mbedtls/tests/suites/test_suite_pk.function
Manuel Pégourié-Gonnard 07018f97d2 Make legacy_or_psa.h public.
As a public header, it should no longer include common.h, just use
build_info.h which is what we actually need anyway.

Signed-off-by: Manuel Pégourié-Gonnard <manuel.pegourie-gonnard@arm.com>
2022-09-16 12:02:48 +02:00

1388 lines
49 KiB
Text

/* BEGIN_HEADER */
#include "mbedtls/pk.h"
/* For error codes */
#include "mbedtls/asn1.h"
#include "mbedtls/base64.h"
#include "mbedtls/ecp.h"
#include "mbedtls/rsa.h"
#include "hash_info.h"
#include "mbedtls/legacy_or_psa.h"
#include <limits.h>
#include <stdint.h>
/* Needed only for test case data under #if defined(MBEDTLS_USE_PSA_CRYPTO),
* but the test code generator requires test case data to be valid C code
* unconditionally (https://github.com/Mbed-TLS/mbedtls/issues/2023). */
#include "psa/crypto.h"
#define RSA_KEY_SIZE 512
#define RSA_KEY_LEN 64
/** Generate a key of the desired type.
*
* \param pk The PK object to fill. It must have been initialized
* with mbedtls_pk_setup().
* \param parameter - For RSA keys, the key size in bits.
* - For EC keys, the curve (\c MBEDTLS_ECP_DP_xxx).
*
* \return The status from the underlying type-specific key
* generation function.
* \return -1 if the key type is not recognized.
*/
static int pk_genkey( mbedtls_pk_context *pk, int parameter )
{
((void) pk);
(void) parameter;
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME)
if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_RSA )
return mbedtls_rsa_gen_key( mbedtls_pk_rsa( *pk ),
mbedtls_test_rnd_std_rand, NULL,
parameter, 3 );
#endif
#if defined(MBEDTLS_ECP_C)
if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY ||
mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY_DH ||
mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECDSA )
{
int ret;
if( ( ret = mbedtls_ecp_group_load( &mbedtls_pk_ec( *pk )->grp,
parameter ) ) != 0 )
return( ret );
return mbedtls_ecp_gen_keypair( &mbedtls_pk_ec( *pk )->grp,
&mbedtls_pk_ec( *pk )->d,
&mbedtls_pk_ec( *pk )->Q,
mbedtls_test_rnd_std_rand, NULL );
}
#endif
return( -1 );
}
#if defined(MBEDTLS_RSA_C)
int mbedtls_rsa_decrypt_func( void *ctx, size_t *olen,
const unsigned char *input, unsigned char *output,
size_t output_max_len )
{
return( mbedtls_rsa_pkcs1_decrypt( (mbedtls_rsa_context *) ctx,
mbedtls_test_rnd_std_rand, NULL,
olen, input, output, output_max_len ) );
}
int mbedtls_rsa_sign_func( void *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
mbedtls_md_type_t md_alg, unsigned int hashlen,
const unsigned char *hash, unsigned char *sig )
{
((void) f_rng);
((void) p_rng);
return( mbedtls_rsa_pkcs1_sign( (mbedtls_rsa_context *) ctx,
mbedtls_test_rnd_std_rand, NULL,
md_alg, hashlen, hash, sig ) );
}
size_t mbedtls_rsa_key_len_func( void *ctx )
{
return( ((const mbedtls_rsa_context *) ctx)->len );
}
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
/*
* Generate an ECC key using PSA and return the key identifier of that key,
* or 0 if the key generation failed.
* The key uses NIST P-256 and is usable for signing with SHA-256.
*/
mbedtls_svc_key_id_t pk_psa_genkey_ecc( void )
{
mbedtls_svc_key_id_t key;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
const psa_key_type_t type =
PSA_KEY_TYPE_ECC_KEY_PAIR( PSA_ECC_FAMILY_SECP_R1 );
const size_t bits = 256;
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
psa_set_key_algorithm( &attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256) );
psa_set_key_type( &attributes, type );
psa_set_key_bits( &attributes, bits );
PSA_ASSERT( psa_generate_key( &attributes, &key ) );
exit:
return( key );
}
/*
* Generate an RSA key using PSA and return the key identifier of that key,
* or 0 if the key generation failed.
