mbedtls/tests/suites/test_suite_psa_crypto.function
Gilles Peskine d8c4549246
Merge pull request #7432 from oberon-microsystems/fix-test-ecjpake-to-pms-dependency
Fix derive_ecjpake_to_pms dependency in PSA crypto test
2023-07-17 11:05:40 +02:00

10300 lines
382 KiB
C

/* BEGIN_HEADER */
#include <stdint.h>
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#include "mbedtls/oid.h"
#include "common.h"
/* For MBEDTLS_CTR_DRBG_MAX_REQUEST, knowing that psa_generate_random()
* uses mbedtls_ctr_drbg internally. */
#include "mbedtls/ctr_drbg.h"
#include "psa/crypto.h"
#include "psa_crypto_slot_management.h"
/* For psa_can_do_hash() */
#include "psa_crypto_core.h"
#include "test/asn1_helpers.h"
#include "test/psa_crypto_helpers.h"
#include "test/psa_exercise_key.h"
#if defined(PSA_CRYPTO_DRIVER_TEST)
#include "test/drivers/test_driver.h"
#define TEST_DRIVER_LOCATION PSA_CRYPTO_TEST_DRIVER_LOCATION
#else
#define TEST_DRIVER_LOCATION 0x7fffff
#endif
/* If this comes up, it's a bug in the test code or in the test data. */
#define UNUSED 0xdeadbeef
/* Assert that an operation is (not) active.
* This serves as a proxy for checking if the operation is aborted. */
#define ASSERT_OPERATION_IS_ACTIVE(operation) TEST_ASSERT(operation.id != 0)
#define ASSERT_OPERATION_IS_INACTIVE(operation) TEST_ASSERT(operation.id == 0)
#if defined(PSA_WANT_ALG_JPAKE)
int ecjpake_operation_setup(psa_pake_operation_t *operation,
psa_pake_cipher_suite_t *cipher_suite,
psa_pake_role_t role,
mbedtls_svc_key_id_t key,
size_t key_available)
{
PSA_ASSERT(psa_pake_abort(operation));
PSA_ASSERT(psa_pake_setup(operation, cipher_suite));
PSA_ASSERT(psa_pake_set_role(operation, role));
if (key_available) {
PSA_ASSERT(psa_pake_set_password_key(operation, key));
}
return 0;
exit:
return 1;
}
#endif
/** An invalid export length that will never be set by psa_export_key(). */
static const size_t INVALID_EXPORT_LENGTH = ~0U;
/** Test if a buffer contains a constant byte value.
*
* `mem_is_char(buffer, c, size)` is true after `memset(buffer, c, size)`.
*
* \param buffer Pointer to the beginning of the buffer.
* \param c Expected value of every byte.
* \param size Size of the buffer in bytes.
*
* \return 1 if the buffer is all-bits-zero.
* \return 0 if there is at least one nonzero byte.
*/
static int mem_is_char(void *buffer, unsigned char c, size_t size)
{
size_t i;
for (i = 0; i < size; i++) {
if (((unsigned char *) buffer)[i] != c) {
return 0;
}
}
return 1;
}
#if defined(MBEDTLS_ASN1_WRITE_C)
/* Write the ASN.1 INTEGER with the value 2^(bits-1)+x backwards from *p. */
static int asn1_write_10x(unsigned char **p,
unsigned char *start,
size_t bits,
unsigned char x)
{
int ret;
int len = bits / 8 + 1;
if (bits == 0) {
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
if (bits <= 8 && x >= 1 << (bits - 1)) {
return MBEDTLS_ERR_ASN1_INVALID_DATA;
}
if (*p < start || *p - start < (ptrdiff_t) len) {
return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
}
*p -= len;
(*p)[len-1] = x;
if (bits % 8 == 0) {
(*p)[1] |= 1;
} else {
(*p)[0] |= 1 << (bits % 8);
}
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,
MBEDTLS_ASN1_INTEGER));
return len;
}
static int construct_fake_rsa_key(unsigned char *buffer,
size_t buffer_size,
unsigned char **p,
size_t bits,
int keypair)
{
size_t half_bits = (bits + 1) / 2;
int ret;
int len = 0;
/* Construct something that looks like a DER encoding of
* as defined by PKCS#1 v2.2 (RFC 8017) section A.1.2:
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* otherPrimeInfos OtherPrimeInfos OPTIONAL
* }
* Or, for a public key, the same structure with only
* version, modulus and publicExponent.
*/
*p = buffer + buffer_size;
if (keypair) {
MBEDTLS_ASN1_CHK_ADD(len, /* pq */
asn1_write_10x(p, buffer, half_bits, 1));
MBEDTLS_ASN1_CHK_ADD(len, /* dq */
asn1_write_10x(p, buffer, half_bits, 1));
MBEDTLS_ASN1_CHK_ADD(len, /* dp */
asn1_write_10x(p, buffer, half_bits, 1));
MBEDTLS_ASN1_CHK_ADD(len, /* q */
asn1_write_10x(p, buffer, half_bits, 1));
MBEDTLS_ASN1_CHK_ADD(len, /* p != q to pass mbedtls sanity checks */
asn1_write_10x(p, buffer, half_bits, 3));
MBEDTLS_ASN1_CHK_ADD(len, /* d */
asn1_write_10x(p, buffer, bits, 1));
}
MBEDTLS_ASN1_CHK_ADD(len, /* e = 65537 */
asn1_write_10x(p, buffer, 17, 1));
MBEDTLS_ASN1_CHK_ADD(len, /* n */
asn1_write_10x(p, buffer, bits, 1));
if (keypair) {
MBEDTLS_ASN1_CHK_ADD(len, /* version = 0 */
mbedtls_asn1_write_int(p, buffer, 0));
}
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buffer, len));
{
const unsigned char tag =
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE;
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buffer, tag));
}
return len;
}
#endif /* MBEDTLS_ASN1_WRITE_C */
int exercise_mac_setup(psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
psa_algorithm_t alg,
psa_mac_operation_t *operation,
psa_status_t *status)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_bytes, key_length, &key));
*status = psa_mac_sign_setup(operation, key, alg);
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT(psa_mac_abort(operation));
/* If setup failed, reproduce the failure, so that the caller can
* test the resulting state of the operation object. */
if (*status != PSA_SUCCESS) {
TEST_EQUAL(psa_mac_sign_setup(operation, key, alg), *status);
}
psa_destroy_key(key);
return 1;
exit:
psa_destroy_key(key);
return 0;
}
int exercise_cipher_setup(psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
psa_algorithm_t alg,
psa_cipher_operation_t *operation,
psa_status_t *status)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_bytes, key_length, &key));
*status = psa_cipher_encrypt_setup(operation, key, alg);
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT(psa_cipher_abort(operation));
/* If setup failed, reproduce the failure, so that the caller can
* test the resulting state of the operation object. */
if (*status != PSA_SUCCESS) {
TEST_EQUAL(psa_cipher_encrypt_setup(operation, key, alg),
*status);
}
psa_destroy_key(key);
return 1;
exit:
psa_destroy_key(key);
return 0;
}
static int test_operations_on_invalid_key(mbedtls_svc_key_id_t key)
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key_id = mbedtls_svc_key_id_make(1, 0x6964);
uint8_t buffer[1];
size_t length;
int ok = 0;
psa_set_key_id(&attributes, key_id);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, PSA_ALG_CTR);
psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);
TEST_EQUAL(psa_get_key_attributes(key, &attributes),
PSA_ERROR_INVALID_HANDLE);
TEST_EQUAL(
MBEDTLS_SVC_KEY_ID_GET_KEY_ID(psa_get_key_id(&attributes)), 0);
TEST_EQUAL(
MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(psa_get_key_id(&attributes)), 0);
TEST_EQUAL(psa_get_key_lifetime(&attributes), 0);
TEST_EQUAL(psa_get_key_usage_flags(&attributes), 0);
TEST_EQUAL(psa_get_key_algorithm(&attributes), 0);
TEST_EQUAL(psa_get_key_type(&attributes), 0);
TEST_EQUAL(psa_get_key_bits(&attributes), 0);
TEST_EQUAL(psa_export_key(key, buffer, sizeof(buffer), &length),
PSA_ERROR_INVALID_HANDLE);
TEST_EQUAL(psa_export_public_key(key,
buffer, sizeof(buffer), &length),
PSA_ERROR_INVALID_HANDLE);
ok = 1;
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
return ok;
}
/* Assert that a key isn't reported as having a slot number. */
#if defined(MBEDTLS_PSA_CRYPTO_SE_C)
#define ASSERT_NO_SLOT_NUMBER(attributes) \
do \
{ \
psa_key_slot_number_t ASSERT_NO_SLOT_NUMBER_slot_number; \
TEST_EQUAL(psa_get_key_slot_number( \
attributes, \
&ASSERT_NO_SLOT_NUMBER_slot_number), \
PSA_ERROR_INVALID_ARGUMENT); \
} \
while (0)
#else /* MBEDTLS_PSA_CRYPTO_SE_C */
#define ASSERT_NO_SLOT_NUMBER(attributes) \
((void) 0)
#endif /* MBEDTLS_PSA_CRYPTO_SE_C */
#define INPUT_INTEGER 0x10000 /* Out of range of psa_key_type_t */
uint64_t parse_binary_string(data_t *bin_string)
{
uint64_t result = 0;
TEST_LE_U(bin_string->len, 8);
for (size_t i = 0; i < bin_string->len; i++) {
result = result << 8 | bin_string->x[i];
}
exit:
return result; /* returns 0 if len > 8 */
}
/* An overapproximation of the amount of storage needed for a key of the
* given type and with the given content. The API doesn't make it easy
* to find a good value for the size. The current implementation doesn't
* care about the value anyway. */
#define KEY_BITS_FROM_DATA(type, data) \
(data)->len
typedef enum {
IMPORT_KEY = 0,
GENERATE_KEY = 1,
DERIVE_KEY = 2
} generate_method;
typedef enum {
DO_NOT_SET_LENGTHS = 0,
SET_LENGTHS_BEFORE_NONCE = 1,
SET_LENGTHS_AFTER_NONCE = 2
} set_lengths_method_t;
typedef enum {
USE_NULL_TAG = 0,
USE_GIVEN_TAG = 1,
} tag_usage_method_t;
/*!
* \brief Internal Function for AEAD multipart tests.
* \param key_type_arg Type of key passed in
* \param key_data The encryption / decryption key data
* \param alg_arg The type of algorithm used
* \param nonce Nonce data
* \param additional_data Additional data
* \param ad_part_len_arg If not -1, the length of chunks to
* feed additional data in to be encrypted /
* decrypted. If -1, no chunking.
* \param input_data Data to encrypt / decrypt
* \param data_part_len_arg If not -1, the length of chunks to feed
* the data in to be encrypted / decrypted. If
* -1, no chunking
* \param set_lengths_method A member of the set_lengths_method_t enum is
* expected here, this controls whether or not
* to set lengths, and in what order with
* respect to set nonce.
* \param expected_output Expected output
* \param is_encrypt If non-zero this is an encryption operation.
* \param do_zero_parts If non-zero, interleave zero length chunks
* with normal length chunks.
* \return int Zero on failure, non-zero on success.
*/
static int aead_multipart_internal_func(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
int ad_part_len_arg,
data_t *input_data,
int data_part_len_arg,
set_lengths_method_t set_lengths_method,
data_t *expected_output,
int is_encrypt,
int do_zero_parts)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
unsigned char *output_data = NULL;
unsigned char *part_data = NULL;
unsigned char *final_data = NULL;
size_t data_true_size = 0;
size_t part_data_size = 0;
size_t output_size = 0;
size_t final_output_size = 0;
size_t output_length = 0;
size_t key_bits = 0;
size_t tag_length = 0;
size_t part_offset = 0;
size_t part_length = 0;
size_t output_part_length = 0;
size_t tag_size = 0;
size_t ad_part_len = 0;
size_t data_part_len = 0;
uint8_t tag_buffer[PSA_AEAD_TAG_MAX_SIZE];
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
int test_ok = 0;
size_t part_count = 0;
PSA_ASSERT(psa_crypto_init());
if (is_encrypt) {
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
} else {
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
}
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
tag_length = PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg);
if (is_encrypt) {
/* Tag gets written at end of buffer. */
output_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg,
(input_data->len +
tag_length));
data_true_size = input_data->len;
} else {
output_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg,
(input_data->len -
tag_length));
/* Do not want to attempt to decrypt tag. */
data_true_size = input_data->len - tag_length;
}
ASSERT_ALLOC(output_data, output_size);
if (is_encrypt) {
final_output_size = PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg);
TEST_LE_U(final_output_size, PSA_AEAD_FINISH_OUTPUT_MAX_SIZE);
} else {
final_output_size = PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg);
TEST_LE_U(final_output_size, PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE);
}
ASSERT_ALLOC(final_data, final_output_size);
if (is_encrypt) {
status = psa_aead_encrypt_setup(&operation, key, alg);
} else {
status = psa_aead_decrypt_setup(&operation, key, alg);
}
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
PSA_ASSERT(status);
if (set_lengths_method == DO_NOT_SET_LENGTHS) {
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
} else if (set_lengths_method == SET_LENGTHS_BEFORE_NONCE) {
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
data_true_size));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
} else if (set_lengths_method == SET_LENGTHS_AFTER_NONCE) {
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
data_true_size));
}
if (ad_part_len_arg != -1) {
/* Pass additional data in parts */
ad_part_len = (size_t) ad_part_len_arg;
for (part_offset = 0, part_count = 0;
part_offset < additional_data->len;
part_offset += part_length, part_count++) {
if (do_zero_parts && (part_count & 0x01)) {
part_length = 0;
} else if (additional_data->len - part_offset < ad_part_len) {
part_length = additional_data->len - part_offset;
} else {
part_length = ad_part_len;
}
PSA_ASSERT(psa_aead_update_ad(&operation,
additional_data->x + part_offset,
part_length));
}
} else {
/* Pass additional data in one go. */
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
}
if (data_part_len_arg != -1) {
/* Pass data in parts */
data_part_len = (size_t) data_part_len_arg;
part_data_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg,
(size_t) data_part_len);
ASSERT_ALLOC(part_data, part_data_size);
for (part_offset = 0, part_count = 0;
part_offset < data_true_size;
part_offset += part_length, part_count++) {
if (do_zero_parts && (part_count & 0x01)) {
part_length = 0;
} else if ((data_true_size - part_offset) < data_part_len) {
part_length = (data_true_size - part_offset);
} else {
part_length = data_part_len;
}
PSA_ASSERT(psa_aead_update(&operation,
(input_data->x + part_offset),
part_length, part_data,
part_data_size,
&output_part_length));
if (output_data && output_part_length) {
memcpy((output_data + output_length), part_data,
output_part_length);
}
output_length += output_part_length;
}
} else {
/* Pass all data in one go. */
PSA_ASSERT(psa_aead_update(&operation, input_data->x,
data_true_size, output_data,
output_size, &output_length));
}
if (is_encrypt) {
PSA_ASSERT(psa_aead_finish(&operation, final_data,
final_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size));
} else {
PSA_ASSERT(psa_aead_verify(&operation, final_data,
final_output_size,
&output_part_length,
(input_data->x + data_true_size),
tag_length));
}
if (output_data && output_part_length) {
memcpy((output_data + output_length), final_data,
output_part_length);
}
output_length += output_part_length;
/* For all currently defined algorithms, PSA_AEAD_xxx_OUTPUT_SIZE
* should be exact.*/
if (is_encrypt) {
TEST_EQUAL(tag_length, tag_size);
if (output_data && tag_length) {
memcpy((output_data + output_length), tag_buffer,
tag_length);
}
output_length += tag_length;
TEST_EQUAL(output_length,
PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg,
input_data->len));
TEST_LE_U(output_length,
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(input_data->len));
} else {
TEST_EQUAL(output_length,
PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg,
input_data->len));
TEST_LE_U(output_length,
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(input_data->len));
}
ASSERT_COMPARE(expected_output->x, expected_output->len,
output_data, output_length);
test_ok = 1;
exit:
psa_destroy_key(key);
psa_aead_abort(&operation);
mbedtls_free(output_data);
mbedtls_free(part_data);
mbedtls_free(final_data);
PSA_DONE();
return test_ok;
}
/*!
* \brief Internal Function for MAC multipart tests.
