algorithm if \p alg is a hash-and-sign
* algorithm.
* \return 0 if \p alg is a signature algorithm that does not
* follow the hash-and-sign structure.
* \return Unspecified if \p alg is not a signature algorithm or
* if it is not supported by the implementation.
*/
#define PSA_ALG_SIGN_GET_HASH(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg) ? \
((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
0)
/** RSA PKCS#1 v1.5 encryption.
*/
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
/** RSA OAEP encryption.
*
* This is the encryption scheme defined by RFC 8017
* (PKCS#1: RSA Cryptography Specifications) under the name
* RSAES-OAEP, with the message generation function MGF1.
*
* \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
* for MGF1.
*
* \return The corresponding RSA OAEP signature algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_RSA_OAEP(hash_alg) \
(PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_OAEP(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
(PSA_ALG_IS_RSA_OAEP(alg) ? \
((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
0)
#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x30000100)
/** Macro to build an HKDF algorithm.
*
* For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
*
* \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p hash_alg) is true).
*
* \return The corresponding HKDF algorithm.
* \return Unspecified if \p alg is not a supported
* hash algorithm.
*/
#define PSA_ALG_HKDF(hash_alg) \
(PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
/** Whether the specified algorithm is an HKDF algorithm.
*
* HKDF is a family of key derivation algorithms that are based on a hash
* function and the HMAC construction.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a supported
* key derivation algorithm identifier.
*/
#define PSA_ALG_IS_HKDF(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
(PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
/**@}*/
/** \defgroup key_management Key management
* @{
*/
/**
* \brief Import a key in binary format.
*
* This function supports any output from psa_export_key(). Refer to the
* documentation of psa_export_key() for the format for each key type.
*
* \param key Slot where the key will be stored. This must be a
* valid slot for a key of the chosen type. It must
* be unoccupied.
* \param type Key type (a \c PSA_KEY_TYPE_XXX value).
* \param[in] data Buffer containing the key data.
* \param data_length Size of the \p data buffer in bytes.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_NOT_SUPPORTED
* The key type or key size is not supported, either by the
* implementation in general or in this particular slot.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid,
* or the key data is not correctly formatted.
* \retval #PSA_ERROR_OCCUPIED_SLOT
* There is already a key in the specified slot.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_INSUFFICIENT_STORAGE
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_import_key(psa_key_slot_t key,
psa_key_type_t type,
const uint8_t *data,
size_t data_length);
/**
* \brief Destroy a key and restore the slot to its default state.
*
* This function destroys the content of the key slot from both volatile
* memory and, if applicable, non-volatile storage. Implementations shall
* make a best effort to ensure that any previous content of the slot is
* unrecoverable.
*
* This function also erases any metadata such as policies. It returns the
* specified slot to its default state.
*
* \param key The key slot to erase.
*
* \retval #PSA_SUCCESS
* The slot's content, if any, has been erased.
* \retval #PSA_ERROR_NOT_PERMITTED
* The slot holds content and cannot be erased because it is
* read-only, either due to a policy or due to physical restrictions.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The specified slot number does not designate a valid slot.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* There was an failure in communication with the cryptoprocessor.
* The key material may still be present in the cryptoprocessor.
* \retval #PSA_ERROR_STORAGE_FAILURE
* The storage is corrupted. Implementations shall make a best effort
* to erase key material even in this stage, however applications
* should be aware that it may be impossible to guarantee that the
* key material is not recoverable in such cases.
* \retval #PSA_ERROR_TAMPERING_DETECTED
* An unexpected condition which is not a storage corruption or
* a communication failure occurred. The cryptoprocessor may have
* been compromised.
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_destroy_key(psa_key_slot_t key);
/**
* \brief Get basic metadata about a key.
*
* \param key Slot whose content is queried. This must
* be an occupied key slot.
* \param[out] type On success, the key type (a \c PSA_KEY_TYPE_XXX value).
* This may be a null pointer, in which case the key type
* is not written.
* \param[out] bits On success, the key size in bits.
* This may be a null pointer, in which case the key size
* is not written.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_get_key_information(psa_key_slot_t key,
psa_key_type_t *type,
size_t *bits);
/**
* \brief Export a key in binary format.
*
* The output of this function can be passed to psa_import_key() to
* create an equivalent object.
*
* If a key is created with psa_import_key() and then exported with
* this function, it is not guaranteed that the resulting data is
* identical: the implementation may choose a different representation
* of the same key if the format permits it.
*
* For standard key types, the output format is as follows:
*
* - For symmetric keys (including MAC keys), the format is the
* raw bytes of the key.
* - For DES, the key data consists of 8 bytes. The parity bits must be
* correct.
* - For Triple-DES, the format is the concatenation of the
* two or three DES keys.
* - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format
* is the non-encrypted DER encoding of the representation defined by
* PKCS\#1 (RFC 8017) as `RSAPrivateKey`, version 0.
* ```
* RSAPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 0
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
* ```
* - For DSA private keys (#PSA_KEY_TYPE_DSA_KEYPAIR), the format
* is the non-encrypted DER encoding of the representation used by
* OpenSSL and OpenSSH, whose structure is described in ASN.1 as follows:
* ```
* DSAPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 0
* prime INTEGER, -- p
* subprime INTEGER, -- q
* generator INTEGER, -- g
* public INTEGER, -- y
* private INTEGER, -- x
* }
* ```
* - For elliptic curve key pairs (key types for which
* #PSA_KEY_TYPE_IS_ECC_KEYPAIR is true), the format is the
* non-encrypted DER encoding of the representation defined by RFC 5915 as
* `ECPrivateKey`, version 1. The `ECParameters` field must be a
* `namedCurve` OID as specified in RFC 5480 &sect;2.1.1.1. The public key
* must be present and must be an `ECPoint` in the same format
* (uncompressed variant) an ECC public key of the
* corresponding type exported with psa_export_public_key().
* ```
* ECPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 1
* privateKey OCTET STRING,
* -- `ceiling(log2(n)/8)`-byte string, big endian,
* -- where n is the order of the curve.
* parameters [0] IMPLICIT ECParameters {{ namedCurve }}, -- mandatory
* publicKey [1] IMPLICIT BIT STRING -- mandatory
* }
* ```
* - For public keys (key types for which #PSA_KEY_TYPE_IS_PUBLIC_KEY is
* true), the format is the same as for psa_export_public_key().
