de1114c883
Move the obfuscation of the internal library only returning a delta of ops done into the driver wrapper, thus meaning driver wrapper and API call both return absolute values of work done. Document the differences at the internal implementation level. Signed-off-by: Paul Elliott <paul.elliott@arm.com>
880 lines
37 KiB
C
880 lines
37 KiB
C
/*
|
|
* PSA crypto core internal interfaces
|
|
*/
|
|
/*
|
|
* Copyright The Mbed TLS Contributors
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef PSA_CRYPTO_CORE_H
|
|
#define PSA_CRYPTO_CORE_H
|
|
|
|
#include "mbedtls/build_info.h"
|
|
|
|
#include "psa/crypto.h"
|
|
#include "psa/crypto_se_driver.h"
|
|
|
|
/** Constant-time buffer comparison
|
|
*
|
|
* \param[in] a Left-hand buffer for comparison.
|
|
* \param[in] b Right-hand buffer for comparison.
|
|
* \param n Amount of bytes to compare.
|
|
*
|
|
* \return 0 if the buffer contents are equal, non-zero otherwise
|
|
*/
|
|
static inline int mbedtls_psa_safer_memcmp(
|
|
const uint8_t *a, const uint8_t *b, size_t n)
|
|
{
|
|
size_t i;
|
|
unsigned char diff = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
diff |= a[i] ^ b[i];
|
|
}
|
|
|
|
return diff;
|
|
}
|
|
|
|
/** The data structure representing a key slot, containing key material
|
|
* and metadata for one key.
|
|
*/
|
|
typedef struct {
|
|
psa_core_key_attributes_t attr;
|
|
|
|
/*
|
|
* Number of locks on the key slot held by the library.
|
|
*
|
|
* This counter is incremented by one each time a library function
|
|
* retrieves through one of the dedicated internal API a pointer to the
|
|
* key slot.
|
|
*
|
|
* This counter is decremented by one each time a library function stops
|
|
* accessing the key slot and states it by calling the
|
|
* psa_unlock_key_slot() API.
|
|
*
|
|
* This counter is used to prevent resetting the key slot while the library
|
|
* may access it. For example, such control is needed in the following
|
|
* scenarios:
|
|
* . In case of key slot starvation, all key slots contain the description
|
|
* of a key, and the library asks for the description of a persistent
|
|
* key not present in the key slots, the key slots currently accessed by
|
|
* the library cannot be reclaimed to free a key slot to load the
|
|
* persistent key.
|
|
* . In case of a multi-threaded application where one thread asks to close
|
|
* or purge or destroy a key while it is in used by the library through
|
|
* another thread.
|
|
*/
|
|
size_t lock_count;
|
|
|
|
/* Dynamically allocated key data buffer.
|
|
* Format as specified in psa_export_key(). */
|
|
struct key_data {
|
|
uint8_t *data;
|
|
size_t bytes;
|
|
} key;
|
|
} psa_key_slot_t;
|
|
|
|
/* A mask of key attribute flags used only internally.
|
|
* Currently there aren't any. */
|
|
#define PSA_KA_MASK_INTERNAL_ONLY ( \
|
|
0)
|
|
|
|
/** Test whether a key slot is occupied.
|
|
*
|
|
* A key slot is occupied iff the key type is nonzero. This works because
|
|
* no valid key can have 0 as its key type.
|
|
*
|
|
* \param[in] slot The key slot to test.
|
|
*
|
|
* \return 1 if the slot is occupied, 0 otherwise.
|
|
*/
|
|
static inline int psa_is_key_slot_occupied(const psa_key_slot_t *slot)
|
|
{
|
|
return slot->attr.type != 0;
|
|
}
|
|
|
|
/** Test whether a key slot is locked.
|
|
*
|
|
* A key slot is locked iff its lock counter is strictly greater than 0.
|
|
*
|
|
* \param[in] slot The key slot to test.
|
|
*
|
|
* \return 1 if the slot is locked, 0 otherwise.