* \param key_type_arg Type of key passed in
* \param key_data The encryption / decryption key data
* \param alg_arg The type of algorithm used
* \param input_data Data to encrypt / decrypt
* \param data_part_len_arg If not -1, the length of chunks to feed
* the data in to be encrypted / decrypted. If
* -1, no chunking
* \param expected_output Expected output
* \param is_verify If non-zero this is a verify operation.
* \param do_zero_parts If non-zero, interleave zero length chunks
* with normal length chunks.
* \return int Zero on failure, non-zero on success.
*/
static int mac_multipart_internal_func(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *input_data,
int data_part_len_arg,
data_t *expected_output,
int is_verify,
int do_zero_parts)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
unsigned char mac[PSA_MAC_MAX_SIZE];
size_t part_offset = 0;
size_t part_length = 0;
size_t data_part_len = 0;
size_t mac_len = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
int test_ok = 0;
size_t part_count = 0;
PSA_INIT();
if (is_verify) {
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
} else {
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
}
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
if (is_verify) {
status = psa_mac_verify_setup(&operation, key, alg);
} else {
status = psa_mac_sign_setup(&operation, key, alg);
}
PSA_ASSERT(status);
if (data_part_len_arg != -1) {
/* Pass data in parts */
data_part_len = (size_t) data_part_len_arg;
for (part_offset = 0, part_count = 0;
part_offset < input_data->len;
part_offset += part_length, part_count++) {
if (do_zero_parts && (part_count & 0x01)) {
part_length = 0;
} else if ((input_data->len - part_offset) < data_part_len) {
part_length = (input_data->len - part_offset);
} else {
part_length = data_part_len;
}
PSA_ASSERT(psa_mac_update(&operation,
(input_data->x + part_offset),
part_length));
}
} else {
/* Pass all data in one go. */
PSA_ASSERT(psa_mac_update(&operation, input_data->x,
input_data->len));
}
if (is_verify) {
PSA_ASSERT(psa_mac_verify_finish(&operation, expected_output->x,
expected_output->len));
} else {
PSA_ASSERT(psa_mac_sign_finish(&operation, mac,
PSA_MAC_MAX_SIZE, &mac_len));
ASSERT_COMPARE(expected_output->x, expected_output->len,
mac, mac_len);
}
test_ok = 1;
exit:
psa_destroy_key(key);
psa_mac_abort(&operation);
PSA_DONE();
return test_ok;
}
#if defined(PSA_WANT_ALG_JPAKE)
static void ecjpake_do_round(psa_algorithm_t alg, unsigned int primitive,
psa_pake_operation_t *server,
psa_pake_operation_t *client,
int client_input_first,
int round, int inject_error)
{
unsigned char *buffer0 = NULL, *buffer1 = NULL;
size_t buffer_length = (
PSA_PAKE_OUTPUT_SIZE(alg, primitive, PSA_PAKE_STEP_KEY_SHARE) +
PSA_PAKE_OUTPUT_SIZE(alg, primitive, PSA_PAKE_STEP_ZK_PUBLIC) +
PSA_PAKE_OUTPUT_SIZE(alg, primitive, PSA_PAKE_STEP_ZK_PROOF)) * 2;
/* The output should be exactly this size according to the spec */
const size_t expected_size_key_share =
PSA_PAKE_OUTPUT_SIZE(alg, primitive, PSA_PAKE_STEP_KEY_SHARE);
/* The output should be exactly this size according to the spec */
const size_t expected_size_zk_public =
PSA_PAKE_OUTPUT_SIZE(alg, primitive, PSA_PAKE_STEP_ZK_PUBLIC);
/* The output can be smaller: the spec allows stripping leading zeroes */
const size_t max_expected_size_zk_proof =
PSA_PAKE_OUTPUT_SIZE(alg, primitive, PSA_PAKE_STEP_ZK_PROOF);
size_t buffer0_off = 0;
size_t buffer1_off = 0;
size_t s_g1_len, s_g2_len, s_a_len;
size_t s_g1_off, s_g2_off, s_a_off;
size_t s_x1_pk_len, s_x2_pk_len, s_x2s_pk_len;
size_t s_x1_pk_off, s_x2_pk_off, s_x2s_pk_off;
size_t s_x1_pr_len, s_x2_pr_len, s_x2s_pr_len;
size_t s_x1_pr_off, s_x2_pr_off, s_x2s_pr_off;
size_t c_g1_len, c_g2_len, c_a_len;
size_t c_g1_off, c_g2_off, c_a_off;
size_t c_x1_pk_len, c_x2_pk_len, c_x2s_pk_len;
size_t c_x1_pk_off, c_x2_pk_off, c_x2s_pk_off;
size_t c_x1_pr_len, c_x2_pr_len, c_x2s_pr_len;
size_t c_x1_pr_off, c_x2_pr_off, c_x2s_pr_off;
psa_status_t expected_status = PSA_SUCCESS;
psa_status_t status;
ASSERT_ALLOC(buffer0, buffer_length);
ASSERT_ALLOC(buffer1, buffer_length);
switch (round) {
case 1:
/* Server first round Output */
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + buffer0_off,
512 - buffer0_off, &s_g1_len));
TEST_EQUAL(s_g1_len, expected_size_key_share);
s_g1_off = buffer0_off;
buffer0_off += s_g1_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + buffer0_off,
512 - buffer0_off, &s_x1_pk_len));
TEST_EQUAL(s_x1_pk_len, expected_size_zk_public);
s_x1_pk_off = buffer0_off;
buffer0_off += s_x1_pk_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + buffer0_off,
512 - buffer0_off, &s_x1_pr_len));
TEST_LE_U(s_x1_pr_len, max_expected_size_zk_proof);
s_x1_pr_off = buffer0_off;
buffer0_off += s_x1_pr_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + buffer0_off,
512 - buffer0_off, &s_g2_len));
TEST_EQUAL(s_g2_len, expected_size_key_share);
s_g2_off = buffer0_off;
buffer0_off += s_g2_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + buffer0_off,
512 - buffer0_off, &s_x2_pk_len));
TEST_EQUAL(s_x2_pk_len, expected_size_zk_public);
s_x2_pk_off = buffer0_off;
buffer0_off += s_x2_pk_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + buffer0_off,
512 - buffer0_off, &s_x2_pr_len));
TEST_LE_U(s_x2_pr_len, max_expected_size_zk_proof);
s_x2_pr_off = buffer0_off;
buffer0_off += s_x2_pr_len;
if (inject_error == 1) {
buffer0[s_x1_pr_off + 8] ^= 1;
buffer0[s_x2_pr_off + 7] ^= 1;
expected_status = PSA_ERROR_DATA_INVALID;
}
/*
* When injecting errors in inputs, the implementation is
* free to detect it right away of with a delay.
* This permits delaying the error until the end of the input
* sequence, if no error appears then, this will be treated
* as an error.
*/
if (client_input_first == 1) {
/* Client first round Input */
status = psa_pake_input(client, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + s_g1_off, s_g1_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + s_x1_pk_off,
s_x1_pk_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + s_x1_pr_off,
s_x1_pr_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + s_g2_off,
s_g2_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + s_x2_pk_off,
s_x2_pk_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + s_x2_pr_off,
s_x2_pr_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
/* Error didn't trigger, make test fail */
if (inject_error == 1) {
TEST_ASSERT(
!"One of the last psa_pake_input() calls should have returned the expected error.");
}
}
/* Client first round Output */
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_KEY_SHARE,
buffer1 + buffer1_off,
512 - buffer1_off, &c_g1_len));
TEST_EQUAL(c_g1_len, expected_size_key_share);
c_g1_off = buffer1_off;
buffer1_off += c_g1_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer1 + buffer1_off,
512 - buffer1_off, &c_x1_pk_len));
TEST_EQUAL(c_x1_pk_len, expected_size_zk_public);
c_x1_pk_off = buffer1_off;
buffer1_off += c_x1_pk_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_ZK_PROOF,
buffer1 + buffer1_off,
512 - buffer1_off, &c_x1_pr_len));
TEST_LE_U(c_x1_pr_len, max_expected_size_zk_proof);
c_x1_pr_off = buffer1_off;
buffer1_off += c_x1_pr_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_KEY_SHARE,
buffer1 + buffer1_off,
512 - buffer1_off, &c_g2_len));
TEST_EQUAL(c_g2_len, expected_size_key_share);
c_g2_off = buffer1_off;
buffer1_off += c_g2_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer1 + buffer1_off,
512 - buffer1_off, &c_x2_pk_len));
TEST_EQUAL(c_x2_pk_len, expected_size_zk_public);
c_x2_pk_off = buffer1_off;
buffer1_off += c_x2_pk_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_ZK_PROOF,
buffer1 + buffer1_off,
512 - buffer1_off, &c_x2_pr_len));
TEST_LE_U(c_x2_pr_len, max_expected_size_zk_proof);
c_x2_pr_off = buffer1_off;
buffer1_off += c_x2_pr_len;
if (client_input_first == 0) {
/* Client first round Input */
status = psa_pake_input(client, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + s_g1_off, s_g1_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + s_x1_pk_off,
s_x1_pk_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + s_x1_pr_off,
s_x1_pr_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + s_g2_off,
s_g2_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + s_x2_pk_off,
s_x2_pk_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + s_x2_pr_off,
s_x2_pr_len);
if (inject_error == 1 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
/* Error didn't trigger, make test fail */
if (inject_error == 1) {
TEST_ASSERT(
!"One of the last psa_pake_input() calls should have returned the expected error.");
}
}
if (inject_error == 2) {
buffer1[c_x1_pr_off + 12] ^= 1;
buffer1[c_x2_pr_off + 7] ^= 1;
expected_status = PSA_ERROR_DATA_INVALID;
}
/* Server first round Input */
status = psa_pake_input(server, PSA_PAKE_STEP_KEY_SHARE,
buffer1 + c_g1_off, c_g1_len);
if (inject_error == 2 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_ZK_PUBLIC,
buffer1 + c_x1_pk_off, c_x1_pk_len);
if (inject_error == 2 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_ZK_PROOF,
buffer1 + c_x1_pr_off, c_x1_pr_len);
if (inject_error == 2 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_KEY_SHARE,
buffer1 + c_g2_off, c_g2_len);
if (inject_error == 2 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_ZK_PUBLIC,
buffer1 + c_x2_pk_off, c_x2_pk_len);
if (inject_error == 2 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_ZK_PROOF,
buffer1 + c_x2_pr_off, c_x2_pr_len);
if (inject_error == 2 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
/* Error didn't trigger, make test fail */
if (inject_error == 2) {
TEST_ASSERT(
!"One of the last psa_pake_input() calls should have returned the expected error.");
}
break;
case 2:
/* Server second round Output */
buffer0_off = 0;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + buffer0_off,
512 - buffer0_off, &s_a_len));
TEST_EQUAL(s_a_len, expected_size_key_share);
s_a_off = buffer0_off;
buffer0_off += s_a_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + buffer0_off,
512 - buffer0_off, &s_x2s_pk_len));
TEST_EQUAL(s_x2s_pk_len, expected_size_zk_public);
s_x2s_pk_off = buffer0_off;
buffer0_off += s_x2s_pk_len;
PSA_ASSERT(psa_pake_output(server, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + buffer0_off,
512 - buffer0_off, &s_x2s_pr_len));
TEST_LE_U(s_x2s_pr_len, max_expected_size_zk_proof);
s_x2s_pr_off = buffer0_off;
buffer0_off += s_x2s_pr_len;
if (inject_error == 3) {
buffer0[s_x2s_pk_off + 12] += 0x33;
expected_status = PSA_ERROR_DATA_INVALID;
}
if (client_input_first == 1) {
/* Client second round Input */
status = psa_pake_input(client, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + s_a_off, s_a_len);
if (inject_error == 3 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + s_x2s_pk_off,
s_x2s_pk_len);
if (inject_error == 3 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + s_x2s_pr_off,
s_x2s_pr_len);
if (inject_error == 3 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
/* Error didn't trigger, make test fail */
if (inject_error == 3) {
TEST_ASSERT(
!"One of the last psa_pake_input() calls should have returned the expected error.");
}
}
/* Client second round Output */
buffer1_off = 0;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_KEY_SHARE,
buffer1 + buffer1_off,
512 - buffer1_off, &c_a_len));
TEST_EQUAL(c_a_len, expected_size_key_share);
c_a_off = buffer1_off;
buffer1_off += c_a_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer1 + buffer1_off,
512 - buffer1_off, &c_x2s_pk_len));
TEST_EQUAL(c_x2s_pk_len, expected_size_zk_public);
c_x2s_pk_off = buffer1_off;
buffer1_off += c_x2s_pk_len;
PSA_ASSERT(psa_pake_output(client, PSA_PAKE_STEP_ZK_PROOF,
buffer1 + buffer1_off,
512 - buffer1_off, &c_x2s_pr_len));
TEST_LE_U(c_x2s_pr_len, max_expected_size_zk_proof);
c_x2s_pr_off = buffer1_off;
buffer1_off += c_x2s_pr_len;
if (client_input_first == 0) {
/* Client second round Input */
status = psa_pake_input(client, PSA_PAKE_STEP_KEY_SHARE,
buffer0 + s_a_off, s_a_len);
if (inject_error == 3 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PUBLIC,
buffer0 + s_x2s_pk_off,
s_x2s_pk_len);
if (inject_error == 3 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(client, PSA_PAKE_STEP_ZK_PROOF,
buffer0 + s_x2s_pr_off,
s_x2s_pr_len);
if (inject_error == 3 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
/* Error didn't trigger, make test fail */
if (inject_error == 3) {
TEST_ASSERT(
!"One of the last psa_pake_input() calls should have returned the expected error.");
}
}
if (inject_error == 4) {
buffer1[c_x2s_pk_off + 7] += 0x28;
expected_status = PSA_ERROR_DATA_INVALID;
}
/* Server second round Input */
status = psa_pake_input(server, PSA_PAKE_STEP_KEY_SHARE,
buffer1 + c_a_off, c_a_len);
if (inject_error == 4 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_ZK_PUBLIC,
buffer1 + c_x2s_pk_off, c_x2s_pk_len);
if (inject_error == 4 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
status = psa_pake_input(server, PSA_PAKE_STEP_ZK_PROOF,
buffer1 + c_x2s_pr_off, c_x2s_pr_len);
if (inject_error == 4 && status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
break;
} else {
TEST_EQUAL(status, PSA_SUCCESS);
}
/* Error didn't trigger, make test fail */
if (inject_error == 4) {
TEST_ASSERT(
!"One of the last psa_pake_input() calls should have returned the expected error.");
}
break;
}
exit:
mbedtls_free(buffer0);
mbedtls_free(buffer1);
}
#endif /* PSA_WANT_ALG_JPAKE */
typedef enum {
INJECT_ERR_NONE = 0,
INJECT_ERR_UNINITIALIZED_ACCESS,
INJECT_ERR_DUPLICATE_SETUP,
INJECT_ERR_INVALID_USER,
INJECT_ERR_INVALID_PEER,
INJECT_ERR_SET_USER,
INJECT_ERR_SET_PEER,
INJECT_EMPTY_IO_BUFFER,
INJECT_UNKNOWN_STEP,
INJECT_INVALID_FIRST_STEP,
INJECT_WRONG_BUFFER_SIZE,
INJECT_VALID_OPERATION_AFTER_FAILURE,
INJECT_ANTICIPATE_KEY_DERIVATION_1,
INJECT_ANTICIPATE_KEY_DERIVATION_2,
} ecjpake_injected_failure_t;
#if defined(MBEDTLS_ECP_RESTARTABLE)
static void interruptible_signverify_get_minmax_completes(uint32_t max_ops,
psa_status_t expected_status,
size_t *min_completes,
size_t *max_completes)
{
/* This is slightly contrived, but we only really know that with a minimum
value of max_ops that a successful operation should take more than one op
to complete, and likewise that with a max_ops of
PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED, it should complete in one go. */
if (max_ops == 0 || max_ops == 1) {
if (expected_status == PSA_SUCCESS) {
*min_completes = 2;
} else {
*min_completes = 1;
}