*
* \param key Slot whose content is to be exported. This must
* be an occupied key slot.
* \param[out] data Buffer where the key data is to be written.
* \param data_size Size of the \p data buffer in bytes.
* \param[out] data_length On success, the number of bytes
* that make up the key data.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p data buffer is too small. You can determine a
* sufficient buffer size by calling
* #PSA_KEY_EXPORT_MAX_SIZE(\c type, \c bits)
* where \c type is the key type
* and \c bits is the key size in bits.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_export_key(psa_key_slot_t key,
uint8_t *data,
size_t data_size,
size_t *data_length);
/**
* \brief Export a public key or the public part of a key pair in binary format.
*
* The output of this function can be passed to psa_import_key() to
* create an object that is equivalent to the public key.
*
* The format is the DER representation defined by RFC 5280 as
* `SubjectPublicKeyInfo`, with the `subjectPublicKey` format
* specified below.
* ```
* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING }
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER,
* parameters ANY DEFINED BY algorithm OPTIONAL }
* ```
*
* - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY),
* the `subjectPublicKey` format is defined by RFC 3279 &sect;2.3.1 as
* `RSAPublicKey`,
* with the OID `rsaEncryption`,
* and with the parameters `NULL`.
* ```
* pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
* rsadsi(113549) pkcs(1) 1 }
* rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
*
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
* ```
* - For DSA public keys (#PSA_KEY_TYPE_DSA_PUBLIC_KEY),
* the `subjectPublicKey` format is defined by RFC 3279 &sect;2.3.2 as
* `DSAPublicKey`,
* with the OID `id-dsa`,
* and with the parameters `DSS-Parms`.
* ```
* id-dsa OBJECT IDENTIFIER ::= {
* iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }
*
* Dss-Parms ::= SEQUENCE {
* p INTEGER,
* q INTEGER,
* g INTEGER }
* DSAPublicKey ::= INTEGER -- public key, Y
* ```
* - For elliptic curve public keys (key types for which
* #PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY is true),
* the `subjectPublicKey` format is defined by RFC 3279 &sect;2.3.5 as
* `ECPoint`, which contains the uncompressed
* representation defined by SEC1 &sect;2.3.3.
* The OID is `id-ecPublicKey`,
* and the parameters must be given as a `namedCurve` OID as specified in
* RFC 5480 &sect;2.1.1.1 or other applicable standards.
* ```
* ansi-X9-62 OBJECT IDENTIFIER ::=
* { iso(1) member-body(2) us(840) 10045 }
* id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }
* id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
*
* ECPoint ::= ...
* -- first 8 bits: 0x04;
* -- then x_P as an n-bit string, big endian;
* -- then y_P as a n-bit string, big endian,
* -- where n is the order of the curve.
*
* EcpkParameters ::= CHOICE { -- other choices are not allowed
* namedCurve OBJECT IDENTIFIER }
* ```
*
* \param key Slot whose content is to be exported. This must
* be an occupied key slot.
* \param[out] data Buffer where the key data is to be written.
* \param data_size Size of the \p data buffer in bytes.
* \param[out] data_length On success, the number of bytes
* that make up the key data.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The key is neither a public key nor a key pair.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p data buffer is too small. You can determine a
* sufficient buffer size by calling
* #PSA_KEY_EXPORT_MAX_SIZE(#PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(\c type), \c bits)
* where \c type is the key type
* and \c bits is the key size in bits.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_export_public_key(psa_key_slot_t key,
uint8_t *data,
size_t data_size,
size_t *data_length);
/**@}*/
/** \defgroup policy Key policies
* @{
*/
/** \brief Encoding of permitted usage on a key. */
typedef uint32_t psa_key_usage_t;
/** Whether the key may be exported.
*
* A public key or the public part of a key pair may always be exported
* regardless of the value of this permission flag.
*
* If a key does not have export permission, implementations shall not
* allow the key to be exported in plain form from the cryptoprocessor,
* whether through psa_export_key() or through a proprietary interface.
* The key may however be exportable in a wrapped form, i.e. in a form
* where it is encrypted by another key.
*/
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
/** Whether the key may be used to encrypt a message.
*
* This flag allows the key to be used for a symmetric encryption operation,
* for an AEAD encryption-and-authentication operation,
* or for an asymmetric encryption operation,
* if otherwise permitted by the key's type and policy.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
/** Whether the key may be used to decrypt a message.
*
* This flag allows the key to be used for a symmetric decryption operation,
* for an AEAD decryption-and-verification operation,
* or for an asymmetric decryption operation,
* if otherwise permitted by the key's type and policy.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
/** Whether the key may be used to sign a message.
*
* This flag allows the key to be used for a MAC calculation operation
* or for an asymmetric signature operation,
* if otherwise permitted by the key's type and policy.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
/** Whether the key may be used to verify a message signature.
*
* This flag allows the key to be used for a MAC verification operation
* or for an asymmetric signature verification operation,
* if otherwise permitted by by the key's type and policy.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
/** Whether the key may be used to derive other keys.
*/
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
/** The type of the key policy data structure.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_key_policy_s psa_key_policy_t;
/** \brief Initialize a key policy structure to a default that forbids all
* usage of the key.
*
* \param[out] policy The policy object to initialize.
*/
void psa_key_policy_init(psa_key_policy_t *policy);
/** \brief Set the standard fields of a policy structure.
*
* Note that this function does not make any consistency check of the
* parameters. The values are only checked when applying the policy to
* a key slot with psa_set_key_policy().
*
* \param[out] policy The policy object to modify.
* \param usage The permitted uses for the key.
* \param alg The algorithm that the key may be used for.
*/
void psa_key_policy_set_usage(psa_key_policy_t *policy,
psa_key_usage_t usage,
psa_algorithm_t alg);
/** \brief Retrieve the usage field of a policy structure.
*
* \param[in] policy The policy object to query.
*
* \return The permitted uses for a key with this policy.
*/
psa_key_usage_t psa_key_policy_get_usage(const psa_key_policy_t *policy);
/** \brief Retrieve the algorithm field of a policy structure.