*/
mbedtls_svc_key_id_t pk_psa_genkey_rsa( void )
{
mbedtls_svc_key_id_t key;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
const psa_key_type_t type = PSA_KEY_TYPE_RSA_KEY_PAIR;
const size_t bits = 1024;
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH );
psa_set_key_algorithm( &attributes, PSA_ALG_RSA_PKCS1V15_SIGN_RAW );
psa_set_key_type( &attributes, type );
psa_set_key_bits( &attributes, bits );
PSA_ASSERT( psa_generate_key( &attributes, &key ) );
exit:
return( key );
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PK_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE depends_on:MBEDTLS_USE_PSA_CRYPTO */
void pk_psa_utils( int key_is_rsa )
{
mbedtls_pk_context pk, pk2;
mbedtls_svc_key_id_t key;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
const char * const name = "Opaque";
size_t bitlen;
mbedtls_md_type_t md_alg = MBEDTLS_MD_NONE;
unsigned char b1[1], b2[1];
size_t len;
mbedtls_pk_debug_item dbg;
PSA_ASSERT( psa_crypto_init( ) );
mbedtls_pk_init( &pk );
mbedtls_pk_init( &pk2 );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( mbedtls_pk_setup_opaque( &pk, MBEDTLS_SVC_KEY_ID_INIT ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
mbedtls_pk_free( &pk );
mbedtls_pk_init( &pk );
if( key_is_rsa )
{
bitlen = 1024; /* hardcoded in genkey() */
key = pk_psa_genkey_rsa();
}
else
{
bitlen = 256; /* hardcoded in genkey() */
key = pk_psa_genkey_ecc();
}
if( mbedtls_svc_key_id_is_null( key ) )
goto exit;
TEST_ASSERT( mbedtls_pk_setup_opaque( &pk, key ) == 0 );
TEST_ASSERT( mbedtls_pk_get_type( &pk ) == MBEDTLS_PK_OPAQUE );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 );
TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == bitlen );
TEST_ASSERT( mbedtls_pk_get_len( &pk ) == bitlen / 8 );
if( key_is_rsa )
{
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECKEY ) == 0 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) == 0 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_RSA ) == 1 );
}
else
{
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECKEY ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) == 1 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_RSA ) == 0 );
}
/* unsupported operations: verify, decrypt, encrypt */
TEST_ASSERT( mbedtls_pk_verify( &pk, md_alg,
b1, sizeof( b1), b2, sizeof( b2 ) )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
if( key_is_rsa == 0 )
{
TEST_ASSERT( mbedtls_pk_decrypt( &pk, b1, sizeof( b1 ),
b2, &len, sizeof( b2 ),
NULL, NULL )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
}
TEST_ASSERT( mbedtls_pk_encrypt( &pk, b1, sizeof( b1 ),
b2, &len, sizeof( b2 ),
NULL, NULL )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
/* unsupported functions: check_pair, debug */
if( key_is_rsa )
TEST_ASSERT( mbedtls_pk_setup( &pk2,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
else
TEST_ASSERT( mbedtls_pk_setup( &pk2,
mbedtls_pk_info_from_type( MBEDTLS_PK_ECKEY ) ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pk, &pk2,
mbedtls_test_rnd_std_rand, NULL )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
TEST_ASSERT( mbedtls_pk_debug( &pk, &dbg )
== MBEDTLS_ERR_PK_TYPE_MISMATCH );
/* test that freeing the context does not destroy the key */
mbedtls_pk_free( &pk );
TEST_ASSERT( PSA_SUCCESS == psa_get_key_attributes( key, &attributes ) );
TEST_ASSERT( PSA_SUCCESS == psa_destroy_key( key ) );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_pk_free( &pk ); /* redundant except upon error */
mbedtls_pk_free( &pk2 );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_USE_PSA_CRYPTO */
void pk_can_do_ext( int opaque_key, int key_type, int key_usage, int key_alg,
int key_alg2, int parameter, int alg_check, int usage_check,
int result )
{
mbedtls_pk_context pk;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
mbedtls_pk_init( &pk );
if( opaque_key == 1 )
{
psa_set_key_usage_flags( &attributes, key_usage );
psa_set_key_algorithm( &attributes, key_alg );
if( key_alg2 != 0 )
psa_set_key_enrollment_algorithm( &attributes, key_alg2 );
psa_set_key_type( &attributes, key_type );
psa_set_key_bits( &attributes, parameter );
PSA_ASSERT( psa_generate_key( &attributes, &key ) );
if( mbedtls_svc_key_id_is_null( key ) )
goto exit;
TEST_EQUAL( mbedtls_pk_setup_opaque( &pk, key ), 0 );
TEST_EQUAL( mbedtls_pk_get_type( &pk ), MBEDTLS_PK_OPAQUE );
}
else
{
TEST_EQUAL( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( key_type ) ), 0 );
TEST_EQUAL( pk_genkey( &pk, parameter ), 0 );
TEST_EQUAL( mbedtls_pk_get_type( &pk ), key_type );
}
TEST_EQUAL( mbedtls_pk_can_do_ext( &pk, alg_check, usage_check ), result );
exit:
psa_reset_key_attributes( &attributes );
PSA_ASSERT( psa_destroy_key( key ) );
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void valid_parameters( )
{
mbedtls_pk_context pk;
unsigned char buf[1];
size_t len;
void *options = NULL;
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
/* In informational functions, we accept NULL where a context pointer
* is expected because that's what the library has done forever.