*max_completes = PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED;
} else {
*min_completes = 1;
*max_completes = 1;
}
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PSA_CRYPTO_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void psa_can_do_hash()
{
/* We can't test that this is specific to drivers until partial init has
* been implemented, but we can at least test before/after full init. */
TEST_EQUAL(0, psa_can_do_hash(PSA_ALG_NONE));
PSA_INIT();
TEST_EQUAL(1, psa_can_do_hash(PSA_ALG_NONE));
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void static_checks()
{
size_t max_truncated_mac_size =
PSA_ALG_MAC_TRUNCATION_MASK >> PSA_MAC_TRUNCATION_OFFSET;
/* Check that the length for a truncated MAC always fits in the algorithm
* encoding. The shifted mask is the maximum truncated value. The
* untruncated algorithm may be one byte larger. */
TEST_LE_U(PSA_MAC_MAX_SIZE, 1 + max_truncated_mac_size);
}
/* END_CASE */
/* BEGIN_CASE */
void import_with_policy(int type_arg,
int usage_arg, int alg_arg,
int expected_status_arg)
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
const uint8_t key_material[16] = { 0 };
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
psa_set_key_type(&attributes, type);
psa_set_key_usage_flags(&attributes, usage);
psa_set_key_algorithm(&attributes, alg);
status = psa_import_key(&attributes,
key_material, sizeof(key_material),
&key);
TEST_EQUAL(status, expected_status);
if (status != PSA_SUCCESS) {
goto exit;
}
PSA_ASSERT(psa_get_key_attributes(key, &got_attributes));
TEST_EQUAL(psa_get_key_type(&got_attributes), type);
TEST_EQUAL(psa_get_key_usage_flags(&got_attributes),
mbedtls_test_update_key_usage_flags(usage));
TEST_EQUAL(psa_get_key_algorithm(&got_attributes), alg);
ASSERT_NO_SLOT_NUMBER(&got_attributes);
PSA_ASSERT(psa_destroy_key(key));
test_operations_on_invalid_key(key);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void import_with_data(data_t *data, int type_arg,
int attr_bits_arg,
int expected_status_arg)
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
size_t attr_bits = attr_bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
psa_set_key_type(&attributes, type);
psa_set_key_bits(&attributes, attr_bits);
status = psa_import_key(&attributes, data->x, data->len, &key);
TEST_EQUAL(status, expected_status);
if (status != PSA_SUCCESS) {
goto exit;
}
PSA_ASSERT(psa_get_key_attributes(key, &got_attributes));
TEST_EQUAL(psa_get_key_type(&got_attributes), type);
if (attr_bits != 0) {
TEST_EQUAL(attr_bits, psa_get_key_bits(&got_attributes));
}
ASSERT_NO_SLOT_NUMBER(&got_attributes);
PSA_ASSERT(psa_destroy_key(key));
test_operations_on_invalid_key(key);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
/* Construct and attempt to import a large unstructured key. */
void import_large_key(int type_arg, int byte_size_arg,
int expected_status_arg)
{
psa_key_type_t type = type_arg;
size_t byte_size = byte_size_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_status = expected_status_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
uint8_t *buffer = NULL;
size_t buffer_size = byte_size + 1;
size_t n;
/* Skip the test case if the target running the test cannot
* accommodate large keys due to heap size constraints */
ASSERT_ALLOC_WEAK(buffer, buffer_size);
memset(buffer, 'K', byte_size);
PSA_ASSERT(psa_crypto_init());
/* Try importing the key */
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT);
psa_set_key_type(&attributes, type);
status = psa_import_key(&attributes, buffer, byte_size, &key);
TEST_ASSUME(status != PSA_ERROR_INSUFFICIENT_MEMORY);
TEST_EQUAL(status, expected_status);
if (status == PSA_SUCCESS) {
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
TEST_EQUAL(psa_get_key_type(&attributes), type);
TEST_EQUAL(psa_get_key_bits(&attributes),
PSA_BYTES_TO_BITS(byte_size));
ASSERT_NO_SLOT_NUMBER(&attributes);
memset(buffer, 0, byte_size + 1);
PSA_ASSERT(psa_export_key(key, buffer, byte_size, &n));
for (n = 0; n < byte_size; n++) {
TEST_EQUAL(buffer[n], 'K');
}
for (n = byte_size; n < buffer_size; n++) {
TEST_EQUAL(buffer[n], 0);
}
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
mbedtls_free(buffer);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ASN1_WRITE_C */
/* Import an RSA key with a valid structure (but not valid numbers
* inside, beyond having sensible size and parity). This is expected to
* fail for large keys. */
void import_rsa_made_up(int bits_arg, int keypair, int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
size_t bits = bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
psa_key_type_t type =
keypair ? PSA_KEY_TYPE_RSA_KEY_PAIR : PSA_KEY_TYPE_RSA_PUBLIC_KEY;
size_t buffer_size = /* Slight overapproximations */
keypair ? bits * 9 / 16 + 80 : bits / 8 + 20;
unsigned char *buffer = NULL;
unsigned char *p;
int ret;
size_t length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
ASSERT_ALLOC(buffer, buffer_size);
TEST_ASSERT((ret = construct_fake_rsa_key(buffer, buffer_size, &p,
bits, keypair)) >= 0);
length = ret;
/* Try importing the key */
psa_set_key_type(&attributes, type);
status = psa_import_key(&attributes, p, length, &key);
TEST_EQUAL(status, expected_status);
if (status == PSA_SUCCESS) {
PSA_ASSERT(psa_destroy_key(key));
}
exit:
mbedtls_free(buffer);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void import_export(data_t *data,
int type_arg,
int usage_arg, int alg_arg,
int lifetime_arg,
int expected_bits,
int export_size_delta,
int expected_export_status_arg,
/*whether reexport must give the original input exactly*/
int canonical_input)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
psa_key_lifetime_t lifetime = lifetime_arg;
unsigned char *exported = NULL;
unsigned char *reexported = NULL;
size_t export_size;
size_t exported_length = INVALID_EXPORT_LENGTH;
size_t reexported_length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
export_size = (ptrdiff_t) data->len + export_size_delta;
ASSERT_ALLOC(exported, export_size);
if (!canonical_input) {
ASSERT_ALLOC(reexported, export_size);
}
PSA_ASSERT(psa_crypto_init());
psa_set_key_lifetime(&attributes, lifetime);
psa_set_key_usage_flags(&attributes, usage_arg);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, type);
if (PSA_KEY_TYPE_IS_DH(type) &&
expected_export_status == PSA_ERROR_BUFFER_TOO_SMALL) {
/* Simulate that buffer is too small, by decreasing its size by 1 byte. */
export_size -= 1;
}
/* Import the key */
TEST_EQUAL(psa_import_key(&attributes, data->x, data->len, &key),
PSA_SUCCESS);
/* Test the key information */
PSA_ASSERT(psa_get_key_attributes(key, &got_attributes));
TEST_EQUAL(psa_get_key_type(&got_attributes), type);
TEST_EQUAL(psa_get_key_bits(&got_attributes), (size_t) expected_bits);
ASSERT_NO_SLOT_NUMBER(&got_attributes);
/* Export the key */
status = psa_export_key(key, exported, export_size, &exported_length);
TEST_EQUAL(status, expected_export_status);
/* The exported length must be set by psa_export_key() to a value between 0
* and export_size. On errors, the exported length must be 0. */
TEST_ASSERT(exported_length != INVALID_EXPORT_LENGTH);
TEST_ASSERT(status == PSA_SUCCESS || exported_length == 0);
TEST_LE_U(exported_length, export_size);
TEST_ASSERT(mem_is_char(exported + exported_length, 0,
export_size - exported_length));
if (status != PSA_SUCCESS) {
TEST_EQUAL(exported_length, 0);
goto destroy;
}
/* Run sanity checks on the exported key. For non-canonical inputs,
* this validates the canonical representations. For canonical inputs,
* this doesn't directly validate the implementation, but it still helps
* by cross-validating the test data with the sanity check code. */
if (!psa_key_lifetime_is_external(lifetime)) {
if (!mbedtls_test_psa_exercise_key(key, usage_arg, 0)) {
goto exit;
}
}
if (canonical_input) {
ASSERT_COMPARE(data->x, data->len, exported, exported_length);
} else {
mbedtls_svc_key_id_t key2 = MBEDTLS_SVC_KEY_ID_INIT;
PSA_ASSERT(psa_import_key(&attributes, exported, exported_length,
&key2));
PSA_ASSERT(psa_export_key(key2,
reexported,
export_size,
&reexported_length));
ASSERT_COMPARE(exported, exported_length,
reexported, reexported_length);
PSA_ASSERT(psa_destroy_key(key2));
}
TEST_LE_U(exported_length,
PSA_EXPORT_KEY_OUTPUT_SIZE(type,
psa_get_key_bits(&got_attributes)));
TEST_LE_U(exported_length, PSA_EXPORT_KEY_PAIR_MAX_SIZE);
destroy:
/* Destroy the key */
PSA_ASSERT(psa_destroy_key(key));
test_operations_on_invalid_key(key);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_destroy_key(key);
mbedtls_free(exported);
mbedtls_free(reexported);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void import_export_public_key(data_t *data,
int type_arg, // key pair or public key
int alg_arg,
int lifetime_arg,
int export_size_delta,
int expected_export_status_arg,
data_t *expected_public_key)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
psa_key_lifetime_t lifetime = lifetime_arg;
unsigned char *exported = NULL;
size_t export_size = expected_public_key->len + export_size_delta;
size_t exported_length = INVALID_EXPORT_LENGTH;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_lifetime(&attributes, lifetime);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, type);
/* Import the key */
PSA_ASSERT(psa_import_key(&attributes, data->x, data->len, &key));
/* Export the public key */
ASSERT_ALLOC(exported, export_size);
status = psa_export_public_key(key,
exported, export_size,
&exported_length);
TEST_EQUAL(status, expected_export_status);
if (status == PSA_SUCCESS) {
psa_key_type_t public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type);
size_t bits;
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
bits = psa_get_key_bits(&attributes);
TEST_LE_U(expected_public_key->len,
PSA_EXPORT_KEY_OUTPUT_SIZE(public_type, bits));
TEST_LE_U(expected_public_key->len,
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(public_type, bits));
TEST_LE_U(expected_public_key->len,
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE);
ASSERT_COMPARE(expected_public_key->x, expected_public_key->len,
exported, exported_length);
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
mbedtls_free(exported);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void import_and_exercise_key(data_t *data,
int type_arg,
int bits_arg,
int alg_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = mbedtls_test_psa_usage_to_exercise(type, alg);
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, usage);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, type);
/* Import the key */
PSA_ASSERT(psa_import_key(&attributes, data->x, data->len, &key));
/* Test the key information */
PSA_ASSERT(psa_get_key_attributes(key, &got_attributes));
TEST_EQUAL(psa_get_key_type(&got_attributes), type);
TEST_EQUAL(psa_get_key_bits(&got_attributes), bits);
/* Do something with the key according to its type and permitted usage. */
if (!mbedtls_test_psa_exercise_key(key, usage, alg)) {
goto exit;
}
PSA_ASSERT(psa_destroy_key(key));
test_operations_on_invalid_key(key);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void effective_key_attributes(int type_arg, int expected_type_arg,
int bits_arg, int expected_bits_arg,
int usage_arg, int expected_usage_arg,
int alg_arg, int expected_alg_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = type_arg;
psa_key_type_t expected_key_type = expected_type_arg;
size_t bits = bits_arg;
size_t expected_bits = expected_bits_arg;
psa_algorithm_t alg = alg_arg;
psa_algorithm_t expected_alg = expected_alg_arg;
psa_key_usage_t usage = usage_arg;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, usage);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
psa_set_key_bits(&attributes, bits);
PSA_ASSERT(psa_generate_key(&attributes, &key));
psa_reset_key_attributes(&attributes);
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
TEST_EQUAL(psa_get_key_type(&attributes), expected_key_type);
TEST_EQUAL(psa_get_key_bits(&attributes), expected_bits);
TEST_EQUAL(psa_get_key_usage_flags(&attributes), expected_usage);
TEST_EQUAL(psa_get_key_algorithm(&attributes), expected_alg);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void check_key_policy(int type_arg, int bits_arg,
int usage_arg, int alg_arg)
{
test_effective_key_attributes(type_arg, type_arg, bits_arg, bits_arg,
usage_arg,
mbedtls_test_update_key_usage_flags(usage_arg),
alg_arg, alg_arg);
goto exit;
}
/* END_CASE */
/* BEGIN_CASE */
void key_attributes_init()
{
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to suppress the Clang warning for the test. */
psa_key_attributes_t func = psa_key_attributes_init();
psa_key_attributes_t init = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t zero;
memset(&zero, 0, sizeof(zero));
TEST_EQUAL(psa_get_key_lifetime(&func), PSA_KEY_LIFETIME_VOLATILE);
TEST_EQUAL(psa_get_key_lifetime(&init), PSA_KEY_LIFETIME_VOLATILE);
TEST_EQUAL(psa_get_key_lifetime(&zero), PSA_KEY_LIFETIME_VOLATILE);
TEST_EQUAL(psa_get_key_type(&func), 0);
TEST_EQUAL(psa_get_key_type(&init), 0);
TEST_EQUAL(psa_get_key_type(&zero), 0);
TEST_EQUAL(psa_get_key_bits(&func), 0);
TEST_EQUAL(psa_get_key_bits(&init), 0);
TEST_EQUAL(psa_get_key_bits(&zero), 0);
TEST_EQUAL(psa_get_key_usage_flags(&func), 0);
TEST_EQUAL(psa_get_key_usage_flags(&init), 0);
TEST_EQUAL(psa_get_key_usage_flags(&zero), 0);
TEST_EQUAL(psa_get_key_algorithm(&func), 0);
TEST_EQUAL(psa_get_key_algorithm(&init), 0);
TEST_EQUAL(psa_get_key_algorithm(&zero), 0);
}
/* END_CASE */
/* BEGIN_CASE */
void mac_key_policy(int policy_usage_arg,
int policy_alg_arg,
int key_type_arg,
data_t *key_data,
int exercise_alg_arg,
int expected_status_sign_arg,
int expected_status_verify_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t policy_alg = policy_alg_arg;
psa_algorithm_t exercise_alg = exercise_alg_arg;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
psa_status_t expected_status_sign = expected_status_sign_arg;
psa_status_t expected_status_verify = expected_status_verify_arg;
unsigned char mac[PSA_MAC_MAX_SIZE];
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
TEST_EQUAL(psa_get_key_usage_flags(&attributes),
mbedtls_test_update_key_usage_flags(policy_usage));
status = psa_mac_sign_setup(&operation, key, exercise_alg);
TEST_EQUAL(status, expected_status_sign);
/* Calculate the MAC, one-shot case. */
uint8_t input[128] = { 0 };
size_t mac_len;
TEST_EQUAL(psa_mac_compute(key, exercise_alg,
input, 128,
mac, PSA_MAC_MAX_SIZE, &mac_len),
expected_status_sign);
/* Calculate the MAC, multi-part case. */
PSA_ASSERT(psa_mac_abort(&operation));