|
|
*/
|
|
static inline int psa_is_key_slot_locked(const psa_key_slot_t *slot)
|
|
{
|
|
return slot->lock_count > 0;
|
|
}
|
|
|
|
/** Retrieve flags from psa_key_slot_t::attr::core::flags.
|
|
*
|
|
* \param[in] slot The key slot to query.
|
|
* \param mask The mask of bits to extract.
|
|
*
|
|
* \return The key attribute flags in the given slot,
|
|
* bitwise-anded with \p mask.
|
|
*/
|
|
static inline uint16_t psa_key_slot_get_flags(const psa_key_slot_t *slot,
|
|
uint16_t mask)
|
|
{
|
|
return slot->attr.flags & mask;
|
|
}
|
|
|
|
/** Set flags in psa_key_slot_t::attr::core::flags.
|
|
*
|
|
* \param[in,out] slot The key slot to modify.
|
|
* \param mask The mask of bits to modify.
|
|
* \param value The new value of the selected bits.
|
|
*/
|
|
static inline void psa_key_slot_set_flags(psa_key_slot_t *slot,
|
|
uint16_t mask,
|
|
uint16_t value)
|
|
{
|
|
slot->attr.flags = ((~mask & slot->attr.flags) |
|
|
(mask & value));
|
|
}
|
|
|
|
/** Turn on flags in psa_key_slot_t::attr::core::flags.
|
|
*
|
|
* \param[in,out] slot The key slot to modify.
|
|
* \param mask The mask of bits to set.
|
|
*/
|
|
static inline void psa_key_slot_set_bits_in_flags(psa_key_slot_t *slot,
|
|
uint16_t mask)
|
|
{
|
|
slot->attr.flags |= mask;
|
|
}
|
|
|
|
/** Turn off flags in psa_key_slot_t::attr::core::flags.
|
|
*
|
|
* \param[in,out] slot The key slot to modify.
|
|
* \param mask The mask of bits to clear.
|
|
*/
|
|
static inline void psa_key_slot_clear_bits(psa_key_slot_t *slot,
|
|
uint16_t mask)
|
|
{
|
|
slot->attr.flags &= ~mask;
|
|
}
|
|
|
|
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
|
|
/** Get the SE slot number of a key from the key slot storing its description.
|
|
*
|
|
* \param[in] slot The key slot to query. This must be a key slot storing
|
|
* the description of a key of a dynamically registered
|
|
* secure element, otherwise the behaviour is undefined.
|
|
*/
|
|
static inline psa_key_slot_number_t psa_key_slot_get_slot_number(
|
|
const psa_key_slot_t *slot)
|
|
{
|
|
return *((psa_key_slot_number_t *) (slot->key.data));
|
|
}
|
|
#endif
|
|
|
|
/** Get the description of a key given its identifier and policy constraints
|
|
* and lock it.
|
|
*
|
|
* The key must have allow all the usage flags set in \p usage. If \p alg is
|
|
* nonzero, the key must allow operations with this algorithm. If \p alg is
|
|
* zero, the algorithm is not checked.
|
|
*
|
|
* In case of a persistent key, the function loads the description of the key
|
|
* into a key slot if not already done.
|
|
*
|
|
* On success, the returned key slot is locked. It is the responsibility of
|
|
* the caller to unlock the key slot when it does not access it anymore.
|
|
*/
|
|
psa_status_t psa_get_and_lock_key_slot_with_policy(mbedtls_svc_key_id_t key,
|
|
psa_key_slot_t **p_slot,
|
|
psa_key_usage_t usage,
|
|
psa_algorithm_t alg);
|
|
|
|
/** Completely wipe a slot in memory, including its policy.
|
|
*
|
|
* Persistent storage is not affected.
|
|
*
|
|
* \param[in,out] slot The key slot to wipe.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* Success. This includes the case of a key slot that was
|
|
* already fully wiped.