* We do not document that NULL is accepted, so we may wish to change
* the behavior in a future version. */
TEST_ASSERT( mbedtls_pk_get_bitlen( NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_get_len( NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_can_do( NULL, MBEDTLS_PK_NONE ) == 0 );
TEST_ASSERT( mbedtls_pk_sign_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ), &len,
mbedtls_test_rnd_std_rand, NULL,
NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_sign_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ), &len,
mbedtls_test_rnd_std_rand, NULL,
NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_sign( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ), &len,
mbedtls_test_rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ),
NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_verify( &pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ) ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options,
&pk,
MBEDTLS_MD_NONE,
NULL, 0,
buf, sizeof( buf ) ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_encrypt( &pk,
NULL, 0,
NULL, &len, 0,
mbedtls_test_rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_decrypt( &pk,
NULL, 0,
NULL, &len, 0,
mbedtls_test_rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#if defined(MBEDTLS_PK_PARSE_C)
TEST_ASSERT( mbedtls_pk_parse_key( &pk, NULL, 0, NULL, 1,
mbedtls_test_rnd_std_rand, NULL ) ==
MBEDTLS_ERR_PK_KEY_INVALID_FORMAT );
TEST_ASSERT( mbedtls_pk_parse_public_key( &pk, NULL, 0 ) ==
MBEDTLS_ERR_PK_KEY_INVALID_FORMAT );
#endif /* MBEDTLS_PK_PARSE_C */
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PK_WRITE_C */
void valid_parameters_pkwrite( data_t *key_data )
{
mbedtls_pk_context pk;
/* For the write tests to be effective, we need a valid key pair. */
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_parse_key( &pk,
key_data->x, key_data->len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_write_key_der( &pk, NULL, 0 ) ==
MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
TEST_ASSERT( mbedtls_pk_write_pubkey_der( &pk, NULL, 0 ) ==
MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
#if defined(MBEDTLS_PEM_WRITE_C)
TEST_ASSERT( mbedtls_pk_write_key_pem( &pk, NULL, 0 ) ==
MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL );
TEST_ASSERT( mbedtls_pk_write_pubkey_pem( &pk, NULL, 0 ) ==
MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL );
#endif /* MBEDTLS_PEM_WRITE_C */
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE */
void pk_utils( int type, int parameter, int bitlen, int len, char * name )
{
mbedtls_pk_context pk;
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( pk_genkey( &pk, parameter ) == 0 );
TEST_ASSERT( (int) mbedtls_pk_get_type( &pk ) == type );
TEST_ASSERT( mbedtls_pk_can_do( &pk, type ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == (unsigned) bitlen );
TEST_ASSERT( mbedtls_pk_get_len( &pk ) == (unsigned) len );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PK_PARSE_C:MBEDTLS_FS_IO */
void mbedtls_pk_check_pair( char * pub_file, char * prv_file, int ret )
{
mbedtls_pk_context pub, prv, alt;
USE_PSA_INIT();
mbedtls_pk_init( &pub );
mbedtls_pk_init( &prv );
mbedtls_pk_init( &alt );
TEST_ASSERT( mbedtls_pk_parse_public_keyfile( &pub, pub_file ) == 0 );
TEST_ASSERT( mbedtls_pk_parse_keyfile( &prv, prv_file, NULL,
mbedtls_test_rnd_std_rand, NULL )
== 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &prv,
mbedtls_test_rnd_std_rand, NULL )
== ret );
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
if( mbedtls_pk_get_type( &prv ) == MBEDTLS_PK_RSA )
{
TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, mbedtls_pk_rsa( prv ),
mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func,
mbedtls_rsa_key_len_func ) == 0 );
TEST_ASSERT( mbedtls_pk_check_pair( &pub, &alt,
mbedtls_test_rnd_std_rand, NULL )
== ret );
}
#endif
mbedtls_pk_free( &pub );
mbedtls_pk_free( &prv );
mbedtls_pk_free( &alt );
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_verify_test_vec( data_t * message_str, int digest, int mod,
char * input_N, char * input_E,
data_t * result_str, int result )
{
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
mbedtls_pk_restart_ctx *rs_ctx = NULL;
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_ctx ctx;
rs_ctx = &ctx;
mbedtls_pk_restart_init( rs_ctx );
// this setting would ensure restart would happen if ECC was used
mbedtls_ecp_set_max_ops( 1 );
#endif
USE_PSA_INIT();
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
rsa->len = mod / 8;
TEST_ASSERT( mbedtls_test_read_mpi( &rsa->N, input_N ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &rsa->E, input_E ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &pk, digest, message_str->x, 0,
result_str->x, mbedtls_pk_get_len( &pk ) ) == result );
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, digest, message_str->x, 0,
result_str->x, mbedtls_pk_get_len( &pk ), rs_ctx ) == result );
exit:
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_free( rs_ctx );
#endif
mbedtls_pk_free( &pk );
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_verify_ext_test_vec( data_t * message_str, int digest,
int mod, char * input_N,
char * input_E, data_t * result_str,
int pk_type, int mgf1_hash_id,
int salt_len, int sig_len,
int result )
{
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
mbedtls_pk_rsassa_pss_options pss_opts;
void *options;
int ret;
USE_PSA_INIT( );
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
rsa->len = mod / 8;
TEST_ASSERT( mbedtls_test_read_mpi( &rsa->N, input_N ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &rsa->E, input_E ) == 0 );
if( mgf1_hash_id < 0 )
{
options = NULL;
}
else
{
options = &pss_opts;
pss_opts.mgf1_hash_id = mgf1_hash_id;
pss_opts.expected_salt_len = salt_len;
}
ret = mbedtls_pk_verify_ext( pk_type, options, &pk,
digest, message_str->x, message_str->len,
result_str->x, sig_len );
#if defined(MBEDTLS_USE_PSA_CRYPTO)
if( result == MBEDTLS_ERR_RSA_INVALID_PADDING )
{
/* Mbed TLS distinguishes "invalid padding" from "valid padding but
* the rest of the signature is invalid". This has little use in
* practice and PSA doesn't report this distinction.
* In this case, PSA returns PSA_ERROR_INVALID_SIGNATURE translated
* to MBEDTLS_ERR_RSA_VERIFY_FAILED.
* However, currently `mbedtls_pk_verify_ext()` may use either the
* PSA or the Mbed TLS API, depending on the PSS options used.
* So, it may return either INVALID_PADDING or INVALID_SIGNATURE.