status = psa_mac_sign_setup(&operation, key, exercise_alg);
if (status == PSA_SUCCESS) {
status = psa_mac_update(&operation, input, 128);
if (status == PSA_SUCCESS) {
TEST_EQUAL(psa_mac_sign_finish(&operation, mac, PSA_MAC_MAX_SIZE,
&mac_len),
expected_status_sign);
} else {
TEST_EQUAL(status, expected_status_sign);
}
} else {
TEST_EQUAL(status, expected_status_sign);
}
PSA_ASSERT(psa_mac_abort(&operation));
/* Verify correct MAC, one-shot case. */
status = psa_mac_verify(key, exercise_alg, input, 128,
mac, mac_len);
if (expected_status_sign != PSA_SUCCESS && expected_status_verify == PSA_SUCCESS) {
TEST_EQUAL(status, PSA_ERROR_INVALID_SIGNATURE);
} else {
TEST_EQUAL(status, expected_status_verify);
}
/* Verify correct MAC, multi-part case. */
status = psa_mac_verify_setup(&operation, key, exercise_alg);
if (status == PSA_SUCCESS) {
status = psa_mac_update(&operation, input, 128);
if (status == PSA_SUCCESS) {
status = psa_mac_verify_finish(&operation, mac, mac_len);
if (expected_status_sign != PSA_SUCCESS && expected_status_verify == PSA_SUCCESS) {
TEST_EQUAL(status, PSA_ERROR_INVALID_SIGNATURE);
} else {
TEST_EQUAL(status, expected_status_verify);
}
} else {
TEST_EQUAL(status, expected_status_verify);
}
} else {
TEST_EQUAL(status, expected_status_verify);
}
psa_mac_abort(&operation);
memset(mac, 0, sizeof(mac));
status = psa_mac_verify_setup(&operation, key, exercise_alg);
TEST_EQUAL(status, expected_status_verify);
exit:
psa_mac_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_key_policy(int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
size_t output_buffer_size = 0;
size_t input_buffer_size = 0;
size_t output_length = 0;
uint8_t *output = NULL;
uint8_t *input = NULL;
psa_status_t status;
input_buffer_size = PSA_BLOCK_CIPHER_BLOCK_LENGTH(exercise_alg);
output_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, exercise_alg,
input_buffer_size);
ASSERT_ALLOC(input, input_buffer_size);
ASSERT_ALLOC(output, output_buffer_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Check if no key usage flag implication is done */
TEST_EQUAL(policy_usage,
mbedtls_test_update_key_usage_flags(policy_usage));
/* Encrypt check, one-shot */
status = psa_cipher_encrypt(key, exercise_alg, input, input_buffer_size,
output, output_buffer_size,
&output_length);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_ENCRYPT) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
/* Encrypt check, multi-part */
status = psa_cipher_encrypt_setup(&operation, key, exercise_alg);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_ENCRYPT) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
psa_cipher_abort(&operation);
/* Decrypt check, one-shot */
status = psa_cipher_decrypt(key, exercise_alg, output, output_buffer_size,
input, input_buffer_size,
&output_length);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_DECRYPT) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
/* Decrypt check, multi-part */
status = psa_cipher_decrypt_setup(&operation, key, exercise_alg);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_DECRYPT) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
exit:
psa_cipher_abort(&operation);
mbedtls_free(input);
mbedtls_free(output);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_key_policy(int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int nonce_length_arg,
int tag_length_arg,
int exercise_alg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
unsigned char nonce[16] = { 0 };
size_t nonce_length = nonce_length_arg;
unsigned char tag[16];
size_t tag_length = tag_length_arg;
size_t output_length;
TEST_LE_U(nonce_length, sizeof(nonce));
TEST_LE_U(tag_length, sizeof(tag));
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Check if no key usage implication is done */
TEST_EQUAL(policy_usage,
mbedtls_test_update_key_usage_flags(policy_usage));
/* Encrypt check, one-shot */
status = psa_aead_encrypt(key, exercise_alg,
nonce, nonce_length,
NULL, 0,
NULL, 0,
tag, tag_length,
&output_length);
if ((policy_usage & PSA_KEY_USAGE_ENCRYPT) != 0) {
TEST_EQUAL(status, expected_status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
/* Encrypt check, multi-part */
status = psa_aead_encrypt_setup(&operation, key, exercise_alg);
if ((policy_usage & PSA_KEY_USAGE_ENCRYPT) != 0) {
TEST_EQUAL(status, expected_status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
/* Decrypt check, one-shot */
memset(tag, 0, sizeof(tag));
status = psa_aead_decrypt(key, exercise_alg,
nonce, nonce_length,
NULL, 0,
tag, tag_length,
NULL, 0,
&output_length);
if ((policy_usage & PSA_KEY_USAGE_DECRYPT) == 0) {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
} else if (expected_status == PSA_SUCCESS) {
TEST_EQUAL(status, PSA_ERROR_INVALID_SIGNATURE);
} else {
TEST_EQUAL(status, expected_status);
}
/* Decrypt check, multi-part */
PSA_ASSERT(psa_aead_abort(&operation));
status = psa_aead_decrypt_setup(&operation, key, exercise_alg);
if ((policy_usage & PSA_KEY_USAGE_DECRYPT) == 0) {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
} else {
TEST_EQUAL(status, expected_status);
}
exit:
PSA_ASSERT(psa_aead_abort(&operation));
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encryption_key_policy(int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_status_t status;
size_t key_bits;
size_t buffer_length;
unsigned char *buffer = NULL;
size_t output_length;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Check if no key usage implication is done */
TEST_EQUAL(policy_usage,
mbedtls_test_update_key_usage_flags(policy_usage));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
buffer_length = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits,
exercise_alg);
ASSERT_ALLOC(buffer, buffer_length);
status = psa_asymmetric_encrypt(key, exercise_alg,
NULL, 0,
NULL, 0,
buffer, buffer_length,
&output_length);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_ENCRYPT) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
if (buffer_length != 0) {
memset(buffer, 0, buffer_length);
}
status = psa_asymmetric_decrypt(key, exercise_alg,
buffer, buffer_length,
NULL, 0,
buffer, buffer_length,
&output_length);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_DECRYPT) != 0) {
TEST_EQUAL(status, PSA_ERROR_INVALID_PADDING);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
mbedtls_free(buffer);
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_signature_key_policy(int policy_usage_arg,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg,
int payload_length_arg,
int expected_usage_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t policy_usage = policy_usage_arg;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_status_t status;
unsigned char payload[PSA_HASH_MAX_SIZE] = { 1 };
/* If `payload_length_arg > 0`, `exercise_alg` is supposed to be
* compatible with the policy and `payload_length_arg` is supposed to be
* a valid input length to sign. If `payload_length_arg <= 0`,
* `exercise_alg` is supposed to be forbidden by the policy. */
int compatible_alg = payload_length_arg > 0;
size_t payload_length = compatible_alg ? payload_length_arg : 0;
unsigned char signature[PSA_SIGNATURE_MAX_SIZE] = { 0 };
size_t signature_length;
/* Check if all implicit usage flags are deployed
in the expected usage flags. */
TEST_EQUAL(expected_usage,
mbedtls_test_update_key_usage_flags(policy_usage));
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
TEST_EQUAL(psa_get_key_usage_flags(&attributes), expected_usage);
status = psa_sign_hash(key, exercise_alg,
payload, payload_length,
signature, sizeof(signature),
&signature_length);
if (compatible_alg && (expected_usage & PSA_KEY_USAGE_SIGN_HASH) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
memset(signature, 0, sizeof(signature));
status = psa_verify_hash(key, exercise_alg,
payload, payload_length,
signature, sizeof(signature));
if (compatible_alg && (expected_usage & PSA_KEY_USAGE_VERIFY_HASH) != 0) {
TEST_EQUAL(status, PSA_ERROR_INVALID_SIGNATURE);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
if (PSA_ALG_IS_SIGN_HASH(exercise_alg) &&
PSA_ALG_IS_HASH(PSA_ALG_SIGN_GET_HASH(exercise_alg))) {
status = psa_sign_message(key, exercise_alg,
payload, payload_length,
signature, sizeof(signature),
&signature_length);
if (compatible_alg && (expected_usage & PSA_KEY_USAGE_SIGN_MESSAGE) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
memset(signature, 0, sizeof(signature));
status = psa_verify_message(key, exercise_alg,
payload, payload_length,
signature, sizeof(signature));
if (compatible_alg && (expected_usage & PSA_KEY_USAGE_VERIFY_MESSAGE) != 0) {
TEST_EQUAL(status, PSA_ERROR_INVALID_SIGNATURE);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
}
exit:
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_policy(int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_key_derivation_setup(&operation, exercise_alg));
if (PSA_ALG_IS_TLS12_PRF(exercise_alg) ||
PSA_ALG_IS_TLS12_PSK_TO_MS(exercise_alg)) {
PSA_ASSERT(psa_key_derivation_input_bytes(
&operation,
PSA_KEY_DERIVATION_INPUT_SEED,
(const uint8_t *) "", 0));
}
status = psa_key_derivation_input_key(&operation,
PSA_KEY_DERIVATION_INPUT_SECRET,
key);
if (policy_alg == exercise_alg &&
(policy_usage & PSA_KEY_USAGE_DERIVE) != 0) {
PSA_ASSERT(status);
} else {
TEST_EQUAL(status, PSA_ERROR_NOT_PERMITTED);
}
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void agreement_key_policy(int policy_usage,
int policy_alg,
int key_type_arg,
data_t *key_data,
int exercise_alg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t key_type = key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_key_derivation_setup(&operation, exercise_alg));
status = mbedtls_test_psa_key_agreement_with_self(&operation, key);
TEST_EQUAL(status, expected_status);
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy_alg2(int key_type_arg, data_t *key_data,
int usage_arg, int alg_arg, int alg2_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t usage = usage_arg;
psa_algorithm_t alg = alg_arg;
psa_algorithm_t alg2 = alg2_arg;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, usage);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_enrollment_algorithm(&attributes, alg2);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Update the usage flags to obtain implicit usage flags */
usage = mbedtls_test_update_key_usage_flags(usage);
PSA_ASSERT(psa_get_key_attributes(key, &got_attributes));
TEST_EQUAL(psa_get_key_usage_flags(&got_attributes), usage);
TEST_EQUAL(psa_get_key_algorithm(&got_attributes), alg);
TEST_EQUAL(psa_get_key_enrollment_algorithm(&got_attributes), alg2);
if (!mbedtls_test_psa_exercise_key(key, usage, alg)) {
goto exit;
}
if (!mbedtls_test_psa_exercise_key(key, usage, alg2)) {
goto exit;
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void raw_agreement_key_policy(int policy_usage,
int policy_alg,
int key_type_arg,
data_t *key_data,
int exercise_alg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t key_type = key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, policy_usage);
psa_set_key_algorithm(&attributes, policy_alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
status = mbedtls_test_psa_raw_key_agreement_with_self(exercise_alg, key);
TEST_EQUAL(status, expected_status);
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void copy_success(int source_usage_arg,
int source_alg_arg, int source_alg2_arg,
int source_lifetime_arg,
int type_arg, data_t *material,
int copy_attributes,
int target_usage_arg,
int target_alg_arg, int target_alg2_arg,
int target_lifetime_arg,
int expected_usage_arg,
int expected_alg_arg, int expected_alg2_arg)
{
psa_key_attributes_t source_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t target_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_algorithm_t expected_alg = expected_alg_arg;
psa_algorithm_t expected_alg2 = expected_alg2_arg;
psa_key_lifetime_t source_lifetime = source_lifetime_arg;
psa_key_lifetime_t target_lifetime = target_lifetime_arg;
mbedtls_svc_key_id_t source_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t target_key = MBEDTLS_SVC_KEY_ID_INIT;
uint8_t *export_buffer = NULL;
PSA_ASSERT(psa_crypto_init());
/* Prepare the source key. */
psa_set_key_usage_flags(&source_attributes, source_usage_arg);
psa_set_key_algorithm(&source_attributes, source_alg_arg);
psa_set_key_enrollment_algorithm(&source_attributes, source_alg2_arg);
psa_set_key_type(&source_attributes, type_arg);
psa_set_key_lifetime(&source_attributes, source_lifetime);
PSA_ASSERT(psa_import_key(&source_attributes,
material->x, material->len,
&source_key));
PSA_ASSERT(psa_get_key_attributes(source_key, &source_attributes));
/* Prepare the target attributes. */
if (copy_attributes) {
target_attributes = source_attributes;
}
psa_set_key_lifetime(&target_attributes, target_lifetime);
if (target_usage_arg != -1) {
psa_set_key_usage_flags(&target_attributes, target_usage_arg);
}
if (target_alg_arg != -1) {
psa_set_key_algorithm(&target_attributes, target_alg_arg);
}
if (target_alg2_arg != -1) {
psa_set_key_enrollment_algorithm(&target_attributes, target_alg2_arg);
}
/* Copy the key. */
PSA_ASSERT(psa_copy_key(source_key,
&target_attributes, &target_key));
/* Destroy the source to ensure that this doesn't affect the target. */
PSA_ASSERT(psa_destroy_key(source_key));
/* Test that the target slot has the expected content and policy. */
PSA_ASSERT(psa_get_key_attributes(target_key, &target_attributes));
TEST_EQUAL(psa_get_key_type(&source_attributes),
psa_get_key_type(&target_attributes));
TEST_EQUAL(psa_get_key_bits(&source_attributes),
psa_get_key_bits(&target_attributes));
TEST_EQUAL(expected_usage, psa_get_key_usage_flags(&target_attributes));
TEST_EQUAL(expected_alg, psa_get_key_algorithm(&target_attributes));
TEST_EQUAL(expected_alg2,
psa_get_key_enrollment_algorithm(&target_attributes));
if (expected_usage & PSA_KEY_USAGE_EXPORT) {
size_t length;
ASSERT_ALLOC(export_buffer, material->len);
PSA_ASSERT(psa_export_key(target_key, export_buffer,
material->len, &length));
ASSERT_COMPARE(material->x, material->len,
export_buffer, length);
}
if (!psa_key_lifetime_is_external(target_lifetime)) {
if (!mbedtls_test_psa_exercise_key(target_key, expected_usage, expected_alg)) {
goto exit;
}
if (!mbedtls_test_psa_exercise_key(target_key, expected_usage, expected_alg2)) {
goto exit;
}
}
PSA_ASSERT(psa_destroy_key(target_key));
exit:
/*
* Source and target key attributes may have been returned by
* psa_get_key_attributes() thus reset them as required.