*
* \param[in] policy The policy object to query.
*
* \return The permitted algorithm for a key with this policy.
*/
psa_algorithm_t psa_key_policy_get_algorithm(const psa_key_policy_t *policy);
/** \brief Set the usage policy on a key slot.
*
* This function must be called on an empty key slot, before importing,
* generating or creating a key in the slot. Changing the policy of an
* existing key is not permitted.
*
* Implementations may set restrictions on supported key policies
* depending on the key type and the key slot.
*
* \param key The key slot whose policy is to be changed.
* \param[in] policy The policy object to query.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_OCCUPIED_SLOT
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_set_key_policy(psa_key_slot_t key,
const psa_key_policy_t *policy);
/** \brief Get the usage policy for a key slot.
*
* \param key The key slot whose policy is being queried.
* \param[out] policy On success, the key's policy.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_get_key_policy(psa_key_slot_t key,
psa_key_policy_t *policy);
/**@}*/
/** \defgroup persistence Key lifetime
* @{
*/
/** Encoding of key lifetimes.
*/
typedef uint32_t psa_key_lifetime_t;
/** A volatile key slot retains its content as long as the application is
* running. It is guaranteed to be erased on a power reset.
*/
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
/** A persistent key slot retains its content as long as it is not explicitly
* destroyed.
*/
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
/** A write-once key slot may not be modified once a key has been set.
* It will retain its content as long as the device remains operational.
*/
#define PSA_KEY_LIFETIME_WRITE_ONCE ((psa_key_lifetime_t)0x7fffffff)
/** \brief Retrieve the lifetime of a key slot.
*
* The assignment of lifetimes to slots is implementation-dependent.
*
* \param key Slot to query.
* \param[out] lifetime On success, the lifetime value.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_get_key_lifetime(psa_key_slot_t key,
psa_key_lifetime_t *lifetime);
/** \brief Change the lifetime of a key slot.
*
* Whether the lifetime of a key slot can be changed at all, and if so
* whether the lifetime of an occupied key slot can be changed, is
* implementation-dependent.
*
* \param key Slot whose lifetime is to be changed.
* \param lifetime The lifetime value to set for the given key slot.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid,
* or the lifetime value is invalid.
* \retval #PSA_ERROR_NOT_SUPPORTED
* The implementation does not support the specified lifetime value,
* at least for the specified key slot.
* \retval #PSA_ERROR_OCCUPIED_SLOT
* The slot contains a key, and the implementation does not support
* changing the lifetime of an occupied slot.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_set_key_lifetime(psa_key_slot_t key,
psa_key_lifetime_t lifetime);
/**@}*/
/** \defgroup hash Message digests
* @{
*/
/** The type of the state data structure for multipart hash operations.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_hash_operation_s psa_hash_operation_t;
/** The size of the output of psa_hash_finish(), in bytes.
*
* This is also the hash size that psa_hash_verify() expects.
*
* \param alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(\p alg) is true), or an HMAC algorithm
* (#PSA_ALG_HMAC(\c hash_alg) where \c hash_alg is a
* hash algorithm).
*
* \return The hash size for the specified hash algorithm.
* If the hash algorithm is not recognized, return 0.
* An implementation may return either 0 or the correct size
* for a hash algorithm that it recognizes, but does not support.
*/
#define PSA_HASH_SIZE(alg) \
( \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_MD2 ? 16 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_MD4 ? 16 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_MD5 ? 16 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_RIPEMD160 ? 20 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_1 ? 20 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_224 ? 28 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_256 ? 32 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_384 ? 48 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_512 ? 64 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_512_224 ? 28 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_512_256 ? 32 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_224 ? 28 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_256 ? 32 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_384 ? 48 : \
PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_512 ? 64 : \
0)
/** Start a multipart hash operation.
*
* The sequence of operations to calculate a hash (message digest)
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_hash_setup() to specify the algorithm.
* -# Call psa_hash_update() zero, one or more times, passing a fragment
* of the message each time. The hash that is calculated is the hash
* of the concatenation of these messages in order.
* -# To calculate the hash, call psa_hash_finish().
* To compare the hash with an expected value, call psa_hash_verify().
*
* The application may call psa_hash_abort() at any time after the operation
* has been initialized with psa_hash_setup().
*
* After a successful call to psa_hash_setup(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_hash_update().
* - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort().
*
* \param[out] operation The operation object to use.
* \param alg The hash algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_HASH(\p alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a hash algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_setup(psa_hash_operation_t *operation,
psa_algorithm_t alg);
/** Add a message fragment to a multipart hash operation.
*
* The application must call psa_hash_setup() before calling this function.
*
* If this function returns an error status, the operation becomes inactive.
*
* \param[in,out] operation Active hash operation.
* \param[in] input Buffer containing the message fragment to hash.
* \param input_length Size of the \p input buffer in bytes.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_update(psa_hash_operation_t *operation,
const uint8_t *input,
size_t input_length);
/** Finish the calculation of the hash of a message.
*
* The application must call psa_hash_setup() before calling this function.
* This function calculates the hash of the message formed by concatenating
* the inputs passed to preceding calls to psa_hash_update().
*
* When this function returns, the operation becomes inactive.
*
* \warning Applications should not call this function if they expect
* a specific value for the hash. Call psa_hash_verify() instead.
* Beware that comparing integrity or authenticity data such as
* hash values with a function such as \c memcmp is risky
* because the time taken by the comparison may leak information
* about the hashed data which could allow an attacker to guess
* a valid hash and thereby bypass security controls.
*
* \param[in,out] operation Active hash operation.
* \param[out] hash Buffer where the hash is to be written.
* \param hash_size Size of the \p hash buffer in bytes.
* \param[out] hash_length On success, the number of bytes
* that make up the hash value. This is always
* #PSA_HASH_SIZE(\c alg) where \c alg is the
* hash algorithm that is calculated.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p hash buffer is too small. You can determine a
* sufficient buffer size by calling #PSA_HASH_SIZE(\c alg)
* where \c alg is the hash algorithm that is calculated.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_finish(psa_hash_operation_t *operation,
uint8_t *hash,
size_t hash_size,
size_t *hash_length);
/** Finish the calculation of the hash of a message and compare it with
* an expected value.