*/
TEST_ASSERT( ret == result || ret == MBEDTLS_ERR_RSA_VERIFY_FAILED );
}
else
#endif
{
TEST_EQUAL( ret, result );
}
exit:
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECDSA_C */
void pk_ec_test_vec( int type, int id, data_t * key, data_t * hash,
data_t * sig, int ret )
{
mbedtls_pk_context pk;
mbedtls_ecp_keypair *eckey;
mbedtls_pk_init( &pk );
USE_PSA_INIT( );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) );
eckey = mbedtls_pk_ec( pk );
TEST_ASSERT( mbedtls_ecp_group_load( &eckey->grp, id ) == 0 );
TEST_ASSERT( mbedtls_ecp_point_read_binary( &eckey->grp, &eckey->Q,
key->x, key->len ) == 0 );
// MBEDTLS_MD_NONE is used since it will be ignored.
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE,
hash->x, hash->len, sig->x, sig->len ) == ret );
exit:
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE:MBEDTLS_ECDSA_C:MBEDTLS_ECDSA_DETERMINISTIC */
void pk_sign_verify_restart( int pk_type, int grp_id, char *d_str,
char *QX_str, char *QY_str,
int md_alg, data_t *hash, data_t *sig_check,
int max_ops, int min_restart, int max_restart )
{
int ret, cnt_restart;
mbedtls_pk_restart_ctx rs_ctx;
mbedtls_pk_context prv, pub;
unsigned char sig[MBEDTLS_ECDSA_MAX_LEN];
size_t slen;
USE_PSA_INIT();
mbedtls_pk_restart_init( &rs_ctx );
mbedtls_pk_init( &prv );
mbedtls_pk_init( &pub );
memset( sig, 0, sizeof( sig ) );
TEST_ASSERT( mbedtls_pk_setup( &prv, mbedtls_pk_info_from_type( pk_type ) ) == 0 );
TEST_ASSERT( mbedtls_ecp_group_load( &mbedtls_pk_ec( prv )->grp, grp_id ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &mbedtls_pk_ec( prv )->d, d_str ) == 0 );
TEST_ASSERT( mbedtls_pk_setup( &pub, mbedtls_pk_info_from_type( pk_type ) ) == 0 );
TEST_ASSERT( mbedtls_ecp_group_load( &mbedtls_pk_ec( pub )->grp, grp_id ) == 0 );
TEST_ASSERT( mbedtls_ecp_point_read_string( &mbedtls_pk_ec( pub )->Q, 16, QX_str, QY_str ) == 0 );
mbedtls_ecp_set_max_ops( max_ops );
slen = sizeof( sig );
cnt_restart = 0;
do {
ret = mbedtls_pk_sign_restartable( &prv, md_alg, hash->x, hash->len,
sig, sizeof( sig ), &slen,
mbedtls_test_rnd_std_rand, NULL,
&rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart );
TEST_ASSERT( ret == 0 );
TEST_ASSERT( slen == sig_check->len );
TEST_ASSERT( memcmp( sig, sig_check->x, slen ) == 0 );
TEST_ASSERT( cnt_restart >= min_restart );
TEST_ASSERT( cnt_restart <= max_restart );
cnt_restart = 0;
do {
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash->x, hash->len, sig, slen, &rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart );
TEST_ASSERT( ret == 0 );
TEST_ASSERT( cnt_restart >= min_restart );
TEST_ASSERT( cnt_restart <= max_restart );
sig[0]++;
do {
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash->x, hash->len, sig, slen, &rs_ctx );
} while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
TEST_ASSERT( ret != 0 );
sig[0]--;
/* Do we leak memory when aborting? try verify then sign
* This test only makes sense when we actually restart */
if( min_restart > 0 )
{
ret = mbedtls_pk_verify_restartable( &pub, md_alg,
hash->x, hash->len, sig, slen, &rs_ctx );
TEST_ASSERT( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
mbedtls_pk_restart_free( &rs_ctx );
slen = sizeof( sig );
ret = mbedtls_pk_sign_restartable( &prv, md_alg, hash->x, hash->len,
sig, sizeof sig, &slen,
mbedtls_test_rnd_std_rand, NULL,
&rs_ctx );
TEST_ASSERT( ret == MBEDTLS_ERR_ECP_IN_PROGRESS );
}
exit:
mbedtls_pk_restart_free( &rs_ctx );
mbedtls_pk_free( &prv );
mbedtls_pk_free( &pub );
USE_PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA */
void pk_sign_verify( int type, int parameter, int sign_ret, int verify_ret )
{
mbedtls_pk_context pk;
size_t sig_len;
unsigned char hash[32]; // Hard-coded for SHA256
size_t hash_len = sizeof( hash );
unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE];
void *rs_ctx = NULL;
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_ctx ctx;
rs_ctx = &ctx;
mbedtls_pk_restart_init( rs_ctx );
/* This value is large enough that the operation will complete in one run.