*/
psa_reset_key_attributes(&source_attributes);
psa_reset_key_attributes(&target_attributes);
PSA_DONE();
mbedtls_free(export_buffer);
}
/* END_CASE */
/* BEGIN_CASE */
void copy_fail(int source_usage_arg,
int source_alg_arg, int source_alg2_arg,
int source_lifetime_arg,
int type_arg, data_t *material,
int target_type_arg, int target_bits_arg,
int target_usage_arg,
int target_alg_arg, int target_alg2_arg,
int target_id_arg, int target_lifetime_arg,
int expected_status_arg)
{
psa_key_attributes_t source_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t target_attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t source_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t target_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t key_id = mbedtls_svc_key_id_make(1, target_id_arg);
PSA_ASSERT(psa_crypto_init());
/* Prepare the source key. */
psa_set_key_usage_flags(&source_attributes, source_usage_arg);
psa_set_key_algorithm(&source_attributes, source_alg_arg);
psa_set_key_enrollment_algorithm(&source_attributes, source_alg2_arg);
psa_set_key_type(&source_attributes, type_arg);
psa_set_key_lifetime(&source_attributes, source_lifetime_arg);
PSA_ASSERT(psa_import_key(&source_attributes,
material->x, material->len,
&source_key));
/* Prepare the target attributes. */
psa_set_key_id(&target_attributes, key_id);
psa_set_key_lifetime(&target_attributes, target_lifetime_arg);
psa_set_key_type(&target_attributes, target_type_arg);
psa_set_key_bits(&target_attributes, target_bits_arg);
psa_set_key_usage_flags(&target_attributes, target_usage_arg);
psa_set_key_algorithm(&target_attributes, target_alg_arg);
psa_set_key_enrollment_algorithm(&target_attributes, target_alg2_arg);
/* Try to copy the key. */
TEST_EQUAL(psa_copy_key(source_key,
&target_attributes, &target_key),
expected_status_arg);
PSA_ASSERT(psa_destroy_key(source_key));
exit:
psa_reset_key_attributes(&source_attributes);
psa_reset_key_attributes(&target_attributes);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void hash_operation_init()
{
const uint8_t input[1] = { 0 };
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to suppress the Clang warning for the test. */
psa_hash_operation_t func = psa_hash_operation_init();
psa_hash_operation_t init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t zero;
memset(&zero, 0, sizeof(zero));
/* A freshly-initialized hash operation should not be usable. */
TEST_EQUAL(psa_hash_update(&func, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_hash_update(&init, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_hash_update(&zero, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
/* A default hash operation should be abortable without error. */
PSA_ASSERT(psa_hash_abort(&func));
PSA_ASSERT(psa_hash_abort(&init));
PSA_ASSERT(psa_hash_abort(&zero));
}
/* END_CASE */
/* BEGIN_CASE */
void hash_setup(int alg_arg,
int expected_status_arg)
{
psa_algorithm_t alg = alg_arg;
uint8_t *output = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_status_t expected_status = expected_status_arg;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
/* Hash Setup, one-shot */
output_size = PSA_HASH_LENGTH(alg);
ASSERT_ALLOC(output, output_size);
status = psa_hash_compute(alg, NULL, 0,
output, output_size, &output_length);
TEST_EQUAL(status, expected_status);
/* Hash Setup, multi-part */
status = psa_hash_setup(&operation, alg);
TEST_EQUAL(status, expected_status);
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT(psa_hash_abort(&operation));
/* If setup failed, reproduce the failure, so as to
* test the resulting state of the operation object. */
if (status != PSA_SUCCESS) {
TEST_EQUAL(psa_hash_setup(&operation, alg), status);
}
/* Now the operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_HASH_ALG)
PSA_ASSERT(psa_hash_setup(&operation, KNOWN_SUPPORTED_HASH_ALG));
PSA_ASSERT(psa_hash_abort(&operation));
#endif
exit:
mbedtls_free(output);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void hash_compute_fail(int alg_arg, data_t *input,
int output_size_arg, int expected_status_arg)
{
psa_algorithm_t alg = alg_arg;
uint8_t *output = NULL;
size_t output_size = output_size_arg;
size_t output_length = INVALID_EXPORT_LENGTH;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
ASSERT_ALLOC(output, output_size);
PSA_ASSERT(psa_crypto_init());
/* Hash Compute, one-shot */
status = psa_hash_compute(alg, input->x, input->len,
output, output_size, &output_length);
TEST_EQUAL(status, expected_status);
TEST_LE_U(output_length, output_size);
/* Hash Compute, multi-part */
status = psa_hash_setup(&operation, alg);
if (status == PSA_SUCCESS) {
status = psa_hash_update(&operation, input->x, input->len);
if (status == PSA_SUCCESS) {
status = psa_hash_finish(&operation, output, output_size,
&output_length);
if (status == PSA_SUCCESS) {
TEST_LE_U(output_length, output_size);
} else {
TEST_EQUAL(status, expected_status);
}
} else {
TEST_EQUAL(status, expected_status);
}
} else {
TEST_EQUAL(status, expected_status);
}
exit:
PSA_ASSERT(psa_hash_abort(&operation));
mbedtls_free(output);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void hash_compare_fail(int alg_arg, data_t *input,
data_t *reference_hash,
int expected_status_arg)
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
/* Hash Compare, one-shot */
status = psa_hash_compare(alg, input->x, input->len,
reference_hash->x, reference_hash->len);
TEST_EQUAL(status, expected_status);
/* Hash Compare, multi-part */
status = psa_hash_setup(&operation, alg);
if (status == PSA_SUCCESS) {
status = psa_hash_update(&operation, input->x, input->len);
if (status == PSA_SUCCESS) {
status = psa_hash_verify(&operation, reference_hash->x,
reference_hash->len);
TEST_EQUAL(status, expected_status);
} else {
TEST_EQUAL(status, expected_status);
}
} else {
TEST_EQUAL(status, expected_status);
}
exit:
PSA_ASSERT(psa_hash_abort(&operation));
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void hash_compute_compare(int alg_arg, data_t *input,
data_t *expected_output)
{
psa_algorithm_t alg = alg_arg;
uint8_t output[PSA_HASH_MAX_SIZE + 1];
size_t output_length = INVALID_EXPORT_LENGTH;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
size_t i;
PSA_ASSERT(psa_crypto_init());
/* Compute with tight buffer, one-shot */
PSA_ASSERT(psa_hash_compute(alg, input->x, input->len,
output, PSA_HASH_LENGTH(alg),
&output_length));
TEST_EQUAL(output_length, PSA_HASH_LENGTH(alg));
ASSERT_COMPARE(output, output_length,
expected_output->x, expected_output->len);
/* Compute with tight buffer, multi-part */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_update(&operation, input->x, input->len));
PSA_ASSERT(psa_hash_finish(&operation, output,
PSA_HASH_LENGTH(alg),
&output_length));
TEST_EQUAL(output_length, PSA_HASH_LENGTH(alg));
ASSERT_COMPARE(output, output_length,
expected_output->x, expected_output->len);
/* Compute with larger buffer, one-shot */
PSA_ASSERT(psa_hash_compute(alg, input->x, input->len,
output, sizeof(output),
&output_length));
TEST_EQUAL(output_length, PSA_HASH_LENGTH(alg));
ASSERT_COMPARE(output, output_length,
expected_output->x, expected_output->len);
/* Compute with larger buffer, multi-part */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_update(&operation, input->x, input->len));
PSA_ASSERT(psa_hash_finish(&operation, output,
sizeof(output), &output_length));
TEST_EQUAL(output_length, PSA_HASH_LENGTH(alg));
ASSERT_COMPARE(output, output_length,
expected_output->x, expected_output->len);
/* Compare with correct hash, one-shot */
PSA_ASSERT(psa_hash_compare(alg, input->x, input->len,
output, output_length));
/* Compare with correct hash, multi-part */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_update(&operation, input->x, input->len));
PSA_ASSERT(psa_hash_verify(&operation, output,
output_length));
/* Compare with trailing garbage, one-shot */
TEST_EQUAL(psa_hash_compare(alg, input->x, input->len,
output, output_length + 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Compare with trailing garbage, multi-part */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_update(&operation, input->x, input->len));
TEST_EQUAL(psa_hash_verify(&operation, output, output_length + 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Compare with truncated hash, one-shot */
TEST_EQUAL(psa_hash_compare(alg, input->x, input->len,
output, output_length - 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Compare with truncated hash, multi-part */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_update(&operation, input->x, input->len));
TEST_EQUAL(psa_hash_verify(&operation, output, output_length - 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Compare with corrupted value */
for (i = 0; i < output_length; i++) {
mbedtls_test_set_step(i);
output[i] ^= 1;
/* One-shot */
TEST_EQUAL(psa_hash_compare(alg, input->x, input->len,
output, output_length),
PSA_ERROR_INVALID_SIGNATURE);
/* Multi-Part */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_update(&operation, input->x, input->len));
TEST_EQUAL(psa_hash_verify(&operation, output, output_length),
PSA_ERROR_INVALID_SIGNATURE);
output[i] ^= 1;
}
exit:
PSA_ASSERT(psa_hash_abort(&operation));
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_bad_order()
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char input[] = "";
/* SHA-256 hash of an empty string */
const unsigned char valid_hash[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8,
0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
};
unsigned char hash[sizeof(valid_hash)] = { 0 };
size_t hash_len;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
PSA_ASSERT(psa_crypto_init());
/* Call setup twice in a row. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_hash_setup(&operation, alg),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_hash_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Call update without calling setup beforehand. */
TEST_EQUAL(psa_hash_update(&operation, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
/* Check that update calls abort on error. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
operation.id = UINT_MAX;
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_hash_update(&operation, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_hash_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Call update after finish. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_finish(&operation,
hash, sizeof(hash), &hash_len));
TEST_EQUAL(psa_hash_update(&operation, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
/* Call verify without calling setup beforehand. */
TEST_EQUAL(psa_hash_verify(&operation,
valid_hash, sizeof(valid_hash)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
/* Call verify after finish. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_finish(&operation,
hash, sizeof(hash), &hash_len));
TEST_EQUAL(psa_hash_verify(&operation,
valid_hash, sizeof(valid_hash)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
/* Call verify twice in a row. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
PSA_ASSERT(psa_hash_verify(&operation,
valid_hash, sizeof(valid_hash)));
ASSERT_OPERATION_IS_INACTIVE(operation);
TEST_EQUAL(psa_hash_verify(&operation,
valid_hash, sizeof(valid_hash)),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_hash_abort(&operation));
/* Call finish without calling setup beforehand. */
TEST_EQUAL(psa_hash_finish(&operation,
hash, sizeof(hash), &hash_len),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
/* Call finish twice in a row. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_finish(&operation,
hash, sizeof(hash), &hash_len));
TEST_EQUAL(psa_hash_finish(&operation,
hash, sizeof(hash), &hash_len),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
/* Call finish after calling verify. */
PSA_ASSERT(psa_hash_setup(&operation, alg));
PSA_ASSERT(psa_hash_verify(&operation,
valid_hash, sizeof(valid_hash)));
TEST_EQUAL(psa_hash_finish(&operation,
hash, sizeof(hash), &hash_len),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_abort(&operation));
exit:
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_verify_bad_args()
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
/* SHA-256 hash of an empty string with 2 extra bytes (0xaa and 0xbb)
* appended to it */
unsigned char hash[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8,
0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55, 0xaa, 0xbb
};
size_t expected_size = PSA_HASH_LENGTH(alg);
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
PSA_ASSERT(psa_crypto_init());
/* psa_hash_verify with a smaller hash than expected */
PSA_ASSERT(psa_hash_setup(&operation, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_hash_verify(&operation, hash, expected_size - 1),
PSA_ERROR_INVALID_SIGNATURE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_hash_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* psa_hash_verify with a non-matching hash */
PSA_ASSERT(psa_hash_setup(&operation, alg));
TEST_EQUAL(psa_hash_verify(&operation, hash + 1, expected_size),
PSA_ERROR_INVALID_SIGNATURE);
/* psa_hash_verify with a hash longer than expected */
PSA_ASSERT(psa_hash_setup(&operation, alg));
TEST_EQUAL(psa_hash_verify(&operation, hash, sizeof(hash)),
PSA_ERROR_INVALID_SIGNATURE);
exit:
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_finish_bad_args()
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
size_t expected_size = PSA_HASH_LENGTH(alg);
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT(psa_crypto_init());
/* psa_hash_finish with a smaller hash buffer than expected */
PSA_ASSERT(psa_hash_setup(&operation, alg));
TEST_EQUAL(psa_hash_finish(&operation,
hash, expected_size - 1, &hash_len),
PSA_ERROR_BUFFER_TOO_SMALL);
exit:
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_clone_source_state()
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_hash_operation_t op_source = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_setup = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_finished = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_aborted = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT(psa_crypto_init());
PSA_ASSERT(psa_hash_setup(&op_source, alg));
PSA_ASSERT(psa_hash_setup(&op_setup, alg));
PSA_ASSERT(psa_hash_setup(&op_finished, alg));
PSA_ASSERT(psa_hash_finish(&op_finished,
hash, sizeof(hash), &hash_len));
PSA_ASSERT(psa_hash_setup(&op_aborted, alg));
PSA_ASSERT(psa_hash_abort(&op_aborted));
TEST_EQUAL(psa_hash_clone(&op_source, &op_setup),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_hash_clone(&op_source, &op_init));
PSA_ASSERT(psa_hash_finish(&op_init,
hash, sizeof(hash), &hash_len));
PSA_ASSERT(psa_hash_clone(&op_source, &op_finished));
PSA_ASSERT(psa_hash_finish(&op_finished,
hash, sizeof(hash), &hash_len));
PSA_ASSERT(psa_hash_clone(&op_source, &op_aborted));
PSA_ASSERT(psa_hash_finish(&op_aborted,
hash, sizeof(hash), &hash_len));
exit:
psa_hash_abort(&op_source);
psa_hash_abort(&op_init);
psa_hash_abort(&op_setup);
psa_hash_abort(&op_finished);
psa_hash_abort(&op_aborted);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256 */
void hash_clone_target_state()
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_hash_operation_t op_init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_setup = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_finished = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_aborted = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_target = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT(psa_crypto_init());
PSA_ASSERT(psa_hash_setup(&op_setup, alg));
PSA_ASSERT(psa_hash_setup(&op_finished, alg));
PSA_ASSERT(psa_hash_finish(&op_finished,
hash, sizeof(hash), &hash_len));
PSA_ASSERT(psa_hash_setup(&op_aborted, alg));
PSA_ASSERT(psa_hash_abort(&op_aborted));
PSA_ASSERT(psa_hash_clone(&op_setup, &op_target));
PSA_ASSERT(psa_hash_finish(&op_target,
hash, sizeof(hash), &hash_len));
TEST_EQUAL(psa_hash_clone(&op_init, &op_target), PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_hash_clone(&op_finished, &op_target),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_hash_clone(&op_aborted, &op_target),
PSA_ERROR_BAD_STATE);
exit:
psa_hash_abort(&op_target);
psa_hash_abort(&op_init);
psa_hash_abort(&op_setup);
psa_hash_abort(&op_finished);
psa_hash_abort(&op_aborted);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void mac_operation_init()
{
const uint8_t input[1] = { 0 };
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to suppress the Clang warning for the test. */
psa_mac_operation_t func = psa_mac_operation_init();
psa_mac_operation_t init = PSA_MAC_OPERATION_INIT;
psa_mac_operation_t zero;
memset(&zero, 0, sizeof(zero));
/* A freshly-initialized MAC operation should not be usable. */
TEST_EQUAL(psa_mac_update(&func,
input, sizeof(input)),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_mac_update(&init,
input, sizeof(input)),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_mac_update(&zero,
input, sizeof(input)),
PSA_ERROR_BAD_STATE);
/* A default MAC operation should be abortable without error. */
PSA_ASSERT(psa_mac_abort(&func));
PSA_ASSERT(psa_mac_abort(&init));
PSA_ASSERT(psa_mac_abort(&zero));
}
/* END_CASE */
/* BEGIN_CASE */
void mac_setup(int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg)
{
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
#if defined(KNOWN_SUPPORTED_MAC_ALG)
const uint8_t smoke_test_key_data[16] = "kkkkkkkkkkkkkkkk";
#endif
PSA_ASSERT(psa_crypto_init());
if (!exercise_mac_setup(key_type, key->x, key->len, alg,
&operation, &status)) {
goto exit;
}
TEST_EQUAL(status, expected_status);
/* The operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_MAC_ALG)
if (!exercise_mac_setup(KNOWN_SUPPORTED_MAC_KEY_TYPE,
smoke_test_key_data,
sizeof(smoke_test_key_data),
KNOWN_SUPPORTED_MAC_ALG,
&operation, &status)) {
goto exit;
}
TEST_EQUAL(status, PSA_SUCCESS);
#endif
exit:
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_KEY_TYPE_HMAC:PSA_WANT_ALG_HMAC:PSA_WANT_ALG_SHA_256 */
void mac_bad_order()
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = PSA_KEY_TYPE_HMAC;
psa_algorithm_t alg = PSA_ALG_HMAC(PSA_ALG_SHA_256);
const uint8_t key_data[] = {
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa
};
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
uint8_t sign_mac[PSA_MAC_MAX_SIZE + 10] = { 0 };
size_t sign_mac_length = 0;
const uint8_t input[] = { 0xbb, 0xbb, 0xbb, 0xbb };
const uint8_t verify_mac[] = {
0x74, 0x65, 0x93, 0x8c, 0xeb, 0x1d, 0xb3, 0x76, 0x5a, 0x38, 0xe7, 0xdd,
0x85, 0xc5, 0xad, 0x4f, 0x07, 0xe7, 0xd5, 0xb2, 0x64, 0xf0, 0x1a, 0x1a,
0x2c, 0xf9, 0x18, 0xca, 0x59, 0x7e, 0x5d, 0xf6
};
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data, sizeof(key_data),
&key));
/* Call update without calling setup beforehand. */
TEST_EQUAL(psa_mac_update(&operation, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Call sign finish without calling setup beforehand. */
TEST_EQUAL(psa_mac_sign_finish(&operation, sign_mac, sizeof(sign_mac),
&sign_mac_length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Call verify finish without calling setup beforehand. */
TEST_EQUAL(psa_mac_verify_finish(&operation,
verify_mac, sizeof(verify_mac)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Call setup twice in a row. */