*
* The application must call psa_hash_setup() before calling this function.
* This function calculates the hash of the message formed by concatenating
* the inputs passed to preceding calls to psa_hash_update(). It then
* compares the calculated hash with the expected hash passed as a
* parameter to this function.
*
* When this function returns, the operation becomes inactive.
*
* \note Implementations shall make the best effort to ensure that the
* comparison between the actual hash and the expected hash is performed
* in constant time.
*
* \param[in,out] operation Active hash operation.
* \param[in] hash Buffer containing the expected hash value.
* \param hash_length Size of the \p hash buffer in bytes.
*
* \retval #PSA_SUCCESS
* The expected hash is identical to the actual hash of the message.
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The hash of the message was calculated successfully, but it
* differs from the expected hash.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_verify(psa_hash_operation_t *operation,
const uint8_t *hash,
size_t hash_length);
/** Abort a hash operation.
*
* Aborting an operation frees all associated resources except for the
* \p operation structure itself. Once aborted, the operation object
* can be reused for another operation by calling
* psa_hash_setup() again.
*
* You may call this function any time after the operation object has
* been initialized by any of the following methods:
* - A call to psa_hash_setup(), whether it succeeds or not.
* - Initializing the \c struct to all-bits-zero.
* - Initializing the \c struct to logical zeros, e.g.
* `psa_hash_operation_t operation = {0}`.
*
* In particular, calling psa_hash_abort() after the operation has been
* terminated by a call to psa_hash_abort(), psa_hash_finish() or
* psa_hash_verify() is safe and has no effect.
*
* \param[in,out] operation Initialized hash operation.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_BAD_STATE
* \p operation is not an active hash operation.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_abort(psa_hash_operation_t *operation);
/**@}*/
/** \defgroup MAC Message authentication codes
* @{
*/
/** The type of the state data structure for multipart MAC operations.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_mac_operation_s psa_mac_operation_t;
/** Start a multipart MAC calculation operation.
*
* This function sets up the calculation of the MAC
* (message authentication code) of a byte string.
* To verify the MAC of a message against an
* expected value, use psa_mac_verify_setup() instead.
*
* The sequence of operations to calculate a MAC is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_mac_sign_setup() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call psa_mac_update() zero, one or more times, passing a fragment
* of the message each time. The MAC that is calculated is the MAC
* of the concatenation of these messages in order.
* -# At the end of the message, call psa_mac_sign_finish() to finish
* calculating the MAC value and retrieve it.
*
* The application may call psa_mac_abort() at any time after the operation
* has been initialized with psa_mac_sign_setup().
*
* After a successful call to psa_mac_sign_setup(), the application must
* eventually terminate the operation through one of the following methods:
* - A failed call to psa_mac_update().
* - A call to psa_mac_sign_finish() or psa_mac_abort().
*
* \param[out] operation The operation object to use.
* \param key Slot containing the key to use for the operation.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a MAC algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_sign_setup(psa_mac_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
/** Start a multipart MAC verification operation.
*
* This function sets up the verification of the MAC
* (message authentication code) of a byte string against an expected value.
*
* The sequence of operations to verify a MAC is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_mac_verify_setup() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call psa_mac_update() zero, one or more times, passing a fragment
* of the message each time. The MAC that is calculated is the MAC
* of the concatenation of these messages in order.
* -# At the end of the message, call psa_mac_verify_finish() to finish
* calculating the actual MAC of the message and verify it against
* the expected value.
*
* The application may call psa_mac_abort() at any time after the operation
* has been initialized with psa_mac_verify_setup().
*
* After a successful call to psa_mac_verify_setup(), the application must
* eventually terminate the operation through one of the following methods:
* - A failed call to psa_mac_update().
* - A call to psa_mac_verify_finish() or psa_mac_abort().
*
* \param[out] operation The operation object to use.
* \param key Slot containing the key to use for the operation.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(\p alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a MAC algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_mac_verify_setup(psa_mac_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
/** Add a message fragment to a multipart MAC operation.
*
* The application must call psa_mac_sign_setup() or psa_mac_verify_setup()
* before calling this function.
*
* If this function returns an error status, the operation becomes inactive.
*
* \param[in,out] operation Active MAC operation.
* \param[in] input Buffer containing the message fragment to add to
* the MAC calculation.
* \param input_length Size of the \p input buffer in bytes.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_mac_update(psa_mac_operation_t *operation,
const uint8_t *input,
size_t input_length);
/** Finish the calculation of the MAC of a message.
*
* The application must call psa_mac_sign_setup() before calling this function.
* This function calculates the MAC of the message formed by concatenating
* the inputs passed to preceding calls to psa_mac_update().
*
* When this function returns, the operation becomes inactive.
*
* \warning Applications should not call this function if they expect
* a specific value for the MAC. Call psa_mac_verify_finish() instead.
* Beware that comparing integrity or authenticity data such as
* MAC values with a function such as \c memcmp is risky
* because the time taken by the comparison may leak information
* about the MAC value which could allow an attacker to guess
* a valid MAC and thereby bypass security controls.
*
* \param[in,out] operation Active MAC operation.
* \param[out] mac Buffer where the MAC value is to be written.
* \param mac_size Size of the \p mac buffer in bytes.
* \param[out] mac_length On success, the number of bytes
* that make up the MAC value. This is always
* #PSA_MAC_FINAL_SIZE(\c key_type, \c key_bits, \c alg)
* where \c key_type and \c key_bits are the type and
* bit-size respectively of the key and \c alg is the
* MAC algorithm that is calculated.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p mac buffer is too small. You can determine a
* sufficient buffer size by calling PSA_MAC_FINAL_SIZE().
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_mac_sign_finish(psa_mac_operation_t *operation,
uint8_t *mac,
size_t mac_size,
size_t *mac_length);
/** Finish the calculation of the MAC of a message and compare it with
* an expected value.
*
* The application must call psa_mac_verify_setup() before calling this function.
* This function calculates the MAC of the message formed by concatenating
* the inputs passed to preceding calls to psa_mac_update(). It then
* compares the calculated MAC with the expected MAC passed as a
* parameter to this function.
*
* When this function returns, the operation becomes inactive.