* See comments at the top of ecp_test_vect_restart in
* test_suite_ecp.function for estimates of operation counts. */
mbedtls_ecp_set_max_ops( 42000 );
#endif
mbedtls_pk_init( &pk );
USE_PSA_INIT( );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( pk_genkey( &pk, parameter ) == 0 );
TEST_ASSERT( mbedtls_pk_sign_restartable( &pk, MBEDTLS_MD_SHA256,
hash, hash_len,
sig, sizeof sig, &sig_len,
mbedtls_test_rnd_std_rand, NULL,
rs_ctx ) == sign_ret );
if( sign_ret == 0 )
TEST_ASSERT( sig_len <= MBEDTLS_PK_SIGNATURE_MAX_SIZE );
else
sig_len = MBEDTLS_PK_SIGNATURE_MAX_SIZE;
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, hash_len, sig, sig_len ) == verify_ret );
if( verify_ret == 0 )
{
hash[0]++;
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, hash_len, sig, sig_len ) != 0 );
hash[0]--;
sig[0]++;
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, hash_len, sig, sig_len ) != 0 );
sig[0]--;
}
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, hash_len,
sig, sizeof sig, &sig_len,
mbedtls_test_rnd_std_rand,
NULL ) == sign_ret );
if( sign_ret == 0 )
TEST_ASSERT( sig_len <= MBEDTLS_PK_SIGNATURE_MAX_SIZE );
else
sig_len = MBEDTLS_PK_SIGNATURE_MAX_SIZE;
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256,
hash, hash_len, sig, sig_len, rs_ctx ) == verify_ret );
if( verify_ret == 0 )
{
hash[0]++;
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len, rs_ctx ) != 0 );
hash[0]--;
sig[0]++;
TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len, rs_ctx ) != 0 );
sig[0]--;
}
exit:
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
mbedtls_pk_restart_free( rs_ctx );
#endif
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_encrypt_decrypt_test( data_t * message, int mod,
char * input_P, char * input_Q,
char * input_N, char * input_E,
int ret )
{
unsigned char output[300], result[300];
mbedtls_test_rnd_pseudo_info rnd_info;
mbedtls_mpi N, P, Q, E;
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
size_t olen, rlen;
mbedtls_pk_init( &pk );
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) );
memset( output, 0, sizeof( output ) );
USE_PSA_INIT( );
/* encryption test */
/* init pk-rsa context */
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
/* load public key */
rsa->len = mod / 8;
TEST_ASSERT( mbedtls_test_read_mpi( &rsa->N, input_N ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &rsa->E, input_E ) == 0 );
TEST_ASSERT( mbedtls_pk_encrypt( &pk, message->x, message->len,
output, &olen, sizeof( output ),
mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret );
/* decryption test */
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
/* init pk-rsa context */
mbedtls_pk_free( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
/* load public key */
TEST_ASSERT( mbedtls_test_read_mpi( &N, input_N ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &E, input_E ) == 0 );
/* load private key */
TEST_ASSERT( mbedtls_test_read_mpi( &P, input_P ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( rsa, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( rsa ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( rsa ) == 0 );
memset( result, 0, sizeof( result ) );
rlen = 0;
TEST_ASSERT( mbedtls_pk_decrypt( &pk, output, olen,
result, &rlen, sizeof( result ),
mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret );
if( ret == 0 )
{
TEST_ASSERT( rlen == message->len );
TEST_ASSERT( memcmp( result, message->x, rlen ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_decrypt_test_vec( data_t * cipher, int mod,
char * input_P, char * input_Q,
char * input_N, char * input_E,
data_t * clear, int ret )
{
unsigned char output[256];
mbedtls_test_rnd_pseudo_info rnd_info;
mbedtls_mpi N, P, Q, E;
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
size_t olen;
USE_PSA_INIT( );
mbedtls_pk_init( &pk );
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) );
/* init pk-rsa context */
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
rsa = mbedtls_pk_rsa( pk );
/* load public key */
TEST_ASSERT( mbedtls_test_read_mpi( &N, input_N ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &E, input_E ) == 0 );
/* load private key */
TEST_ASSERT( mbedtls_test_read_mpi( &P, input_P ) == 0 );
TEST_ASSERT( mbedtls_test_read_mpi( &Q, input_Q ) == 0 );
TEST_ASSERT( mbedtls_rsa_import( rsa, &N, &P, &Q, NULL, &E ) == 0 );
TEST_ASSERT( mbedtls_rsa_get_len( rsa ) == (size_t) ( mod / 8 ) );
TEST_ASSERT( mbedtls_rsa_complete( rsa ) == 0 );
/* decryption test */
memset( output, 0, sizeof( output ) );
olen = 0;
TEST_ASSERT( mbedtls_pk_decrypt( &pk, cipher->x, cipher->len,
output, &olen, sizeof( output ),
mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret );
if( ret == 0 )
{
TEST_ASSERT( olen == clear->len );
TEST_ASSERT( memcmp( output, clear->x, olen ) == 0 );
}
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_USE_PSA_CRYPTO */
void pk_wrap_rsa_decrypt_test_vec( data_t * cipher, int mod,
char * input_P, char * input_Q,
char * input_N, char * input_E,
data_t * clear, int ret )
{
unsigned char output[256];
mbedtls_test_rnd_pseudo_info rnd_info;
mbedtls_mpi N, P, Q, E;
mbedtls_rsa_context *rsa;
mbedtls_pk_context pk;
mbedtls_svc_key_id_t key_id;
size_t olen;
USE_PSA_INIT( );
mbedtls_pk_init( &pk );
mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P );
mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E );
memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) );
/* init pk-rsa context */
TEST_EQUAL( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ), 0 );
rsa = mbedtls_pk_rsa( pk );
/* load public key */
TEST_EQUAL( mbedtls_test_read_mpi( &N, input_N ), 0 );
TEST_EQUAL( mbedtls_test_read_mpi( &E, input_E ), 0 );
/* load private key */
TEST_EQUAL( mbedtls_test_read_mpi( &P, input_P ), 0 );
TEST_EQUAL( mbedtls_test_read_mpi( &Q, input_Q ), 0 );
TEST_EQUAL( mbedtls_rsa_import( rsa, &N, &P, &Q, NULL, &E ), 0 );
TEST_EQUAL( mbedtls_rsa_get_len( rsa ), (size_t) ( mod / 8 ) );
TEST_EQUAL( mbedtls_rsa_complete( rsa ), 0 );
/* Turn PK context into an opaque one. */
TEST_EQUAL( mbedtls_pk_wrap_as_opaque( &pk, &key_id,
PSA_ALG_RSA_PKCS1V15_CRYPT,
PSA_KEY_USAGE_DECRYPT,
PSA_ALG_NONE ), 0 );
/* decryption test */
memset( output, 0, sizeof( output ) );
olen = 0;
TEST_EQUAL( mbedtls_pk_decrypt( &pk, cipher->x, cipher->len,
output, &olen, sizeof( output ),
mbedtls_test_rnd_pseudo_rand, &rnd_info ), ret );
if( ret == 0 )
{
TEST_EQUAL( olen, clear->len );
TEST_EQUAL( memcmp( output, clear->x, olen ), 0 );
}
TEST_EQUAL( PSA_SUCCESS, psa_destroy_key( key_id ) );
exit:
mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P );
mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E );
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void pk_ec_nocrypt( int type )
{
mbedtls_pk_context pk;
unsigned char output[100];
unsigned char input[100];
mbedtls_test_rnd_pseudo_info rnd_info;
size_t olen = 0;
int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH;
mbedtls_pk_init( &pk );
memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) );
memset( output, 0, sizeof( output ) );
memset( input, 0, sizeof( input ) );
TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 );
TEST_ASSERT( mbedtls_pk_encrypt( &pk, input, sizeof( input ),
output, &olen, sizeof( output ),
mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret );
TEST_ASSERT( mbedtls_pk_decrypt( &pk, input, sizeof( input ),
output, &olen, sizeof( output ),
mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C */
void pk_rsa_overflow( )
{
mbedtls_pk_context pk;
size_t hash_len = SIZE_MAX, sig_len = SIZE_MAX;
unsigned char hash[50], sig[100];
if( SIZE_MAX <= UINT_MAX )
return;
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
#if defined(MBEDTLS_PKCS1_V21)
TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_RSASSA_PSS, NULL, &pk,
MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len ) ==
MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* MBEDTLS_PKCS1_V21 */
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, hash, hash_len,
sig, sig_len ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA );
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_NONE, hash, hash_len,
sig, sizeof sig, &sig_len,
mbedtls_test_rnd_std_rand, NULL )
== MBEDTLS_ERR_PK_BAD_INPUT_DATA );
exit:
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */
void pk_rsa_alt( )
{
/*
* An rsa_alt context can only do private operations (decrypt, sign).
* Test it against the public operations (encrypt, verify) of a
* corresponding rsa context.
*/
mbedtls_rsa_context raw;
mbedtls_pk_context rsa, alt;
mbedtls_pk_debug_item dbg_items[10];
unsigned char hash[50], sig[64];
unsigned char msg[50], ciph[64], test[50];
size_t sig_len, ciph_len, test_len;
int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH;
USE_PSA_INIT( );
mbedtls_rsa_init( &raw );
mbedtls_pk_init( &rsa ); mbedtls_pk_init( &alt );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
memset( msg, 0x2a, sizeof msg );
memset( ciph, 0, sizeof ciph );
memset( test, 0, sizeof test );
/* Initialize PK RSA context with random key */
TEST_ASSERT( mbedtls_pk_setup( &rsa,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( pk_genkey( &rsa, RSA_KEY_SIZE ) == 0 );
/* Extract key to the raw rsa context */
TEST_ASSERT( mbedtls_rsa_copy( &raw, mbedtls_pk_rsa( rsa ) ) == 0 );