PSA_ASSERT(psa_mac_sign_setup(&operation, key, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_mac_sign_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_mac_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Call update after sign finish. */
PSA_ASSERT(psa_mac_sign_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation, input, sizeof(input)));
PSA_ASSERT(psa_mac_sign_finish(&operation,
sign_mac, sizeof(sign_mac),
&sign_mac_length));
TEST_EQUAL(psa_mac_update(&operation, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Call update after verify finish. */
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation, input, sizeof(input)));
PSA_ASSERT(psa_mac_verify_finish(&operation,
verify_mac, sizeof(verify_mac)));
TEST_EQUAL(psa_mac_update(&operation, input, sizeof(input)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Call sign finish twice in a row. */
PSA_ASSERT(psa_mac_sign_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation, input, sizeof(input)));
PSA_ASSERT(psa_mac_sign_finish(&operation,
sign_mac, sizeof(sign_mac),
&sign_mac_length));
TEST_EQUAL(psa_mac_sign_finish(&operation,
sign_mac, sizeof(sign_mac),
&sign_mac_length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Call verify finish twice in a row. */
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation, input, sizeof(input)));
PSA_ASSERT(psa_mac_verify_finish(&operation,
verify_mac, sizeof(verify_mac)));
TEST_EQUAL(psa_mac_verify_finish(&operation,
verify_mac, sizeof(verify_mac)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_mac_abort(&operation));
/* Setup sign but try verify. */
PSA_ASSERT(psa_mac_sign_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation, input, sizeof(input)));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_mac_verify_finish(&operation,
verify_mac, sizeof(verify_mac)),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_mac_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Setup verify but try sign. */
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation, input, sizeof(input)));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_mac_sign_finish(&operation,
sign_mac, sizeof(sign_mac),
&sign_mac_length),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_mac_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_destroy_key(key));
exit:
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void mac_sign_verify_multi(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input,
int is_verify,
data_t *expected_mac)
{
size_t data_part_len = 0;
for (data_part_len = 1; data_part_len <= input->len; data_part_len++) {
/* Split data into length(data_part_len) parts. */
mbedtls_test_set_step(2000 + data_part_len);
if (mac_multipart_internal_func(key_type_arg, key_data,
alg_arg,
input, data_part_len,
expected_mac,
is_verify, 0) == 0) {
break;
}
/* length(0) part, length(data_part_len) part, length(0) part... */
mbedtls_test_set_step(3000 + data_part_len);
if (mac_multipart_internal_func(key_type_arg, key_data,
alg_arg,
input, data_part_len,
expected_mac,
is_verify, 1) == 0) {
break;
}
}
/* Goto is required to silence warnings about unused labels, as we
* don't actually do any test assertions in this function. */
goto exit;
}
/* END_CASE */
/* BEGIN_CASE */
void mac_sign(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input,
data_t *expected_mac)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *actual_mac = NULL;
size_t mac_buffer_size =
PSA_MAC_LENGTH(key_type, PSA_BYTES_TO_BITS(key_data->len), alg);
size_t mac_length = 0;
const size_t output_sizes_to_test[] = {
0,
1,
expected_mac->len - 1,
expected_mac->len,
expected_mac->len + 1,
};
TEST_LE_U(mac_buffer_size, PSA_MAC_MAX_SIZE);
/* We expect PSA_MAC_LENGTH to be exact. */
TEST_ASSERT(expected_mac->len == mac_buffer_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
for (size_t i = 0; i < ARRAY_LENGTH(output_sizes_to_test); i++) {
const size_t output_size = output_sizes_to_test[i];
psa_status_t expected_status =
(output_size >= expected_mac->len ? PSA_SUCCESS :
PSA_ERROR_BUFFER_TOO_SMALL);
mbedtls_test_set_step(output_size);
ASSERT_ALLOC(actual_mac, output_size);
/* Calculate the MAC, one-shot case. */
TEST_EQUAL(psa_mac_compute(key, alg,
input->x, input->len,
actual_mac, output_size, &mac_length),
expected_status);
if (expected_status == PSA_SUCCESS) {
ASSERT_COMPARE(expected_mac->x, expected_mac->len,
actual_mac, mac_length);
}
if (output_size > 0) {
memset(actual_mac, 0, output_size);
}
/* Calculate the MAC, multi-part case. */
PSA_ASSERT(psa_mac_sign_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation,
input->x, input->len));
TEST_EQUAL(psa_mac_sign_finish(&operation,
actual_mac, output_size,
&mac_length),
expected_status);
PSA_ASSERT(psa_mac_abort(&operation));
if (expected_status == PSA_SUCCESS) {
ASSERT_COMPARE(expected_mac->x, expected_mac->len,
actual_mac, mac_length);
}
mbedtls_free(actual_mac);
actual_mac = NULL;
}
exit:
psa_mac_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
mbedtls_free(actual_mac);
}
/* END_CASE */
/* BEGIN_CASE */
void mac_verify(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input,
data_t *expected_mac)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *perturbed_mac = NULL;
TEST_LE_U(expected_mac->len, PSA_MAC_MAX_SIZE);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Verify correct MAC, one-shot case. */
PSA_ASSERT(psa_mac_verify(key, alg, input->x, input->len,
expected_mac->x, expected_mac->len));
/* Verify correct MAC, multi-part case. */
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation,
input->x, input->len));
PSA_ASSERT(psa_mac_verify_finish(&operation,
expected_mac->x,
expected_mac->len));
/* Test a MAC that's too short, one-shot case. */
TEST_EQUAL(psa_mac_verify(key, alg,
input->x, input->len,
expected_mac->x,
expected_mac->len - 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Test a MAC that's too short, multi-part case. */
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation,
input->x, input->len));
TEST_EQUAL(psa_mac_verify_finish(&operation,
expected_mac->x,
expected_mac->len - 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Test a MAC that's too long, one-shot case. */
ASSERT_ALLOC(perturbed_mac, expected_mac->len + 1);
memcpy(perturbed_mac, expected_mac->x, expected_mac->len);
TEST_EQUAL(psa_mac_verify(key, alg,
input->x, input->len,
perturbed_mac, expected_mac->len + 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Test a MAC that's too long, multi-part case. */
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation,
input->x, input->len));
TEST_EQUAL(psa_mac_verify_finish(&operation,
perturbed_mac,
expected_mac->len + 1),
PSA_ERROR_INVALID_SIGNATURE);
/* Test changing one byte. */
for (size_t i = 0; i < expected_mac->len; i++) {
mbedtls_test_set_step(i);
perturbed_mac[i] ^= 1;
TEST_EQUAL(psa_mac_verify(key, alg,
input->x, input->len,
perturbed_mac, expected_mac->len),
PSA_ERROR_INVALID_SIGNATURE);
PSA_ASSERT(psa_mac_verify_setup(&operation, key, alg));
PSA_ASSERT(psa_mac_update(&operation,
input->x, input->len));
TEST_EQUAL(psa_mac_verify_finish(&operation,
perturbed_mac,
expected_mac->len),
PSA_ERROR_INVALID_SIGNATURE);
perturbed_mac[i] ^= 1;
}
exit:
psa_mac_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
mbedtls_free(perturbed_mac);
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_operation_init()
{
const uint8_t input[1] = { 0 };
unsigned char output[1] = { 0 };
size_t output_length;
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to suppress the Clang warning for the test. */
psa_cipher_operation_t func = psa_cipher_operation_init();
psa_cipher_operation_t init = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t zero;
memset(&zero, 0, sizeof(zero));
/* A freshly-initialized cipher operation should not be usable. */
TEST_EQUAL(psa_cipher_update(&func,
input, sizeof(input),
output, sizeof(output),
&output_length),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_cipher_update(&init,
input, sizeof(input),
output, sizeof(output),
&output_length),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_cipher_update(&zero,
input, sizeof(input),
output, sizeof(output),
&output_length),
PSA_ERROR_BAD_STATE);
/* A default cipher operation should be abortable without error. */
PSA_ASSERT(psa_cipher_abort(&func));
PSA_ASSERT(psa_cipher_abort(&init));
PSA_ASSERT(psa_cipher_abort(&zero));
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_setup(int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg)
{
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_status_t status;
#if defined(KNOWN_SUPPORTED_CIPHER_ALG)
const uint8_t smoke_test_key_data[16] = "kkkkkkkkkkkkkkkk";
#endif
PSA_ASSERT(psa_crypto_init());
if (!exercise_cipher_setup(key_type, key->x, key->len, alg,
&operation, &status)) {
goto exit;
}
TEST_EQUAL(status, expected_status);
/* The operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_CIPHER_ALG)
if (!exercise_cipher_setup(KNOWN_SUPPORTED_CIPHER_KEY_TYPE,
smoke_test_key_data,
sizeof(smoke_test_key_data),
KNOWN_SUPPORTED_CIPHER_ALG,
&operation, &status)) {
goto exit;
}
TEST_EQUAL(status, PSA_SUCCESS);
#endif
exit:
psa_cipher_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_KEY_TYPE_AES:PSA_WANT_ALG_CBC_PKCS7 */
void cipher_bad_order()
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = PSA_KEY_TYPE_AES;
psa_algorithm_t alg = PSA_ALG_CBC_PKCS7;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
unsigned char iv[PSA_BLOCK_CIPHER_BLOCK_LENGTH(PSA_KEY_TYPE_AES)] = { 0 };
const uint8_t key_data[] = {
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa
};
const uint8_t text[] = {
0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb,
0xbb, 0xbb, 0xbb, 0xbb
};
uint8_t buffer[PSA_BLOCK_CIPHER_BLOCK_LENGTH(PSA_KEY_TYPE_AES)] = { 0 };
size_t length = 0;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data, sizeof(key_data),
&key));
/* Call encrypt setup twice in a row. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_cipher_encrypt_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Call decrypt setup twice in a row. */
PSA_ASSERT(psa_cipher_decrypt_setup(&operation, key, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_cipher_decrypt_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Generate an IV without calling setup beforehand. */
TEST_EQUAL(psa_cipher_generate_iv(&operation,
buffer, sizeof(buffer),
&length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Generate an IV twice in a row. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_generate_iv(&operation,
buffer, sizeof(buffer),
&length));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_cipher_generate_iv(&operation,
buffer, sizeof(buffer),
&length),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Generate an IV after it's already set. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_set_iv(&operation,
iv, sizeof(iv)));
TEST_EQUAL(psa_cipher_generate_iv(&operation,
buffer, sizeof(buffer),
&length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Set an IV without calling setup beforehand. */
TEST_EQUAL(psa_cipher_set_iv(&operation,
iv, sizeof(iv)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Set an IV after it's already set. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_set_iv(&operation,
iv, sizeof(iv)));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_cipher_set_iv(&operation,
iv, sizeof(iv)),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Set an IV after it's already generated. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_generate_iv(&operation,
buffer, sizeof(buffer),
&length));
TEST_EQUAL(psa_cipher_set_iv(&operation,
iv, sizeof(iv)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Call update without calling setup beforehand. */
TEST_EQUAL(psa_cipher_update(&operation,
text, sizeof(text),
buffer, sizeof(buffer),
&length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Call update without an IV where an IV is required. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_cipher_update(&operation,
text, sizeof(text),
buffer, sizeof(buffer),
&length),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Call update after finish. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_set_iv(&operation,
iv, sizeof(iv)));
PSA_ASSERT(psa_cipher_finish(&operation,
buffer, sizeof(buffer), &length));
TEST_EQUAL(psa_cipher_update(&operation,
text, sizeof(text),
buffer, sizeof(buffer),
&length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Call finish without calling setup beforehand. */
TEST_EQUAL(psa_cipher_finish(&operation,
buffer, sizeof(buffer), &length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
/* Call finish without an IV where an IV is required. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
/* Not calling update means we are encrypting an empty buffer, which is OK
* for cipher modes with padding. */
ASSERT_OPERATION_IS_ACTIVE(operation);
TEST_EQUAL(psa_cipher_finish(&operation,
buffer, sizeof(buffer), &length),
PSA_ERROR_BAD_STATE);
ASSERT_OPERATION_IS_INACTIVE(operation);
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_OPERATION_IS_INACTIVE(operation);
/* Call finish twice in a row. */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_set_iv(&operation,
iv, sizeof(iv)));
PSA_ASSERT(psa_cipher_finish(&operation,
buffer, sizeof(buffer), &length));
TEST_EQUAL(psa_cipher_finish(&operation,
buffer, sizeof(buffer), &length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_abort(&operation));
PSA_ASSERT(psa_destroy_key(key));
exit:
psa_cipher_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_fail(int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char iv[PSA_CIPHER_IV_MAX_SIZE] = { 0 };
size_t iv_size = PSA_CIPHER_IV_MAX_SIZE;
size_t iv_length = 0;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
if (PSA_ERROR_BAD_STATE != expected_status) {
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
output_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg,
input->len);
ASSERT_ALLOC(output, output_buffer_size);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
}
/* Encrypt, one-shot */
status = psa_cipher_encrypt(key, alg, input->x, input->len, output,
output_buffer_size, &output_length);
TEST_EQUAL(status, expected_status);
/* Encrypt, multi-part */
status = psa_cipher_encrypt_setup(&operation, key, alg);
if (status == PSA_SUCCESS) {
if (alg != PSA_ALG_ECB_NO_PADDING) {
PSA_ASSERT(psa_cipher_generate_iv(&operation,
iv, iv_size,
&iv_length));
}
status = psa_cipher_update(&operation, input->x, input->len,
output, output_buffer_size,
&function_output_length);
if (status == PSA_SUCCESS) {
output_length += function_output_length;
status = psa_cipher_finish(&operation, output + output_length,
output_buffer_size - output_length,
&function_output_length);
TEST_EQUAL(status, expected_status);
} else {
TEST_EQUAL(status, expected_status);
}
} else {
TEST_EQUAL(status, expected_status);
}
exit:
psa_cipher_abort(&operation);
mbedtls_free(output);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_validate_iv_length(int alg, int key_type, data_t *key_data,
data_t *input, int iv_length,
int expected_result)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t output_buffer_size = 0;
unsigned char *output = NULL;
output_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input->len);
ASSERT_ALLOC(output, output_buffer_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
TEST_EQUAL(expected_result, psa_cipher_set_iv(&operation, output,
iv_length));
exit:
psa_cipher_abort(&operation);
mbedtls_free(output);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_alg_without_iv(int alg_arg, int key_type_arg, data_t *key_data,
data_t *plaintext, data_t *ciphertext)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
uint8_t iv[1] = { 0x5a };
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length, length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
/* Validate size macros */
TEST_LE_U(ciphertext->len,
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext->len));
TEST_LE_U(PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext->len),
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(plaintext->len));
TEST_LE_U(plaintext->len,
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext->len));
TEST_LE_U(PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext->len),
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(ciphertext->len));
/* Set up key and output buffer */
psa_set_key_usage_flags(&attributes,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
output_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg,
plaintext->len);
ASSERT_ALLOC(output, output_buffer_size);
/* set_iv() is not allowed */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_cipher_set_iv(&operation, iv, sizeof(iv)),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_decrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_cipher_set_iv(&operation, iv, sizeof(iv)),
PSA_ERROR_BAD_STATE);
/* generate_iv() is not allowed */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_cipher_generate_iv(&operation, iv, sizeof(iv),
&length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_cipher_decrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_cipher_generate_iv(&operation, iv, sizeof(iv),
&length),
PSA_ERROR_BAD_STATE);
/* Multipart encryption */
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
output_length = 0;
length = ~0;
PSA_ASSERT(psa_cipher_update(&operation,
plaintext->x, plaintext->len,
output, output_buffer_size,
&length));
TEST_LE_U(length, output_buffer_size);
output_length += length;
PSA_ASSERT(psa_cipher_finish(&operation,
mbedtls_buffer_offset(output, output_length),
output_buffer_size - output_length,
&length));
output_length += length;
ASSERT_COMPARE(ciphertext->x, ciphertext->len,
output, output_length);
/* Multipart encryption */
PSA_ASSERT(psa_cipher_decrypt_setup(&operation, key, alg));
output_length = 0;
length = ~0;
PSA_ASSERT(psa_cipher_update(&operation,
ciphertext->x, ciphertext->len,
output, output_buffer_size,
&length));
TEST_LE_U(length, output_buffer_size);
output_length += length;
PSA_ASSERT(psa_cipher_finish(&operation,
mbedtls_buffer_offset(output, output_length),
output_buffer_size - output_length,
&length));
output_length += length;
ASSERT_COMPARE(plaintext->x, plaintext->len,
output, output_length);
/* One-shot encryption */
output_length = ~0;
PSA_ASSERT(psa_cipher_encrypt(key, alg, plaintext->x, plaintext->len,
output, output_buffer_size,
&output_length));
ASSERT_COMPARE(ciphertext->x, ciphertext->len,
output, output_length);
/* One-shot decryption */
output_length = ~0;
PSA_ASSERT(psa_cipher_decrypt(key, alg, ciphertext->x, ciphertext->len,
output, output_buffer_size,
&output_length));
ASSERT_COMPARE(plaintext->x, plaintext->len,
output, output_length);
exit:
PSA_ASSERT(psa_cipher_abort(&operation));
mbedtls_free(output);
psa_cipher_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_bad_key(int alg_arg, int key_type_arg, data_t *key_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t key_type = key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
/* Usage of either of these two size macros would cause divide by zero
* with incorrect key types previously. Input length should be irrelevant
* here. */
TEST_EQUAL(PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, 16),
0);
TEST_EQUAL(PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, 16), 0);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Should fail due to invalid alg type (to support invalid key type).