*
* \note Implementations shall make the best effort to ensure that the
* comparison between the actual MAC and the expected MAC is performed
* in constant time.
*
* \param[in,out] operation Active MAC operation.
* \param[in] mac Buffer containing the expected MAC value.
* \param mac_length Size of the \p mac buffer in bytes.
*
* \retval #PSA_SUCCESS
* The expected MAC is identical to the actual MAC of the message.
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The MAC of the message was calculated successfully, but it
* differs from the expected MAC.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_mac_verify_finish(psa_mac_operation_t *operation,
const uint8_t *mac,
size_t mac_length);
/** Abort a MAC operation.
*
* Aborting an operation frees all associated resources except for the
* \p operation structure itself. Once aborted, the operation object
* can be reused for another operation by calling
* psa_mac_sign_setup() or psa_mac_verify_setup() again.
*
* You may call this function any time after the operation object has
* been initialized by any of the following methods:
* - A call to psa_mac_sign_setup() or psa_mac_verify_setup(), whether
* it succeeds or not.
* - Initializing the \c struct to all-bits-zero.
* - Initializing the \c struct to logical zeros, e.g.
* `psa_mac_operation_t operation = {0}`.
*
* In particular, calling psa_mac_abort() after the operation has been
* terminated by a call to psa_mac_abort(), psa_mac_sign_finish() or
* psa_mac_verify_finish() is safe and has no effect.
*
* \param[in,out] operation Initialized MAC operation.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_BAD_STATE
* \p operation is not an active MAC operation.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_mac_abort(psa_mac_operation_t *operation);
/**@}*/
/** \defgroup cipher Symmetric ciphers
* @{
*/
/** The type of the state data structure for multipart cipher operations.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_cipher_operation_s psa_cipher_operation_t;
/** Set the key for a multipart symmetric encryption operation.
*
* The sequence of operations to encrypt a message with a symmetric cipher
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_cipher_encrypt_setup() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to
* generate or set the IV (initialization vector). You should use
* psa_cipher_generate_iv() unless the protocol you are implementing
* requires a specific IV value.
* -# Call psa_cipher_update() zero, one or more times, passing a fragment
* of the message each time.
* -# Call psa_cipher_finish().
*
* The application may call psa_cipher_abort() at any time after the operation
* has been initialized with psa_cipher_encrypt_setup().
*
* After a successful call to psa_cipher_encrypt_setup(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_cipher_generate_iv(), psa_cipher_set_iv()
* or psa_cipher_update().
* - A call to psa_cipher_finish() or psa_cipher_abort().
*
* \param[out] operation The operation object to use.
* \param key Slot containing the key to use for the operation.
* \param alg The cipher algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_CIPHER(\p alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a cipher algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
/** Set the key for a multipart symmetric decryption operation.
*
* The sequence of operations to decrypt a message with a symmetric cipher
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_cipher_decrypt_setup() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call psa_cipher_update() with the IV (initialization vector) for the
* decryption. If the IV is prepended to the ciphertext, you can call
* psa_cipher_update() on a buffer containing the IV followed by the
* beginning of the message.
* -# Call psa_cipher_update() zero, one or more times, passing a fragment
* of the message each time.
* -# Call psa_cipher_finish().
*
* The application may call psa_cipher_abort() at any time after the operation
* has been initialized with psa_cipher_decrypt_setup().
*
* After a successful call to psa_cipher_decrypt_setup(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_cipher_update().
* - A call to psa_cipher_finish() or psa_cipher_abort().
*
* \param[out] operation The operation object to use.
* \param key Slot containing the key to use for the operation.
* \param alg The cipher algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_CIPHER(\p alg) is true).
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not a cipher algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
/** Generate an IV for a symmetric encryption operation.
*
* This function generates a random IV (initialization vector), nonce
* or initial counter value for the encryption operation as appropriate
* for the chosen algorithm, key type and key size.
*
* The application must call psa_cipher_encrypt_setup() before
* calling this function.
*
* If this function returns an error status, the operation becomes inactive.
*
* \param[in,out] operation Active cipher operation.
* \param[out] iv Buffer where the generated IV is to be written.
* \param iv_size Size of the \p iv buffer in bytes.
* \param[out] iv_length On success, the number of bytes of the
* generated IV.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or IV already set).
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p iv buffer is too small.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t *operation,
unsigned char *iv,
size_t iv_size,
size_t *iv_length);
/** Set the IV for a symmetric encryption or decryption operation.
*
* This function sets the random IV (initialization vector), nonce
* or initial counter value for the encryption or decryption operation.
*
* The application must call psa_cipher_encrypt_setup() before
* calling this function.
*
* If this function returns an error status, the operation becomes inactive.
*
* \note When encrypting, applications should use psa_cipher_generate_iv()
* instead of this function, unless implementing a protocol that requires
* a non-random IV.
*
* \param[in,out] operation Active cipher operation.
* \param[in] iv Buffer containing the IV to use.
* \param iv_length Size of the IV in bytes.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or IV already set).
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The size of \p iv is not acceptable for the chosen algorithm,
* or the chosen algorithm does not use an IV.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_cipher_set_iv(psa_cipher_operation_t *operation,
const unsigned char *iv,
size_t iv_length);
/** Encrypt or decrypt a message fragment in an active cipher operation.
*
* Before calling this function, you must:
* 1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup().
* The choice of setup function determines whether this function
* encrypts or decrypts its input.
* 2. If the algorithm requires an IV, call psa_cipher_generate_iv()
* (recommended when encrypting) or psa_cipher_set_iv().
*
* If this function returns an error status, the operation becomes inactive.
*
* \param[in,out] operation Active cipher operation.
* \param[in] input Buffer containing the message fragment to
* encrypt or decrypt.
* \param input_length Size of the \p input buffer in bytes.
* \param[out] output Buffer where the output is to be written.
* \param output_size Size of the \p output buffer in bytes.
* \param[out] output_length On success, the number of bytes
* that make up the returned output.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, IV required but
* not set, or already completed).
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p output buffer is too small.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_cipher_update(psa_cipher_operation_t *operation,
const uint8_t *input,
size_t input_length,
unsigned char *output,
size_t output_size,
size_t *output_length);
/** Finish encrypting or decrypting a message in a cipher operation.