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
*/
|
|
psa_status_t psa_wipe_key_slot(psa_key_slot_t *slot);
|
|
|
|
/** Try to allocate a buffer to an empty key slot.
|
|
*
|
|
* \param[in,out] slot Key slot to attach buffer to.
|
|
* \param[in] buffer_length Requested size of the buffer.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The buffer has been successfully allocated.
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* Not enough memory was available for allocation.
|
|
* \retval #PSA_ERROR_ALREADY_EXISTS
|
|
* Trying to allocate a buffer to a non-empty key slot.
|
|
*/
|
|
psa_status_t psa_allocate_buffer_to_slot(psa_key_slot_t *slot,
|
|
size_t buffer_length);
|
|
|
|
/** Wipe key data from a slot. Preserves metadata such as the policy. */
|
|
psa_status_t psa_remove_key_data_from_memory(psa_key_slot_t *slot);
|
|
|
|
/** Copy key data (in export format) into an empty key slot.
|
|
*
|
|
* This function assumes that the slot does not contain
|
|
* any key material yet. On failure, the slot content is unchanged.
|
|
*
|
|
* \param[in,out] slot Key slot to copy the key into.
|
|
* \param[in] data Buffer containing the key material.
|
|
* \param data_length Size of the key buffer.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The key has been copied successfully.
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* Not enough memory was available for allocation of the
|
|
* copy buffer.
|
|
* \retval #PSA_ERROR_ALREADY_EXISTS
|
|
* There was other key material already present in the slot.
|
|
*/
|
|
psa_status_t psa_copy_key_material_into_slot(psa_key_slot_t *slot,
|
|
const uint8_t *data,
|
|
size_t data_length);
|
|
|
|
/** Convert an mbed TLS error code to a PSA error code
|
|
*
|
|
* \note This function is provided solely for the convenience of
|
|
* Mbed TLS and may be removed at any time without notice.
|
|
*
|
|
* \param ret An mbed TLS-thrown error code
|
|
*
|
|
* \return The corresponding PSA error code
|
|
*/
|
|
psa_status_t mbedtls_to_psa_error(int ret);
|
|
|
|
/** Import a key in binary format.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* import_key entry point. This function behaves as an import_key
|
|
* entry point as defined in the PSA driver interface specification for
|
|
* transparent drivers.
|
|
*
|
|
* \param[in] attributes The attributes for the key to import.
|
|
* \param[in] data The buffer containing the key data in import
|
|
* format.
|
|
* \param[in] data_length Size of the \p data buffer in bytes.
|
|
* \param[out] key_buffer The buffer to contain the key data in output
|
|
* format upon successful return.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes. This
|
|
* size is greater or equal to \p data_length.
|
|
* \param[out] key_buffer_length The length of the data written in \p
|
|
* key_buffer in bytes.
|
|
* \param[out] bits The key size in number of bits.
|
|
*
|
|
* \retval #PSA_SUCCESS The key was imported successfully.
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* The key data is not correctly formatted.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
*/
|
|
psa_status_t psa_import_key_into_slot(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *data, size_t data_length,
|
|
uint8_t *key_buffer, size_t key_buffer_size,
|
|
size_t *key_buffer_length, size_t *bits);
|
|
|
|
/** Export a key in binary format
|
|
*
|
|
* \note The signature of this function is that of a PSA driver export_key
|
|
* entry point. This function behaves as an export_key entry point as
|
|
* defined in the PSA driver interface specification.
|
|
*
|
|
* \param[in] attributes The attributes for the key to export.
|
|
* \param[in] key_buffer Material or context of the key to export.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[out] data Buffer where the key data is to be written.
|
|
* \param[in] data_size Size of the \p data buffer in bytes.