/* Initialize PK RSA_ALT context */
TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, (void *) &raw,
mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 );
/* Test administrative functions */
TEST_ASSERT( mbedtls_pk_can_do( &alt, MBEDTLS_PK_RSA ) );
TEST_ASSERT( mbedtls_pk_get_bitlen( &alt ) == RSA_KEY_SIZE );
TEST_ASSERT( mbedtls_pk_get_len( &alt ) == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_get_type( &alt ) == MBEDTLS_PK_RSA_ALT );
TEST_ASSERT( strcmp( mbedtls_pk_get_name( &alt ), "RSA-alt" ) == 0 );
/* Test signature */
#if SIZE_MAX > UINT_MAX
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, SIZE_MAX,
sig, sizeof sig, &sig_len,
mbedtls_test_rnd_std_rand, NULL )
== MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, sizeof hash,
sig, sizeof sig, &sig_len,
mbedtls_test_rnd_std_rand, NULL )
== 0 );
TEST_ASSERT( sig_len == RSA_KEY_LEN );
TEST_ASSERT( mbedtls_pk_verify( &rsa, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == 0 );
/* Test decrypt */
TEST_ASSERT( mbedtls_pk_encrypt( &rsa, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
mbedtls_test_rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( mbedtls_pk_decrypt( &alt, ciph, ciph_len,
test, &test_len, sizeof test,
mbedtls_test_rnd_std_rand, NULL ) == 0 );
TEST_ASSERT( test_len == sizeof msg );
TEST_ASSERT( memcmp( test, msg, test_len ) == 0 );
/* Test forbidden operations */
TEST_ASSERT( mbedtls_pk_encrypt( &alt, msg, sizeof msg,
ciph, &ciph_len, sizeof ciph,
mbedtls_test_rnd_std_rand, NULL ) == ret );
TEST_ASSERT( mbedtls_pk_verify( &alt, MBEDTLS_MD_NONE,
hash, sizeof hash, sig, sig_len ) == ret );
TEST_ASSERT( mbedtls_pk_debug( &alt, dbg_items ) == ret );
exit:
mbedtls_rsa_free( &raw );
mbedtls_pk_free( &rsa ); mbedtls_pk_free( &alt );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_HAS_ALG_SHA_256_VIA_MD_OR_PSA_BASED_ON_USE_PSA:MBEDTLS_USE_PSA_CRYPTO */
void pk_psa_sign( int parameter_arg,
int psa_type_arg, int expected_bits_arg )
{
mbedtls_pk_context pk;
unsigned char hash[32];
unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE];
unsigned char pkey_legacy[200];
unsigned char pkey_psa[200];
unsigned char *pkey_legacy_start, *pkey_psa_start;
psa_algorithm_t alg_psa;
size_t sig_len, klen_legacy, klen_psa;
int ret;
mbedtls_svc_key_id_t key_id;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t expected_type = psa_type_arg;
size_t expected_bits = expected_bits_arg;
/*
* This tests making signatures with a wrapped PSA key:
* - generate a fresh ECP/RSA legacy PK context
* - wrap it in a PK context and make a signature this way
* - extract the public key
* - parse it to a PK context and verify the signature this way
*/
PSA_ASSERT( psa_crypto_init( ) );
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME)
if( PSA_KEY_TYPE_IS_RSA( psa_type_arg ) )
{
/* Create legacy RSA public/private key in PK context. */
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 );
TEST_ASSERT( mbedtls_rsa_gen_key( mbedtls_pk_rsa( pk ),
mbedtls_test_rnd_std_rand, NULL,
parameter_arg, 3 ) == 0 );
alg_psa = PSA_ALG_RSA_PKCS1V15_SIGN( PSA_ALG_SHA_256 );
}
else
#endif /* MBEDTLS_RSA_C && MBEDTLS_GENPRIME */
#if defined(MBEDTLS_ECDSA_C)
if( PSA_KEY_TYPE_IS_ECC_KEY_PAIR( psa_type_arg ) )
{
mbedtls_ecp_group_id grpid = parameter_arg;
/* Create legacy EC public/private key in PK context. */
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( MBEDTLS_PK_ECKEY ) ) == 0 );
TEST_ASSERT( mbedtls_ecp_gen_key( grpid,
(mbedtls_ecp_keypair*) pk.pk_ctx,
mbedtls_test_rnd_std_rand, NULL ) == 0 );
alg_psa = PSA_ALG_ECDSA( PSA_ALG_SHA_256 );
}
else
#endif /* MBEDTLS_ECDSA_C */
{
(void) parameter_arg;
TEST_ASSUME( ! "Opaque PK key not supported in this configuration" );
}
/* Export underlying public key for re-importing in a legacy context. */
ret = mbedtls_pk_write_pubkey_der( &pk, pkey_legacy,
sizeof( pkey_legacy ) );
TEST_ASSERT( ret >= 0 );
klen_legacy = (size_t) ret;
/* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */
pkey_legacy_start = pkey_legacy + sizeof( pkey_legacy ) - klen_legacy;
/* Turn PK context into an opaque one. */
TEST_ASSERT( mbedtls_pk_wrap_as_opaque( &pk, &key_id, alg_psa,
PSA_KEY_USAGE_SIGN_HASH,
PSA_ALG_NONE ) == 0 );
PSA_ASSERT( psa_get_key_attributes( key_id, &attributes ) );
TEST_EQUAL( psa_get_key_type( &attributes ), expected_type );
TEST_EQUAL( psa_get_key_bits( &attributes ), expected_bits );
TEST_EQUAL( psa_get_key_lifetime( &attributes ),
PSA_KEY_LIFETIME_VOLATILE );
memset( hash, 0x2a, sizeof hash );
memset( sig, 0, sizeof sig );
TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sizeof sig, &sig_len,
NULL, NULL ) == 0 );