* Encrypt or decrypt will end up in the same place. */
status = psa_cipher_encrypt_setup(&operation, key, alg);
TEST_EQUAL(status, PSA_ERROR_INVALID_ARGUMENT);
exit:
psa_cipher_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_validation(int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t iv_size = PSA_CIPHER_IV_LENGTH(key_type, alg);
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
output1_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input->len);
output2_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input->len) +
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg);
ASSERT_ALLOC(output1, output1_buffer_size);
ASSERT_ALLOC(output2, output2_buffer_size);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* The one-shot cipher encryption uses generated iv so validating
the output is not possible. Validating with multipart encryption. */
PSA_ASSERT(psa_cipher_encrypt(key, alg, input->x, input->len, output1,
output1_buffer_size, &output1_length));
TEST_LE_U(output1_length,
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input->len));
TEST_LE_U(output1_length,
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input->len));
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_cipher_set_iv(&operation, output1, iv_size));
PSA_ASSERT(psa_cipher_update(&operation,
input->x, input->len,
output2, output2_buffer_size,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input->len));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input->len));
output2_length += function_output_length;
PSA_ASSERT(psa_cipher_finish(&operation,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE);
output2_length += function_output_length;
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_COMPARE(output1 + iv_size, output1_length - iv_size,
output2, output2_length);
exit:
psa_cipher_abort(&operation);
mbedtls_free(output1);
mbedtls_free(output2);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_multipart(int alg_arg, int key_type_arg,
data_t *key_data, data_t *iv,
data_t *input,
int first_part_size_arg,
int output1_length_arg, int output2_length_arg,
data_t *expected_output,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
size_t first_part_size = first_part_size_arg;
size_t output1_length = output1_length_arg;
size_t output2_length = output2_length_arg;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_cipher_encrypt_setup(&operation, key, alg));
if (iv->len > 0) {
PSA_ASSERT(psa_cipher_set_iv(&operation, iv->x, iv->len));
}
output_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input->len) +
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg);
ASSERT_ALLOC(output, output_buffer_size);
TEST_LE_U(first_part_size, input->len);
PSA_ASSERT(psa_cipher_update(&operation, input->x, first_part_size,
output, output_buffer_size,
&function_output_length));
TEST_ASSERT(function_output_length == output1_length);
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(first_part_size));
total_output_length += function_output_length;
if (first_part_size < input->len) {
PSA_ASSERT(psa_cipher_update(&operation,
input->x + first_part_size,
input->len - first_part_size,
(output_buffer_size == 0 ? NULL :
output + total_output_length),
output_buffer_size - total_output_length,
&function_output_length));
TEST_ASSERT(function_output_length == output2_length);
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type,
alg,
input->len - first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input->len));
total_output_length += function_output_length;
}
status = psa_cipher_finish(&operation,
(output_buffer_size == 0 ? NULL :
output + total_output_length),
output_buffer_size - total_output_length,
&function_output_length);
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE);
total_output_length += function_output_length;
TEST_EQUAL(status, expected_status);
if (expected_status == PSA_SUCCESS) {
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_COMPARE(expected_output->x, expected_output->len,
output, total_output_length);
}
exit:
psa_cipher_abort(&operation);
mbedtls_free(output);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_multipart(int alg_arg, int key_type_arg,
data_t *key_data, data_t *iv,
data_t *input,
int first_part_size_arg,
int output1_length_arg, int output2_length_arg,
data_t *expected_output,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t status;
psa_status_t expected_status = expected_status_arg;
size_t first_part_size = first_part_size_arg;
size_t output1_length = output1_length_arg;
size_t output2_length = output2_length_arg;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_cipher_decrypt_setup(&operation, key, alg));
if (iv->len > 0) {
PSA_ASSERT(psa_cipher_set_iv(&operation, iv->x, iv->len));
}
output_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input->len) +
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg);
ASSERT_ALLOC(output, output_buffer_size);
TEST_LE_U(first_part_size, input->len);
PSA_ASSERT(psa_cipher_update(&operation,
input->x, first_part_size,
output, output_buffer_size,
&function_output_length));
TEST_ASSERT(function_output_length == output1_length);
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(first_part_size));
total_output_length += function_output_length;
if (first_part_size < input->len) {
PSA_ASSERT(psa_cipher_update(&operation,
input->x + first_part_size,
input->len - first_part_size,
(output_buffer_size == 0 ? NULL :
output + total_output_length),
output_buffer_size - total_output_length,
&function_output_length));
TEST_ASSERT(function_output_length == output2_length);
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type,
alg,
input->len - first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input->len));
total_output_length += function_output_length;
}
status = psa_cipher_finish(&operation,
(output_buffer_size == 0 ? NULL :
output + total_output_length),
output_buffer_size - total_output_length,
&function_output_length);
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE);
total_output_length += function_output_length;
TEST_EQUAL(status, expected_status);
if (expected_status == PSA_SUCCESS) {
PSA_ASSERT(psa_cipher_abort(&operation));
ASSERT_COMPARE(expected_output->x, expected_output->len,
output, total_output_length);
}
exit:
psa_cipher_abort(&operation);
mbedtls_free(output);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_fail(int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *iv,
data_t *input_arg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char *input = NULL;
size_t input_buffer_size = 0;
unsigned char *output = NULL;
unsigned char *output_multi = NULL;
size_t output_buffer_size = 0;
size_t output_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
if (PSA_ERROR_BAD_STATE != expected_status) {
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
}
/* Allocate input buffer and copy the iv and the plaintext */
input_buffer_size = ((size_t) input_arg->len + (size_t) iv->len);
if (input_buffer_size > 0) {
ASSERT_ALLOC(input, input_buffer_size);
memcpy(input, iv->x, iv->len);
memcpy(input + iv->len, input_arg->x, input_arg->len);
}
output_buffer_size = PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_buffer_size);
ASSERT_ALLOC(output, output_buffer_size);
/* Decrypt, one-short */
status = psa_cipher_decrypt(key, alg, input, input_buffer_size, output,
output_buffer_size, &output_length);
TEST_EQUAL(status, expected_status);
/* Decrypt, multi-part */
status = psa_cipher_decrypt_setup(&operation, key, alg);
if (status == PSA_SUCCESS) {
output_buffer_size = PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg,
input_arg->len) +
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg);
ASSERT_ALLOC(output_multi, output_buffer_size);
if (iv->len > 0) {
status = psa_cipher_set_iv(&operation, iv->x, iv->len);
if (status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_status);
}
}
if (status == PSA_SUCCESS) {
status = psa_cipher_update(&operation,
input_arg->x, input_arg->len,
output_multi, output_buffer_size,
&function_output_length);
if (status == PSA_SUCCESS) {
output_length = function_output_length;
status = psa_cipher_finish(&operation,
output_multi + output_length,
output_buffer_size - output_length,
&function_output_length);
TEST_EQUAL(status, expected_status);
} else {
TEST_EQUAL(status, expected_status);
}
} else {
TEST_EQUAL(status, expected_status);
}
} else {
TEST_EQUAL(status, expected_status);
}
exit:
psa_cipher_abort(&operation);
mbedtls_free(input);
mbedtls_free(output);
mbedtls_free(output_multi);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt(int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *iv,
data_t *input_arg,
data_t *expected_output)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *input = NULL;
size_t input_buffer_size = 0;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
/* Allocate input buffer and copy the iv and the plaintext */
input_buffer_size = ((size_t) input_arg->len + (size_t) iv->len);
if (input_buffer_size > 0) {
ASSERT_ALLOC(input, input_buffer_size);
memcpy(input, iv->x, iv->len);
memcpy(input + iv->len, input_arg->x, input_arg->len);
}
output_buffer_size = PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_buffer_size);
ASSERT_ALLOC(output, output_buffer_size);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_cipher_decrypt(key, alg, input, input_buffer_size, output,
output_buffer_size, &output_length));
TEST_LE_U(output_length,
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_buffer_size));
TEST_LE_U(output_length,
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_buffer_size));
ASSERT_COMPARE(expected_output->x, expected_output->len,
output, output_length);
exit:
mbedtls_free(input);
mbedtls_free(output);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output(int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output1 = NULL;
size_t output1_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_size = 0;
size_t output2_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
output1_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input->len);
ASSERT_ALLOC(output1, output1_size);
PSA_ASSERT(psa_cipher_encrypt(key, alg, input->x, input->len,
output1, output1_size,
&output1_length));
TEST_LE_U(output1_length,
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input->len));
TEST_LE_U(output1_length,
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input->len));
output2_size = output1_length;
ASSERT_ALLOC(output2, output2_size);
PSA_ASSERT(psa_cipher_decrypt(key, alg, output1, output1_length,
output2, output2_size,
&output2_length));
TEST_LE_U(output2_length,
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, output1_length));
TEST_LE_U(output2_length,
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(output1_length));
ASSERT_COMPARE(input->x, input->len, output2, output2_length);
exit:
mbedtls_free(output1);
mbedtls_free(output2);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output_multipart(int alg_arg,
int key_type_arg,
data_t *key_data,
data_t *input,
int first_part_size_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t first_part_size = first_part_size_arg;
unsigned char iv[16] = { 0 };
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation1 = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t operation2 = PSA_CIPHER_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_cipher_encrypt_setup(&operation1, key, alg));
PSA_ASSERT(psa_cipher_decrypt_setup(&operation2, key, alg));
if (alg != PSA_ALG_ECB_NO_PADDING) {
PSA_ASSERT(psa_cipher_generate_iv(&operation1,
iv, iv_size,
&iv_length));
}
output1_buffer_size = PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input->len);
TEST_LE_U(output1_buffer_size,
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input->len));
ASSERT_ALLOC(output1, output1_buffer_size);
TEST_LE_U(first_part_size, input->len);
PSA_ASSERT(psa_cipher_update(&operation1, input->x, first_part_size,
output1, output1_buffer_size,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(first_part_size));
output1_length += function_output_length;
PSA_ASSERT(psa_cipher_update(&operation1,
input->x + first_part_size,
input->len - first_part_size,
output1, output1_buffer_size,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type,
alg,
input->len - first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input->len - first_part_size));
output1_length += function_output_length;
PSA_ASSERT(psa_cipher_finish(&operation1,
output1 + output1_length,
output1_buffer_size - output1_length,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE);
output1_length += function_output_length;
PSA_ASSERT(psa_cipher_abort(&operation1));
output2_buffer_size = output1_length;
TEST_LE_U(output2_buffer_size,
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, output1_length));
TEST_LE_U(output2_buffer_size,
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(output1_length));
ASSERT_ALLOC(output2, output2_buffer_size);
if (iv_length > 0) {
PSA_ASSERT(psa_cipher_set_iv(&operation2,
iv, iv_length));
}
PSA_ASSERT(psa_cipher_update(&operation2, output1, first_part_size,
output2, output2_buffer_size,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(first_part_size));
output2_length += function_output_length;
PSA_ASSERT(psa_cipher_update(&operation2,
output1 + first_part_size,
output1_length - first_part_size,
output2, output2_buffer_size,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type,
alg,
output1_length - first_part_size));
TEST_LE_U(function_output_length,
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(output1_length - first_part_size));
output2_length += function_output_length;
PSA_ASSERT(psa_cipher_finish(&operation2,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg));
TEST_LE_U(function_output_length,
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE);
output2_length += function_output_length;
PSA_ASSERT(psa_cipher_abort(&operation2));
ASSERT_COMPARE(input->x, input->len, output2, output2_length);
exit:
psa_cipher_abort(&operation1);
psa_cipher_abort(&operation2);
mbedtls_free(output1);
mbedtls_free(output2);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt_decrypt(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int expected_result_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
unsigned char *output_data2 = NULL;
size_t output_length2 = 0;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_result = expected_result_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
output_size = input_data->len + PSA_AEAD_TAG_LENGTH(key_type, key_bits,
alg);
/* For all currently defined algorithms, PSA_AEAD_ENCRYPT_OUTPUT_SIZE
* should be exact. */
if (expected_result != PSA_ERROR_INVALID_ARGUMENT &&
expected_result != PSA_ERROR_NOT_SUPPORTED) {
TEST_EQUAL(output_size,
PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_data->len));
TEST_LE_U(output_size,
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(input_data->len));
}
ASSERT_ALLOC(output_data, output_size);
status = psa_aead_encrypt(key, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
TEST_EQUAL(status, expected_result);
if (PSA_SUCCESS == expected_result) {
ASSERT_ALLOC(output_data2, output_length);
/* For all currently defined algorithms, PSA_AEAD_DECRYPT_OUTPUT_SIZE
* should be exact. */
TEST_EQUAL(input_data->len,
PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, output_length));
TEST_LE_U(input_data->len,
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(output_length));
TEST_EQUAL(psa_aead_decrypt(key, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
output_data, output_length,
output_data2, output_length,
&output_length2),
expected_result);
ASSERT_COMPARE(input_data->x, input_data->len,
output_data2, output_length2);
}
exit:
psa_destroy_key(key);
mbedtls_free(output_data);
mbedtls_free(output_data2);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_result)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
output_size = input_data->len + PSA_AEAD_TAG_LENGTH(key_type, key_bits,
alg);
/* For all currently defined algorithms, PSA_AEAD_ENCRYPT_OUTPUT_SIZE
* should be exact. */
TEST_EQUAL(output_size,
PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_data->len));
TEST_LE_U(output_size,
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(input_data->len));
ASSERT_ALLOC(output_data, output_size);
status = psa_aead_encrypt(key, alg,
nonce->x, nonce->len,
additional_data->x, additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
PSA_ASSERT(status);
ASSERT_COMPARE(expected_result->x, expected_result->len,
output_data, output_length);
exit:
psa_destroy_key(key);
mbedtls_free(output_data);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_decrypt(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_data,
int expected_result_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_result = expected_result_arg;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
output_size = input_data->len - PSA_AEAD_TAG_LENGTH(key_type, key_bits,
alg);
if (expected_result != PSA_ERROR_INVALID_ARGUMENT &&
expected_result != PSA_ERROR_NOT_SUPPORTED) {
/* For all currently defined algorithms, PSA_AEAD_DECRYPT_OUTPUT_SIZE
* should be exact. */
TEST_EQUAL(output_size,
PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, input_data->len));
TEST_LE_U(output_size,
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(input_data->len));
}
ASSERT_ALLOC(output_data, output_size);
status = psa_aead_decrypt(key, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length);
/* If the operation is not supported, just skip and not fail in case the
* decryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
TEST_EQUAL(status, expected_result);
if (expected_result == PSA_SUCCESS) {
ASSERT_COMPARE(expected_data->x, expected_data->len,
output_data, output_length);
}
exit:
psa_destroy_key(key);
mbedtls_free(output_data);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_encrypt(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int do_set_lengths,
data_t *expected_output)
{
size_t ad_part_len = 0;
size_t data_part_len = 0;
set_lengths_method_t set_lengths_method = DO_NOT_SET_LENGTHS;
for (ad_part_len = 1; ad_part_len <= additional_data->len; ad_part_len++) {
mbedtls_test_set_step(ad_part_len);
if (do_set_lengths) {
if (ad_part_len & 0x01) {
set_lengths_method = SET_LENGTHS_AFTER_NONCE;
} else {
set_lengths_method = SET_LENGTHS_BEFORE_NONCE;
}
}
/* Split ad into length(ad_part_len) parts. */
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data,
ad_part_len,
input_data, -1,
set_lengths_method,
expected_output,