|
|
* \param[out] data_length On success, the number of bytes written in
|
|
* \p data
|
|
*
|
|
* \retval #PSA_SUCCESS The key was exported successfully.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
|
|
* \retval #PSA_ERROR_HARDWARE_FAILURE
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
* \retval #PSA_ERROR_STORAGE_FAILURE
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
*/
|
|
psa_status_t psa_export_key_internal(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
uint8_t *data, size_t data_size, size_t *data_length);
|
|
|
|
/** Export a public key or the public part of a key pair in binary format.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* export_public_key entry point. This function behaves as an
|
|
* export_public_key entry point as defined in the PSA driver interface
|
|
* specification.
|
|
*
|
|
* \param[in] attributes The attributes for the key to export.
|
|
* \param[in] key_buffer Material or context of the key to export.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[out] data Buffer where the key data is to be written.
|
|
* \param[in] data_size Size of the \p data buffer in bytes.
|
|
* \param[out] data_length On success, the number of bytes written in
|
|
* \p data
|
|
*
|
|
* \retval #PSA_SUCCESS The public key was exported successfully.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
|
|
* \retval #PSA_ERROR_HARDWARE_FAILURE
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
* \retval #PSA_ERROR_STORAGE_FAILURE
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
*/
|
|
psa_status_t psa_export_public_key_internal(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
uint8_t *data, size_t data_size, size_t *data_length);
|
|
|
|
/**
|
|
* \brief Generate a key.
|
|
*
|
|
* \note The signature of the function is that of a PSA driver generate_key
|
|
* entry point.
|
|
*
|
|
* \param[in] attributes The attributes for the key to generate.
|
|
* \param[out] key_buffer Buffer where the key data is to be written.
|
|
* \param[in] key_buffer_size Size of \p key_buffer in bytes.
|
|
* \param[out] key_buffer_length On success, the number of bytes written in
|
|
* \p key_buffer.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The key was generated successfully.
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* Key size in bits or type not supported.
|
|
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
|
|
* The size of \p key_buffer is too small.
|
|
*/
|
|
psa_status_t psa_generate_key_internal(const psa_key_attributes_t *attributes,
|
|
uint8_t *key_buffer,
|
|
size_t key_buffer_size,
|
|
size_t *key_buffer_length);
|
|
|
|
/** Sign a message with a private key. For hash-and-sign algorithms,
|
|
* this includes the hashing step.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* sign_message entry point. This function behaves as a sign_message
|
|
* entry point as defined in the PSA driver interface specification for
|
|
* transparent drivers.
|
|
*
|
|
* \note This function will call the driver for psa_sign_hash
|
|
* and go through driver dispatch again.
|
|
*
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the key context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[in] alg A signature algorithm that is compatible with
|
|
* the type of the key.
|
|
* \param[in] input The input message to sign.
|
|
* \param[in] input_length Size of the \p input buffer in bytes.
|
|
* \param[out] signature Buffer where the signature is to be written.
|
|
* \param[in] signature_size Size of the \p signature buffer in bytes.
|
|
* \param[out] signature_length On success, the number of bytes
|
|
* that make up the returned signature value.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
|
|
* The size of the \p signature buffer is too small. You can
|
|
* determine a sufficient buffer size by calling
|
|
* #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
|
|
* where \c key_type and \c key_bits are the type and bit-size
|
|
* respectively of the key.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
|
|
*/
|
|
psa_status_t psa_sign_message_builtin(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
psa_algorithm_t alg, const uint8_t *input, size_t input_length,
|
|
uint8_t *signature, size_t signature_size, size_t *signature_length);
|
|
|
|
/** Verify the signature of a message with a public key, using
|
|
* a hash-and-sign verification algorithm.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* verify_message entry point. This function behaves as a verify_message
|
|
* entry point as defined in the PSA driver interface specification for
|
|
* transparent drivers.
|
|
*
|
|
* \note This function will call the driver for psa_verify_hash
|
|
* and go through driver dispatch again.
|
|
*
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the key context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[in] alg A signature algorithm that is compatible with
|
|
* the type of the key.
|
|
* \param[in] input The message whose signature is to be verified.
|
|
* \param[in] input_length Size of the \p input buffer in bytes.