*
* The application must call psa_cipher_encrypt_setup() or
* psa_cipher_decrypt_setup() before calling this function. The choice
* of setup function determines whether this function encrypts or
* decrypts its input.
*
* This function finishes the encryption or decryption of the message
* formed by concatenating the inputs passed to preceding calls to
* psa_cipher_update().
*
* When this function returns, the operation becomes inactive.
*
* \param[in,out] operation Active cipher operation.
* \param[out] output Buffer where the output is to be written.
* \param output_size Size of the \p output buffer in bytes.
* \param[out] output_length On success, the number of bytes
* that make up the returned output.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, IV required but
* not set, or already completed).
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p output buffer is too small.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation,
uint8_t *output,
size_t output_size,
size_t *output_length);
/** Abort a cipher operation.
*
* Aborting an operation frees all associated resources except for the
* \p operation structure itself. Once aborted, the operation object
* can be reused for another operation by calling
* psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() again.
*
* You may call this function any time after the operation object has
* been initialized by any of the following methods:
* - A call to psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(),
* whether it succeeds or not.
* - Initializing the \c struct to all-bits-zero.
* - Initializing the \c struct to logical zeros, e.g.
* `psa_cipher_operation_t operation = {0}`.
*
* In particular, calling psa_cipher_abort() after the operation has been
* terminated by a call to psa_cipher_abort() or psa_cipher_finish()
* is safe and has no effect.
*
* \param[in,out] operation Initialized cipher operation.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_BAD_STATE
* \p operation is not an active cipher operation.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation);
/**@}*/
/** \defgroup aead Authenticated encryption with associated data (AEAD)
* @{
*/
/** The tag size for an AEAD algorithm, in bytes.
*
* \param alg An AEAD algorithm
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(\p alg) is true).
*
* \return The tag size for the specified algorithm.
* If the AEAD algorithm does not have an identified
* tag that can be distinguished from the rest of
* the ciphertext, return 0.
* If the AEAD algorithm is not recognized, return 0.
* An implementation may return either 0 or a
* correct size for an AEAD algorithm that it
* recognizes, but does not support.
*/
#define PSA_AEAD_TAG_SIZE(alg) \
((alg) == PSA_ALG_GCM ? 16 : \
(alg) == PSA_ALG_CCM ? 16 : \
0)
/** Process an authenticated encryption operation.
*
* \param key Slot containing the key to use.
* \param alg The AEAD algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(\p alg) is true).
* \param[in] nonce Nonce or IV to use.
* \param nonce_length Size of the \p nonce buffer in bytes.
* \param[in] additional_data Additional data that will be authenticated
* but not encrypted.
* \param additional_data_length Size of \p additional_data in bytes.
* \param[in] plaintext Data that will be authenticated and
* encrypted.
* \param plaintext_length Size of \p plaintext in bytes.
* \param[out] ciphertext Output buffer for the authenticated and
* encrypted data. The additional data is not
* part of this output. For algorithms where the
* encrypted data and the authentication tag
* are defined as separate outputs, the
* authentication tag is appended to the
* encrypted data.
* \param ciphertext_size Size of the \p ciphertext buffer in bytes.
* This must be at least
* #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(\p alg,
* \p plaintext_length).
* \param[out] ciphertext_length On success, the size of the output
* in the \b ciphertext buffer.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not an AEAD algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_aead_encrypt(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *nonce,
size_t nonce_length,
const uint8_t *additional_data,
size_t additional_data_length,
const uint8_t *plaintext,
size_t plaintext_length,
uint8_t *ciphertext,
size_t ciphertext_size,
size_t *ciphertext_length);
/** Process an authenticated decryption operation.
*
* \param key Slot containing the key to use.
* \param alg The AEAD algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(\p alg) is true).
* \param[in] nonce Nonce or IV to use.
* \param nonce_length Size of the \p nonce buffer in bytes.
* \param[in] additional_data Additional data that has been authenticated
* but not encrypted.
* \param additional_data_length Size of \p additional_data in bytes.
* \param[in] ciphertext Data that has been authenticated and
* encrypted. For algorithms where the
* encrypted data and the authentication tag
* are defined as separate inputs, the buffer
* must contain the encrypted data followed
* by the authentication tag.
* \param ciphertext_length Size of \p ciphertext in bytes.
* \param[out] plaintext Output buffer for the decrypted data.
* \param plaintext_size Size of the \p plaintext buffer in bytes.
* This must be at least
* #PSA_AEAD_DECRYPT_OUTPUT_SIZE(\p alg,
* \p ciphertext_length).
* \param[out] plaintext_length On success, the size of the output
* in the \b plaintext buffer.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The ciphertext is not authentic.
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p key is not compatible with \p alg.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \p alg is not supported or is not an AEAD algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_aead_decrypt(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *nonce,
size_t nonce_length,
const uint8_t *additional_data,
size_t additional_data_length,
const uint8_t *ciphertext,
size_t ciphertext_length,
uint8_t *plaintext,
size_t plaintext_size,
size_t *plaintext_length);
/**@}*/
/** \defgroup asymmetric Asymmetric cryptography
* @{
*/
/**
* \brief ECDSA signature size for a given curve bit size
*
* \param curve_bits Curve size in bits.
* \return Signature size in bytes.
*
* \note This macro returns a compile-time constant if its argument is one.
*/
#define PSA_ECDSA_SIGNATURE_SIZE(curve_bits) \
(PSA_BITS_TO_BYTES(curve_bits) * 2)
/**
* \brief Sign a hash or short message with a private key.
*
* Note that to perform a hash-and-sign signature algorithm, you must
* first calculate the hash by calling psa_hash_setup(), psa_hash_update()
* and psa_hash_finish(). Then pass the resulting hash as the \p hash
* parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg)
* to determine the hash algorithm to use.
*
* \param key Key slot containing an asymmetric key pair.
* \param alg A signature algorithm that is compatible with
* the type of \p key.
* \param[in] hash The hash or message to sign.
* \param hash_length Size of the \p hash buffer in bytes.
* \param[out] signature Buffer where the signature is to be written.
* \param signature_size Size of the \p signature buffer in bytes.