/* Export underlying public key for re-importing in a psa context. */
ret = mbedtls_pk_write_pubkey_der( &pk, pkey_psa,
sizeof( pkey_psa ) );
TEST_ASSERT( ret >= 0 );
klen_psa = (size_t) ret;
/* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */
pkey_psa_start = pkey_psa + sizeof( pkey_psa ) - klen_psa;
TEST_ASSERT( klen_psa == klen_legacy );
TEST_ASSERT( memcmp( pkey_psa_start, pkey_legacy_start, klen_psa ) == 0 );
mbedtls_pk_free( &pk );
TEST_ASSERT( PSA_SUCCESS == psa_destroy_key( key_id ) );
mbedtls_pk_init( &pk );
TEST_ASSERT( mbedtls_pk_parse_public_key( &pk, pkey_legacy_start,
klen_legacy ) == 0 );
TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256,
hash, sizeof hash, sig, sig_len ) == 0 );
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes( &attributes );
mbedtls_pk_free( &pk );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PSA_CRYPTO_C:MBEDTLS_GENPRIME */
void pk_psa_sign_ext( int pk_type, int parameter, int key_pk_type, int md_alg )
{
/* See the description of pk_genkey() for the description of the `parameter` argument. */
mbedtls_pk_context pk;
size_t sig_len;
unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE];
unsigned char hash[PSA_HASH_MAX_SIZE];
size_t hash_len = mbedtls_hash_info_get_size( md_alg );
void const *options = NULL;
mbedtls_pk_rsassa_pss_options rsassa_pss_options;
memset( hash, 0x2a, sizeof( hash ) );
memset( sig, 0, sizeof( sig ) );
mbedtls_pk_init( &pk );
PSA_INIT();
TEST_ASSERT( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( pk_type ) ) == 0 );
TEST_ASSERT( pk_genkey( &pk, parameter ) == 0 );
TEST_ASSERT( mbedtls_pk_sign_ext( key_pk_type, &pk, md_alg, hash, hash_len,
sig, sizeof( sig ), &sig_len,
mbedtls_test_rnd_std_rand, NULL ) == 0 );
if( key_pk_type == MBEDTLS_PK_RSASSA_PSS )
{
rsassa_pss_options.mgf1_hash_id = md_alg;
TEST_ASSERT( hash_len != 0 );
rsassa_pss_options.expected_salt_len = hash_len;
options = (const void*) &rsassa_pss_options;
}
TEST_ASSERT( mbedtls_pk_verify_ext( key_pk_type, options, &pk, md_alg,
hash, hash_len, sig, sig_len ) == 0 );
exit:
PSA_DONE( );
mbedtls_pk_free( &pk );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_GENPRIME:MBEDTLS_USE_PSA_CRYPTO */
void pk_psa_wrap_sign_ext( int pk_type, int parameter, int key_pk_type, int md_alg )
{
/* See the description of mbedtls_rsa_gen_key() for the description of the `parameter` argument. */
mbedtls_pk_context pk;
size_t sig_len, pkey_len;
mbedtls_svc_key_id_t key_id;
unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE];
unsigned char pkey[PSA_EXPORT_PUBLIC_KEY_MAX_SIZE];
unsigned char *pkey_start;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_algorithm_t psa_md_alg = mbedtls_hash_info_psa_from_md( md_alg );
psa_algorithm_t psa_alg;
size_t hash_len = PSA_HASH_LENGTH( psa_md_alg );
void const *options = NULL;
mbedtls_pk_rsassa_pss_options rsassa_pss_options;
int ret;
mbedtls_pk_init( &pk );
PSA_INIT();
/* Create legacy RSA public/private key in PK context. */
mbedtls_pk_init( &pk );
TEST_EQUAL( mbedtls_pk_setup( &pk,
mbedtls_pk_info_from_type( pk_type ) ), 0 );
TEST_EQUAL( mbedtls_rsa_gen_key( mbedtls_pk_rsa( pk ),
mbedtls_test_rnd_std_rand, NULL,
parameter, 3 ), 0 );
/* Export underlying public key for re-importing in a legacy context. */
ret = mbedtls_pk_write_pubkey_der( &pk, pkey, sizeof( pkey ) );
TEST_ASSERT( ret >= 0 );
pkey_len = (size_t) ret;
/* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */
pkey_start = pkey + sizeof( pkey ) - pkey_len;
if( key_pk_type == MBEDTLS_PK_RSA )
psa_alg = PSA_ALG_RSA_PKCS1V15_SIGN( psa_md_alg );
else if( key_pk_type == MBEDTLS_PK_RSASSA_PSS )
psa_alg = PSA_ALG_RSA_PSS( psa_md_alg );
else
TEST_ASSUME( ! "PK key type not supported in this configuration" );
/* Turn PK context into an opaque one. */
TEST_EQUAL( mbedtls_pk_wrap_as_opaque( &pk, &key_id, psa_alg,
PSA_KEY_USAGE_SIGN_HASH,
PSA_ALG_NONE ), 0 );
memset( hash, 0x2a, sizeof( hash ) );
memset( sig, 0, sizeof( sig ) );
TEST_EQUAL( mbedtls_pk_sign_ext( key_pk_type, &pk, md_alg, hash, hash_len,
sig, sizeof( sig ), &sig_len,
mbedtls_test_rnd_std_rand, NULL ), 0 );
mbedtls_pk_free( &pk );
TEST_EQUAL( PSA_SUCCESS, psa_destroy_key( key_id ) );
mbedtls_pk_init( &pk );
TEST_EQUAL( mbedtls_pk_parse_public_key( &pk, pkey_start, pkey_len ), 0 );
if( key_pk_type == MBEDTLS_PK_RSASSA_PSS )
{
rsassa_pss_options.mgf1_hash_id = md_alg;
TEST_ASSERT( hash_len != 0 );
rsassa_pss_options.expected_salt_len = hash_len;
options = (const void*) &rsassa_pss_options;
}
TEST_EQUAL( mbedtls_pk_verify_ext( key_pk_type, options, &pk, md_alg,
hash, hash_len, sig, sig_len ), 0 );
exit:
mbedtls_pk_free( &pk );
PSA_DONE( );
}
/* END_CASE */