|
|
* \param[in] signature Buffer containing the signature to verify.
|
|
* \param[in] signature_length Size of the \p signature buffer in bytes.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The signature is valid.
|
|
* \retval #PSA_ERROR_INVALID_SIGNATURE
|
|
* The calculation was performed successfully, but the passed
|
|
* signature is not a valid signature.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
*/
|
|
psa_status_t psa_verify_message_builtin(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
psa_algorithm_t alg, const uint8_t *input, size_t input_length,
|
|
const uint8_t *signature, size_t signature_length);
|
|
|
|
/** Sign an already-calculated hash with a private key.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* sign_hash entry point. This function behaves as a sign_hash
|
|
* entry point as defined in the PSA driver interface specification for
|
|
* transparent drivers.
|
|
*
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the key context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[in] alg A signature algorithm that is compatible with
|
|
* the type of the key.
|
|
* \param[in] hash The hash or message to sign.
|
|
* \param[in] hash_length Size of the \p hash buffer in bytes.
|
|
* \param[out] signature Buffer where the signature is to be written.
|
|
* \param[in] signature_size Size of the \p signature buffer in bytes.
|
|
* \param[out] signature_length On success, the number of bytes
|
|
* that make up the returned signature value.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
|
|
* The size of the \p signature buffer is too small. You can
|
|
* determine a sufficient buffer size by calling
|
|
* #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
|
|
* where \c key_type and \c key_bits are the type and bit-size
|
|
* respectively of the key.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
|
|
*/
|
|
psa_status_t psa_sign_hash_builtin(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
|
|
uint8_t *signature, size_t signature_size, size_t *signature_length);
|
|
|
|
/**
|
|
* \brief Verify the signature a hash or short message using a public key.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* verify_hash entry point. This function behaves as a verify_hash
|
|
* entry point as defined in the PSA driver interface specification for
|
|
* transparent drivers.
|
|
*
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the key context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[in] alg A signature algorithm that is compatible with
|
|
* the type of the key.
|
|
* \param[in] hash The hash or message whose signature is to be
|
|
* verified.
|
|
* \param[in] hash_length Size of the \p hash buffer in bytes.
|
|
* \param[in] signature Buffer containing the signature to verify.
|
|
* \param[in] signature_length Size of the \p signature buffer in bytes.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The signature is valid.
|
|
* \retval #PSA_ERROR_INVALID_SIGNATURE
|
|
* The calculation was performed successfully, but the passed
|
|
* signature is not a valid signature.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
*/
|
|
psa_status_t psa_verify_hash_builtin(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
psa_algorithm_t alg, const uint8_t *hash, size_t hash_length,
|
|
const uint8_t *signature, size_t signature_length);
|
|
|
|
/**
|
|
* \brief Validate the key bit size for unstructured keys.
|
|
*
|
|
* \note Check that the bit size is acceptable for a given key type for
|
|
* unstructured keys.
|
|
*
|
|
* \param[in] type The key type
|
|
* \param[in] bits The number of bits of the key
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The key type and size are valid.
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* The size in bits of the key is not valid.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* The type and/or the size in bits of the key or the combination of
|
|
* the two is not supported.
|
|
*/
|
|
psa_status_t psa_validate_unstructured_key_bit_size(psa_key_type_t type,
|
|
size_t bits);
|
|
|
|
/** Perform a key agreement and return the raw shared secret, using
|
|
built-in raw key agreement functions.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* key_agreement entry point. This function behaves as a key_agreement
|
|
* entry point as defined in the PSA driver interface specification for
|
|
* transparent drivers.
|
|
*
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the private key
|
|
* context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in
|
|
* bytes.
|
|
* \param[in] alg A key agreement algorithm that is
|
|
* compatible with the type of the key.
|
|
* \param[in] peer_key The buffer containing the key context
|
|
* of the peer's public key.
|
|
* \param[in] peer_key_length Size of the \p peer_key buffer in
|
|
* bytes.