* \param[out] signature_length On success, the number of bytes
* that make up the returned signature value.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p signature buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \p key.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_asymmetric_sign(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length);
/**
* \brief Verify the signature a hash or short message using a public key.
*
* Note that to perform a hash-and-sign signature algorithm, you must
* first calculate the hash by calling psa_hash_setup(), psa_hash_update()
* and psa_hash_finish(). Then pass the resulting hash as the \p hash
* parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg)
* to determine the hash algorithm to use.
*
* \param key Key slot containing a public key or an
* asymmetric key pair.
* \param alg A signature algorithm that is compatible with
* the type of \p key.
* \param[in] hash The hash or message whose signature is to be
* verified.
* \param hash_length Size of the \p hash buffer in bytes.
* \param[in] signature Buffer containing the signature to verify.
* \param signature_length Size of the \p signature buffer in bytes.
*
* \retval #PSA_SUCCESS
* The signature is valid.
* \retval #PSA_ERROR_INVALID_SIGNATURE
* The calculation was perfomed successfully, but the passed
* signature is not a valid signature.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_asymmetric_verify(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length);
#define PSA_RSA_MINIMUM_PADDING_SIZE(alg) \
(PSA_ALG_IS_RSA_OAEP(alg) ? \
2 * PSA_HASH_FINAL_SIZE(PSA_ALG_RSA_OAEP_GET_HASH(alg)) + 1 : \
11 /*PKCS#1v1.5*/)
/**
* \brief Encrypt a short message with a public key.
*
* \param key Key slot containing a public key or an
* asymmetric key pair.
* \param alg An asymmetric encryption algorithm that is
* compatible with the type of \p key.
* \param[in] input The message to encrypt.
* \param input_length Size of the \p input buffer in bytes.
* \param[in] salt A salt or label, if supported by the
* encryption algorithm.
* If the algorithm does not support a
* salt, pass \c NULL.
* If the algorithm supports an optional
* salt and you do not want to pass a salt,
* pass \c NULL.
*
* - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
* supported.
* \param salt_length Size of the \p salt buffer in bytes.
* If \p salt is \c NULL, pass 0.
* \param[out] output Buffer where the encrypted message is to
* be written.
* \param output_size Size of the \p output buffer in bytes.
* \param[out] output_length On success, the number of bytes
* that make up the returned output.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p output buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \p key.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_asymmetric_encrypt(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *output,
size_t output_size,
size_t *output_length);
/**
* \brief Decrypt a short message with a private key.
*
* \param key Key slot containing an asymmetric key pair.
* \param alg An asymmetric encryption algorithm that is
* compatible with the type of \p key.
* \param[in] input The message to decrypt.
* \param input_length Size of the \p input buffer in bytes.
* \param[in] salt A salt or label, if supported by the
* encryption algorithm.
* If the algorithm does not support a
* salt, pass \c NULL.
* If the algorithm supports an optional
* salt and you do not want to pass a salt,
* pass \c NULL.
*
* - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
* supported.
* \param salt_length Size of the \p salt buffer in bytes.
* If \p salt is \c NULL, pass 0.
* \param[out] output Buffer where the decrypted message is to
* be written.
* \param output_size Size of the \c output buffer in bytes.
* \param[out] output_length On success, the number of bytes
* that make up the returned output.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p output buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \p key.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval #PSA_ERROR_INVALID_PADDING
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_asymmetric_decrypt(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *output,
size_t output_size,
size_t *output_length);
/**@}*/
/** \defgroup generators Generators
* @{
*/
/** The type of the state data structure for generators.
*
* Before calling any function on a generator, the application must
* initialize it by any of the following means:
* - Set the structure to all-bits-zero, for example:
* \code
* psa_crypto_generator_t generator;
* memset(&generator, 0, sizeof(generator));
* \endcode
* - Initialize the structure to logical zero values, for example:
* \code
* psa_crypto_generator_t generator = {0};
* \endcode
* - Initialize the structure to the initializer #PSA_CRYPTO_GENERATOR_INIT,
* for example:
* \code
* psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
* \endcode
* - Assign the result of the function psa_crypto_generator_init()
* to the structure, for example:
* \code
* psa_crypto_generator_t generator;
* generator = psa_crypto_generator_init();
* \endcode
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation.
*/
typedef struct psa_crypto_generator_s psa_crypto_generator_t;
/** \def PSA_CRYPTO_GENERATOR_INIT
*
* This macro returns a suitable initializer for a generator object
* of type #psa_crypto_generator_t.
*/
#ifdef __DOXYGEN_ONLY__
/* This is an example definition for documentation purposes.
* Implementations should define a suitable value in `crypto_struct.h`.
*/
#define PSA_CRYPTO_GENERATOR_INIT {0}
#endif
/** Return an initial value for a generator object.
*/
static psa_crypto_generator_t psa_crypto_generator_init(void);
/** Retrieve the current capacity of a generator.
*
* The capacity of a generator is the maximum number of bytes that it can
* return. Reading *N* bytes from a generator reduces its capacity by *N*.
*
* \param[in] generator The generator to query.
* \param[out] capacity On success, the capacity of the generator.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_BAD_STATE
* \retval PSA_ERROR_COMMUNICATION_FAILURE
*/
psa_status_t psa_get_generator_capacity(const psa_crypto_generator_t *generator,
size_t *capacity);
/** Read some data from a generator.
*
* This function reads and returns a sequence of bytes from a generator.
* The data that is read is discarded from the generator. The generator's
* capacity is decreased by the number of bytes read.
*
* \param[in,out] generator The generator object to read from.
* \param[out] output Buffer where the generator output will be
* written.
* \param output_length Number of bytes to output.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_INSUFFICIENT_CAPACITY
* There were fewer than \p output_length bytes
* in the generator. Note that in this case, no
* output is written to the output buffer.
* The generator's capacity is set to 0, thus
* subsequent calls to this function will not
* succeed, even with a smaller output buffer.
* \retval PSA_ERROR_BAD_STATE
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_generator_read(psa_crypto_generator_t *generator,
uint8_t *output,
size_t output_length);
/** Create a symmetric key from data read from a generator.
*
* This function reads a sequence of bytes from a generator and imports
* these bytes as a key.