|
|
* \param[out] shared_secret The buffer to which the shared secret
|
|
* is to be written.
|
|
* \param[in] shared_secret_size Size of the \p shared_secret buffer in
|
|
* bytes.
|
|
* \param[out] shared_secret_length On success, the number of bytes that make
|
|
* up the returned shared secret.
|
|
* \retval #PSA_SUCCESS
|
|
* Success. Shared secret successfully calculated.
|
|
* \retval #PSA_ERROR_INVALID_HANDLE
|
|
* \retval #PSA_ERROR_NOT_PERMITTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \p alg is not a key agreement algorithm, or
|
|
* \p private_key is not compatible with \p alg,
|
|
* or \p peer_key is not valid for \p alg or not compatible with
|
|
* \p private_key.
|
|
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
|
|
* \p shared_secret_size is too small
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \p alg is not a supported key agreement algorithm.
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
|
|
* \retval #PSA_ERROR_HARDWARE_FAILURE
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
* \retval #PSA_ERROR_STORAGE_FAILURE
|
|
* \retval #PSA_ERROR_BAD_STATE
|
|
*/
|
|
psa_status_t psa_key_agreement_raw_builtin(
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer,
|
|
size_t key_buffer_size,
|
|
psa_algorithm_t alg,
|
|
const uint8_t *peer_key,
|
|
size_t peer_key_length,
|
|
uint8_t *shared_secret,
|
|
size_t shared_secret_size,
|
|
size_t *shared_secret_length);
|
|
|
|
/**
|
|
* \brief Set the maximum number of ops allowed to be executed by an
|
|
* interruptible function in a single call.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* interruptible_set_max_ops entry point. This function behaves as an
|
|
* interruptible_set_max_ops entry point as defined in the PSA driver
|
|
* interface specification for transparent drivers.
|
|
*
|
|
* \param[in] max_ops The maximum number of ops to be executed in a
|
|
* single call, this can be a number from 0 to
|
|
* #PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED, where 0
|
|
* is obviously the least amount of work done per
|
|
* call.
|
|
*/
|
|
void mbedtls_psa_interruptible_set_max_ops(uint32_t max_ops);
|
|
|
|
/**
|
|
* \brief Get the maximum number of ops allowed to be executed by an
|
|
* interruptible function in a single call.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* interruptible_get_max_ops entry point. This function behaves as an
|
|
* interruptible_get_max_ops entry point as defined in the PSA driver
|
|
* interface specification for transparent drivers.
|
|
*
|
|
* \return Maximum number of ops allowed to be executed
|
|
* by an interruptible function in a single call.
|
|
*/
|
|
uint32_t mbedtls_psa_interruptible_get_max_ops(void);
|
|
|
|
/**
|
|
* \brief Get the number of ops that a hash signing operation has taken for the
|
|
* previous call. If no call or work has taken place, this will return
|
|
* zero.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* sign_get_num_ops entry point, however it differs in behaviour from the
|
|
* driver function in that this function returns a delta of work done in
|
|
* the last call rather than all of the ops done ever by the whole
|
|
* operation, due to internal implementation differences.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_sign_hash_interruptible_operation_t
|
|
* to use. This must be initialized first.
|
|
*
|
|
* \return Number of ops that were completed
|
|
* in the last call to \c
|
|
* mbedtls_psa_sign_hash_complete().
|
|
*/
|
|
uint32_t mbedtls_psa_sign_hash_get_num_ops(
|
|
const mbedtls_psa_sign_hash_interruptible_operation_t *operation);
|
|
|
|
/**
|
|
* \brief Get the number of ops that a hash verification operation has taken for
|
|
* the previous call. If no call or work has taken place, this will
|
|
* return zero.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* verify_get_num_ops entry point however it differs in behaviour from the
|
|
* driver function in that this function returns a delta of work done in
|
|
* the last call rather than all of the ops done ever by the whole
|
|
* operation, due to internal implementation differences.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_verify_hash_interruptible_operation_t
|
|
* to use. This must be initialized first.
|
|
*
|
|
* \return Number of ops that were completed
|
|
* in the last call to \c
|
|
* mbedtls_psa_verify_hash_complete().
|
|
*/
|
|
uint32_t mbedtls_psa_verify_hash_get_num_ops(
|
|
const mbedtls_psa_verify_hash_interruptible_operation_t *operation);
|
|
|
|
/**
|
|
* \brief Start signing a hash or short message with a private key, in an
|
|
* interruptible manner.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* sign_hash_start entry point. This function behaves as a
|
|
* sign_hash_start entry point as defined in the PSA driver interface
|
|
* specification for transparent drivers.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_sign_hash_interruptible_operation_t
|
|
* to use. This must be initialized first.
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the key context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[in] alg A signature algorithm that is compatible with
|
|
* the type of the key.
|
|
* \param[in] hash The hash or message to sign.
|
|
* \param hash_length Size of the \p hash buffer in bytes.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The operation started successfully - call \c psa_sign_hash_complete()
|
|
* with the same context to complete the operation
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* An unsupported, incorrectly formatted or incorrect type of key was
|
|
* used.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED Either no internal interruptible operations
|
|
* are currently supported, or the key type is currently unsupported.
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* There was insufficient memory either to load the key representation,
|
|
* or to store the hash.
|
|
*/
|
|
psa_status_t mbedtls_psa_sign_hash_start(
|
|
mbedtls_psa_sign_hash_interruptible_operation_t *operation,
|
|
const psa_key_attributes_t *attributes, const uint8_t *key_buffer,
|
|
size_t key_buffer_size, psa_algorithm_t alg,
|
|
const uint8_t *hash, size_t hash_length);
|
|
|
|
/**
|
|
* \brief Continue and eventually complete the action of signing a hash or
|
|
* short message with a private key, in an interruptible manner.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* sign_hash_complete entry point. This function behaves as a
|
|
* sign_hash_complete entry point as defined in the PSA driver interface
|
|
* specification for transparent drivers.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_sign_hash_interruptible_operation_t
|
|
* to use. This must be initialized first.
|
|
*
|
|
* \param[out] signature Buffer where the signature is to be written.
|
|
* \param signature_size Size of the \p signature buffer in bytes. This
|
|
* must be appropriate for the selected
|
|
* algorithm and key.
|
|
* \param[out] signature_length On success, the number of bytes that make up
|
|
* the returned signature value.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* Operation completed successfully
|
|
*
|
|
* \retval #PSA_OPERATION_INCOMPLETE
|
|
* Operation was interrupted due to the setting of \c
|
|
* psa_interruptible_set_max_ops(), there is still work to be done,
|
|
* please call this function again with the same operation object.
|
|
*
|
|
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
|
|
* The size of the \p signature buffer is too small. You can
|
|
* determine a sufficient buffer size by calling
|
|
* #PSA_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg)
|
|
* where \c key_type and \c key_bits are the type and bit-size
|
|
* respectively of \p key.
|
|
*
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* \retval #PSA_ERROR_CORRUPTION_DETECTED
|
|
* \retval #PSA_ERROR_INSUFFICIENT_ENTROPY
|
|
*/
|
|
psa_status_t mbedtls_psa_sign_hash_complete(
|
|
mbedtls_psa_sign_hash_interruptible_operation_t *operation,
|
|
uint8_t *signature, size_t signature_size,
|
|
size_t *signature_length);
|
|
|
|
/**
|
|
* \brief Abort a sign hash operation.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver sign_hash_abort
|
|
* entry point. This function behaves as a sign_hash_abort entry point as
|
|
* defined in the PSA driver interface specification for transparent
|
|
* drivers.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_sign_hash_interruptible_operation_t
|
|
* to abort.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The operation was aborted successfully.