* The data that is read is discarded from the generator. The generator's
* capacity is decreased by the number of bytes read.
*
* This function is equivalent to calling #psa_generator_read and
* passing the resulting output to #psa_import_key, but
* if the implementation provides an isolation boundary then
* the key material is not exposed outside the isolation boundary.
*
* \param key Slot where the key will be stored. This must be a
* valid slot for a key of the chosen type. It must
* be unoccupied.
* \param type Key type (a \c PSA_KEY_TYPE_XXX value).
* This must be a symmetric key type.
* \param bits Key size in bits.
* \param[in,out] generator The generator object to read from.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_INSUFFICIENT_CAPACITY
* There were fewer than \p output_length bytes
* in the generator. Note that in this case, no
* output is written to the output buffer.
* The generator's capacity is set to 0, thus
* subsequent calls to this function will not
* succeed, even with a smaller output buffer.
* \retval PSA_ERROR_NOT_SUPPORTED
* The key type or key size is not supported, either by the
* implementation in general or in this particular slot.
* \retval PSA_ERROR_BAD_STATE
* \retval PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid.
* \retval PSA_ERROR_OCCUPIED_SLOT
* There is already a key in the specified slot.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_INSUFFICIENT_STORAGE
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_generator_import_key(psa_key_slot_t key,
psa_key_type_t type,
size_t bits,
psa_crypto_generator_t *generator);
/** Abort a generator.
*
* Once a generator has been aborted, its capacity is zero.
* Aborting a generator frees all associated resources except for the
* \c generator structure itself.
*
* This function may be called at any time as long as the generator
* object has been initialized to #PSA_CRYPTO_GENERATOR_INIT, to
* psa_crypto_generator_init() or a zero value. In particular, it is valid
* to call psa_generator_abort() twice, or to call psa_generator_abort()
* on a generator that has not been set up.
*
* Once aborted, the generator object may be called.
*
* \param[in,out] generator The generator to abort.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_BAD_STATE
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_generator_abort(psa_crypto_generator_t *generator);
/**@}*/
/** \defgroup derivation Key derivation
* @{
*/
/** Set up a key derivation operation.
*
* A key derivation algorithm takes three inputs: a secret input \p key and
* two non-secret inputs \p label and p salt.
* The result of this function is a byte generator which can
* be used to produce keys and other cryptographic material.
*
* The role of \p label and \p salt is as follows:
* - For HKDF (#PSA_ALG_HKDF), \p salt is the salt used in the "extract" step
* and \p label is the info string used in the "expand" step.
*
* \param[in,out] generator The generator object to set up. It must
* have been initialized to .
* \param key Slot containing the secret key to use.
* \param alg The key derivation algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_KEY_DERIVATION(\p alg) is true).
* \param[in] salt Salt to use.
* \param salt_length Size of the \p salt buffer in bytes.
* \param[in] label Label to use.
* \param label_length Size of the \p label buffer in bytes.
* \param capacity The maximum number of bytes that the
* generator will be able to provide.
*
* \retval #PSA_SUCCESS
* Success.
* \retval #PSA_ERROR_EMPTY_SLOT
* \retval #PSA_ERROR_NOT_PERMITTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg,
* or \p capacity is too large for the specified algorithm and key.
* \retval #PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a key derivation algorithm.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_key_derivation(psa_crypto_generator_t *generator,
psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *salt,
size_t salt_length,
const uint8_t *label,
size_t label_length,
size_t capacity);
/**@}*/
/** \defgroup random Random generation
* @{
*/
/**
* \brief Generate random bytes.
*
* \warning This function **can** fail! Callers MUST check the return status
* and MUST NOT use the content of the output buffer if the return
* status is not #PSA_SUCCESS.
*
* \note To generate a key, use psa_generate_key() instead.
*
* \param[out] output Output buffer for the generated data.
* \param output_size Number of bytes to generate and output.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_generate_random(uint8_t *output,
size_t output_size);
/** Extra parameters for RSA key generation.
*
* You may pass a pointer to a structure of this type as the \c extra
* parameter to psa_generate_key().
*/
typedef struct {
uint32_t e; /**< Public exponent value. Default: 65537. */
} psa_generate_key_extra_rsa;
/**
* \brief Generate a key or key pair.
*
* \param key Slot where the key will be stored. This must be a
* valid slot for a key of the chosen type. It must
* be unoccupied.
* \param type Key type (a \c PSA_KEY_TYPE_XXX value).
* \param bits Key size in bits.
* \param[in] extra Extra parameters for key generation. The
* interpretation of this parameter depends on
* \p type. All types support \c NULL to use
* default parameters. Implementation that support
* the generation of vendor-specific key types
* that allow extra parameters shall document
* the format of these extra parameters and
* the default values. For standard parameters,
* the meaning of \p extra is as follows:
* - For a symmetric key type (a type such
* that #PSA_KEY_TYPE_IS_ASYMMETRIC(\p type) is
* false), \p extra must be \c NULL.
* - For an elliptic curve key type (a type
* such that #PSA_KEY_TYPE_IS_ECC(\p type) is
* false), \p extra must be \c NULL.
* - For an RSA key (\p type is
* #PSA_KEY_TYPE_RSA_KEYPAIR), \p extra is an
* optional #psa_generate_key_extra_rsa structure
* specifying the public exponent. The
* default public exponent used when \p extra
* is \c NULL is 65537.
* \param extra_size Size of the buffer that \p extra
* points to, in bytes. Note that if \p extra is
* \c NULL then \p extra_size must be zero.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_NOT_SUPPORTED
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_TAMPERING_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_generate_key(psa_key_slot_t key,
psa_key_type_t type,
size_t bits,
const void *extra,
size_t extra_size);
/**@}*/
#ifdef __cplusplus
}
#endif
/* The file "crypto_sizes.h" contains definitions for size calculation
* macros whose definitions are implementation-specific. */
#include "crypto_sizes.h"
/* The file "crypto_struct.h" contains definitions for
* implementation-specific structs that are declared above. */
#include "crypto_struct.h"
/* The file "crypto_extra.h" contains vendor-specific definitions. This
* can include vendor-defined algorithms, extra functions, etc. */
#include "crypto_extra.h"
#endif /* PSA_CRYPTO_H */