|
|
*/
|
|
psa_status_t mbedtls_psa_sign_hash_abort(
|
|
mbedtls_psa_sign_hash_interruptible_operation_t *operation);
|
|
|
|
/**
|
|
* \brief Start reading and verifying a hash or short message, in an
|
|
* interruptible manner.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* verify_hash_start entry point. This function behaves as a
|
|
* verify_hash_start entry point as defined in the PSA driver interface
|
|
* specification for transparent drivers.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_verify_hash_interruptible_operation_t
|
|
* to use. This must be initialized first.
|
|
* \param[in] attributes The attributes of the key to use for the
|
|
* operation.
|
|
* \param[in] key_buffer The buffer containing the key context.
|
|
* \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
|
|
* \param[in] alg A signature algorithm that is compatible with
|
|
* the type of the key.
|
|
* \param[in] hash The hash whose signature is to be verified.
|
|
* \param hash_length Size of the \p hash buffer in bytes.
|
|
* \param[in] signature Buffer containing the signature to verify.
|
|
* \param signature_length Size of the \p signature buffer in bytes.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The operation started successfully - call \c psa_sign_hash_complete()
|
|
* with the same context to complete the operation
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* An unsupported or incorrect type of key was used.
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* Either no internal interruptible operations are currently supported,
|
|
* or the key type is currently unsupported.
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
* There was insufficient memory either to load the key representation,
|
|
* or to store the hash.
|
|
*/
|
|
psa_status_t mbedtls_psa_verify_hash_start(
|
|
mbedtls_psa_verify_hash_interruptible_operation_t *operation,
|
|
const psa_key_attributes_t *attributes,
|
|
const uint8_t *key_buffer, size_t key_buffer_size,
|
|
psa_algorithm_t alg,
|
|
const uint8_t *hash, size_t hash_length,
|
|
const uint8_t *signature, size_t signature_length);
|
|
|
|
/**
|
|
* \brief Continue and eventually complete the action of signing a hash or
|
|
* short message with a private key, in an interruptible manner.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* sign_hash_complete entry point. This function behaves as a
|
|
* sign_hash_complete entry point as defined in the PSA driver interface
|
|
* specification for transparent drivers.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_sign_hash_interruptible_operation_t
|
|
* to use. This must be initialized first.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* Operation completed successfully, and the passed signature is valid.
|
|
*
|
|
* \retval #PSA_OPERATION_INCOMPLETE
|
|
* Operation was interrupted due to the setting of \c
|
|
* psa_interruptible_set_max_ops(), there is still work to be done,
|
|
* please call this function again with the same operation object.
|
|
*
|
|
* \retval #PSA_ERROR_INVALID_SIGNATURE
|
|
* The calculation was performed successfully, but the passed
|
|
* signature is not a valid signature.
|
|
*
|
|
* \retval #PSA_ERROR_NOT_SUPPORTED
|
|
* \retval #PSA_ERROR_INVALID_ARGUMENT
|
|
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
|
|
*/
|
|
psa_status_t mbedtls_psa_verify_hash_complete(
|
|
mbedtls_psa_verify_hash_interruptible_operation_t *operation);
|
|
|
|
/**
|
|
* \brief Abort a verify signed hash operation.
|
|
*
|
|
* \note The signature of this function is that of a PSA driver
|
|
* verify_hash_abort entry point. This function behaves as a
|
|
* verify_hash_abort entry point as defined in the PSA driver interface
|
|
* specification for transparent drivers.
|
|
*
|
|
* \param[in] operation The \c
|
|
* mbedtls_psa_verify_hash_interruptible_operation_t
|
|
* to abort.
|
|
*
|
|
* \retval #PSA_SUCCESS
|
|
* The operation was aborted successfully.
|
|
*/
|
|
psa_status_t mbedtls_psa_verify_hash_abort(
|
|
mbedtls_psa_verify_hash_interruptible_operation_t *operation);
|
|
|
|
#endif /* PSA_CRYPTO_CORE_H */
|