1, 0)) {
break;
}
/* length(0) part, length(ad_part_len) part, length(0) part... */
mbedtls_test_set_step(1000 + ad_part_len);
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data,
ad_part_len,
input_data, -1,
set_lengths_method,
expected_output,
1, 1)) {
break;
}
}
for (data_part_len = 1; data_part_len <= input_data->len; data_part_len++) {
/* Split data into length(data_part_len) parts. */
mbedtls_test_set_step(2000 + data_part_len);
if (do_set_lengths) {
if (data_part_len & 0x01) {
set_lengths_method = SET_LENGTHS_AFTER_NONCE;
} else {
set_lengths_method = SET_LENGTHS_BEFORE_NONCE;
}
}
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data, -1,
input_data, data_part_len,
set_lengths_method,
expected_output,
1, 0)) {
break;
}
/* length(0) part, length(data_part_len) part, length(0) part... */
mbedtls_test_set_step(3000 + data_part_len);
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data, -1,
input_data, data_part_len,
set_lengths_method,
expected_output,
1, 1)) {
break;
}
}
/* Goto is required to silence warnings about unused labels, as we
* don't actually do any test assertions in this function. */
goto exit;
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_decrypt(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int do_set_lengths,
data_t *expected_output)
{
size_t ad_part_len = 0;
size_t data_part_len = 0;
set_lengths_method_t set_lengths_method = DO_NOT_SET_LENGTHS;
for (ad_part_len = 1; ad_part_len <= additional_data->len; ad_part_len++) {
/* Split ad into length(ad_part_len) parts. */
mbedtls_test_set_step(ad_part_len);
if (do_set_lengths) {
if (ad_part_len & 0x01) {
set_lengths_method = SET_LENGTHS_AFTER_NONCE;
} else {
set_lengths_method = SET_LENGTHS_BEFORE_NONCE;
}
}
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data,
ad_part_len,
input_data, -1,
set_lengths_method,
expected_output,
0, 0)) {
break;
}
/* length(0) part, length(ad_part_len) part, length(0) part... */
mbedtls_test_set_step(1000 + ad_part_len);
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data,
ad_part_len,
input_data, -1,
set_lengths_method,
expected_output,
0, 1)) {
break;
}
}
for (data_part_len = 1; data_part_len <= input_data->len; data_part_len++) {
/* Split data into length(data_part_len) parts. */
mbedtls_test_set_step(2000 + data_part_len);
if (do_set_lengths) {
if (data_part_len & 0x01) {
set_lengths_method = SET_LENGTHS_AFTER_NONCE;
} else {
set_lengths_method = SET_LENGTHS_BEFORE_NONCE;
}
}
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data, -1,
input_data, data_part_len,
set_lengths_method,
expected_output,
0, 0)) {
break;
}
/* length(0) part, length(data_part_len) part, length(0) part... */
mbedtls_test_set_step(3000 + data_part_len);
if (!aead_multipart_internal_func(key_type_arg, key_data,
alg_arg, nonce,
additional_data, -1,
input_data, data_part_len,
set_lengths_method,
expected_output,
0, 1)) {
break;
}
}
/* Goto is required to silence warnings about unused labels, as we
* don't actually do any test assertions in this function. */
goto exit;
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_generate_nonce(int key_type_arg, data_t *key_data,
int alg_arg,
int nonce_length,
int expected_nonce_length_arg,
data_t *additional_data,
data_t *input_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
uint8_t nonce_buffer[PSA_AEAD_NONCE_MAX_SIZE];
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_status = expected_status_arg;
size_t actual_nonce_length = 0;
size_t expected_nonce_length = expected_nonce_length_arg;
unsigned char *output = NULL;
unsigned char *ciphertext = NULL;
size_t output_size = 0;
size_t ciphertext_size = 0;
size_t ciphertext_length = 0;
size_t tag_length = 0;
uint8_t tag_buffer[PSA_AEAD_TAG_MAX_SIZE];
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
output_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_data->len);
ASSERT_ALLOC(output, output_size);
ciphertext_size = PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg);
TEST_LE_U(ciphertext_size, PSA_AEAD_FINISH_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(ciphertext, ciphertext_size);
status = psa_aead_encrypt_setup(&operation, key, alg);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce_length);
}
PSA_ASSERT(status);
status = psa_aead_generate_nonce(&operation, nonce_buffer,
nonce_length,
&actual_nonce_length);
TEST_EQUAL(status, expected_status);
TEST_EQUAL(actual_nonce_length, expected_nonce_length);
if (expected_status == PSA_SUCCESS) {
TEST_EQUAL(actual_nonce_length, PSA_AEAD_NONCE_LENGTH(key_type,
alg));
}
TEST_LE_U(actual_nonce_length, PSA_AEAD_NONCE_MAX_SIZE);
if (expected_status == PSA_SUCCESS) {
/* Ensure we can still complete operation. */
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
PSA_ASSERT(psa_aead_update(&operation, input_data->x, input_data->len,
output, output_size,
&ciphertext_length));
PSA_ASSERT(psa_aead_finish(&operation, ciphertext, ciphertext_size,
&ciphertext_length, tag_buffer,
PSA_AEAD_TAG_MAX_SIZE, &tag_length));
}
exit:
psa_destroy_key(key);
mbedtls_free(output);
mbedtls_free(ciphertext);
psa_aead_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_set_nonce(int key_type_arg, data_t *key_data,
int alg_arg,
int nonce_length_arg,
int set_lengths_method_arg,
data_t *additional_data,
data_t *input_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
uint8_t *nonce_buffer = NULL;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_status = expected_status_arg;
unsigned char *output = NULL;
unsigned char *ciphertext = NULL;
size_t nonce_length;
size_t output_size = 0;
size_t ciphertext_size = 0;
size_t ciphertext_length = 0;
size_t tag_length = 0;
uint8_t tag_buffer[PSA_AEAD_TAG_MAX_SIZE];
size_t index = 0;
set_lengths_method_t set_lengths_method = set_lengths_method_arg;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
output_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_data->len);
ASSERT_ALLOC(output, output_size);
ciphertext_size = PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg);
TEST_LE_U(ciphertext_size, PSA_AEAD_FINISH_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(ciphertext, ciphertext_size);
status = psa_aead_encrypt_setup(&operation, key, alg);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce_length_arg);
}
PSA_ASSERT(status);
/* -1 == zero length and valid buffer, 0 = zero length and NULL buffer. */
if (nonce_length_arg == -1) {
/* Arbitrary size buffer, to test zero length valid buffer. */
ASSERT_ALLOC(nonce_buffer, 4);
nonce_length = 0;
} else {
/* If length is zero, then this will return NULL. */
nonce_length = (size_t) nonce_length_arg;
ASSERT_ALLOC(nonce_buffer, nonce_length);
if (nonce_buffer) {
for (index = 0; index < nonce_length - 1; ++index) {
nonce_buffer[index] = 'a' + index;
}
}
}
if (set_lengths_method == SET_LENGTHS_BEFORE_NONCE) {
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
}
status = psa_aead_set_nonce(&operation, nonce_buffer, nonce_length);
TEST_EQUAL(status, expected_status);
if (expected_status == PSA_SUCCESS) {
if (set_lengths_method == SET_LENGTHS_AFTER_NONCE) {
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
}
if (operation.alg == PSA_ALG_CCM && set_lengths_method == DO_NOT_SET_LENGTHS) {
expected_status = PSA_ERROR_BAD_STATE;
}
/* Ensure we can still complete operation, unless it's CCM and we didn't set lengths. */
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
expected_status);
TEST_EQUAL(psa_aead_update(&operation, input_data->x, input_data->len,
output, output_size,
&ciphertext_length),
expected_status);
TEST_EQUAL(psa_aead_finish(&operation, ciphertext, ciphertext_size,
&ciphertext_length, tag_buffer,
PSA_AEAD_TAG_MAX_SIZE, &tag_length),
expected_status);
}
exit:
psa_destroy_key(key);
mbedtls_free(output);
mbedtls_free(ciphertext);
mbedtls_free(nonce_buffer);
psa_aead_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_update_buffer_test(int key_type_arg, data_t *key_data,
int alg_arg,
int output_size_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_status = expected_status_arg;
unsigned char *output = NULL;
unsigned char *ciphertext = NULL;
size_t output_size = output_size_arg;
size_t ciphertext_size = 0;
size_t ciphertext_length = 0;
size_t tag_length = 0;
uint8_t tag_buffer[PSA_AEAD_TAG_MAX_SIZE];
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
ASSERT_ALLOC(output, output_size);
ciphertext_size = PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg);
ASSERT_ALLOC(ciphertext, ciphertext_size);
status = psa_aead_encrypt_setup(&operation, key, alg);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
PSA_ASSERT(status);
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
status = psa_aead_update(&operation, input_data->x, input_data->len,
output, output_size, &ciphertext_length);
TEST_EQUAL(status, expected_status);
if (expected_status == PSA_SUCCESS) {
/* Ensure we can still complete operation. */
PSA_ASSERT(psa_aead_finish(&operation, ciphertext, ciphertext_size,
&ciphertext_length, tag_buffer,
PSA_AEAD_TAG_MAX_SIZE, &tag_length));
}
exit:
psa_destroy_key(key);
mbedtls_free(output);
mbedtls_free(ciphertext);
psa_aead_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_finish_buffer_test(int key_type_arg, data_t *key_data,
int alg_arg,
int finish_ciphertext_size_arg,
int tag_size_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_status = expected_status_arg;
unsigned char *ciphertext = NULL;
unsigned char *finish_ciphertext = NULL;
unsigned char *tag_buffer = NULL;
size_t ciphertext_size = 0;
size_t ciphertext_length = 0;
size_t finish_ciphertext_size = (size_t) finish_ciphertext_size_arg;
size_t tag_size = (size_t) tag_size_arg;
size_t tag_length = 0;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
ciphertext_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_data->len);
ASSERT_ALLOC(ciphertext, ciphertext_size);
ASSERT_ALLOC(finish_ciphertext, finish_ciphertext_size);
ASSERT_ALLOC(tag_buffer, tag_size);
status = psa_aead_encrypt_setup(&operation, key, alg);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
PSA_ASSERT(status);
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
PSA_ASSERT(psa_aead_update(&operation, input_data->x, input_data->len,
ciphertext, ciphertext_size, &ciphertext_length));
/* Ensure we can still complete operation. */
status = psa_aead_finish(&operation, finish_ciphertext,
finish_ciphertext_size,
&ciphertext_length, tag_buffer,
tag_size, &tag_length);
TEST_EQUAL(status, expected_status);
exit:
psa_destroy_key(key);
mbedtls_free(ciphertext);
mbedtls_free(finish_ciphertext);
mbedtls_free(tag_buffer);
psa_aead_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_verify(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *tag,
int tag_usage_arg,
int expected_setup_status_arg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_status = expected_status_arg;
psa_status_t expected_setup_status = expected_setup_status_arg;
unsigned char *plaintext = NULL;
unsigned char *finish_plaintext = NULL;
size_t plaintext_size = 0;
size_t plaintext_length = 0;
size_t verify_plaintext_size = 0;
tag_usage_method_t tag_usage = tag_usage_arg;
unsigned char *tag_buffer = NULL;
size_t tag_size = 0;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
plaintext_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg,
input_data->len);
ASSERT_ALLOC(plaintext, plaintext_size);
verify_plaintext_size = PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg);
ASSERT_ALLOC(finish_plaintext, verify_plaintext_size);
status = psa_aead_decrypt_setup(&operation, key, alg);
/* If the operation is not supported, just skip and not fail in case the
* encryption involves a common limitation of cryptography hardwares and
* an alternative implementation. */
if (status == PSA_ERROR_NOT_SUPPORTED) {
MBEDTLS_TEST_PSA_SKIP_IF_ALT_AES_192(key_type, key_data->len * 8);
MBEDTLS_TEST_PSA_SKIP_IF_ALT_GCM_NOT_12BYTES_NONCE(alg, nonce->len);
}
TEST_EQUAL(status, expected_setup_status);
if (status != PSA_SUCCESS) {
goto exit;
}
PSA_ASSERT(status);
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
status = psa_aead_set_lengths(&operation, additional_data->len,
input_data->len);
PSA_ASSERT(status);
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
PSA_ASSERT(psa_aead_update(&operation, input_data->x,
input_data->len,
plaintext, plaintext_size,
&plaintext_length));
if (tag_usage == USE_GIVEN_TAG) {
tag_buffer = tag->x;
tag_size = tag->len;
}
status = psa_aead_verify(&operation, finish_plaintext,
verify_plaintext_size,
&plaintext_length,
tag_buffer, tag_size);
TEST_EQUAL(status, expected_status);
exit:
psa_destroy_key(key);
mbedtls_free(plaintext);
mbedtls_free(finish_plaintext);
psa_aead_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_setup(int key_type_arg, data_t *key_data,
int alg_arg, int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_status_t expected_status = expected_status_arg;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
status = psa_aead_encrypt_setup(&operation, key, alg);
TEST_EQUAL(status, expected_status);
psa_aead_abort(&operation);
status = psa_aead_decrypt_setup(&operation, key, alg);
TEST_EQUAL(status, expected_status);
exit:
psa_destroy_key(key);
psa_aead_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void aead_multipart_state_test(int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
unsigned char *output_data = NULL;
unsigned char *final_data = NULL;
size_t output_size = 0;
size_t finish_output_size = 0;
size_t output_length = 0;
size_t key_bits = 0;
size_t tag_length = 0;
size_t tag_size = 0;
size_t nonce_length = 0;
uint8_t nonce_buffer[PSA_AEAD_NONCE_MAX_SIZE];
uint8_t tag_buffer[PSA_AEAD_TAG_MAX_SIZE];
size_t output_part_length = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
tag_length = PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg);
TEST_LE_U(tag_length, PSA_AEAD_TAG_MAX_SIZE);
output_size = PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_data->len);
ASSERT_ALLOC(output_data, output_size);
finish_output_size = PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg);
TEST_LE_U(finish_output_size, PSA_AEAD_FINISH_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(final_data, finish_output_size);
/* Test all operations error without calling setup first. */
TEST_EQUAL(psa_aead_set_nonce(&operation, nonce->x, nonce->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
TEST_EQUAL(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
TEST_EQUAL(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
TEST_EQUAL(psa_aead_verify(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer,
tag_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for double setups. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_encrypt_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_decrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_decrypt_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_decrypt_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_decrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_encrypt_setup(&operation, key, alg),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for not setting a nonce. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_decrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_verify(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer,
tag_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for double setting nonce. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
TEST_EQUAL(psa_aead_set_nonce(&operation, nonce->x, nonce->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for double generating nonce. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
TEST_EQUAL(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for generate nonce then set and vice versa */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
TEST_EQUAL(psa_aead_set_nonce(&operation, nonce->x, nonce->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for generating nonce after calling set lengths */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
psa_aead_abort(&operation);
/* Test for generating nonce after calling set lengths with UINT32_MAX ad_data length */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len),
PSA_ERROR_INVALID_ARGUMENT);
TEST_EQUAL(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
}
psa_aead_abort(&operation);
/* Test for generating nonce after calling set lengths with SIZE_MAX ad_data length */
#if SIZE_MAX > UINT32_MAX
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
if (operation.alg == PSA_ALG_CCM || operation.alg == PSA_ALG_GCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, SIZE_MAX,
input_data->len),
PSA_ERROR_INVALID_ARGUMENT);
TEST_EQUAL(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_set_lengths(&operation, SIZE_MAX,
input_data->len));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
}
psa_aead_abort(&operation);
#endif
/* Test for calling set lengths with a UINT32_MAX ad_data length, after generating nonce */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len),
PSA_ERROR_INVALID_ARGUMENT);
} else {
PSA_ASSERT(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len));
}
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
/* Test for setting nonce after calling set lengths */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
psa_aead_abort(&operation);
/* Test for setting nonce after calling set lengths with UINT32_MAX ad_data length */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len),
PSA_ERROR_INVALID_ARGUMENT);
TEST_EQUAL(psa_aead_set_nonce(&operation, nonce->x, nonce->len),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
}
psa_aead_abort(&operation);
/* Test for setting nonce after calling set lengths with SIZE_MAX ad_data length */
#if SIZE_MAX > UINT32_MAX
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
if (operation.alg == PSA_ALG_CCM || operation.alg == PSA_ALG_GCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, SIZE_MAX,
input_data->len),
PSA_ERROR_INVALID_ARGUMENT);
TEST_EQUAL(psa_aead_set_nonce(&operation, nonce->x, nonce->len),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_set_lengths(&operation, SIZE_MAX,
input_data->len));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
}
psa_aead_abort(&operation);
#endif
/* Test for calling set lengths with an ad_data length of UINT32_MAX, after setting nonce */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len),
PSA_ERROR_INVALID_ARGUMENT);
} else {
PSA_ASSERT(psa_aead_set_lengths(&operation, UINT32_MAX,
input_data->len));
}
psa_aead_abort(&operation);
/* Test for setting nonce after calling set lengths with plaintext length of SIZE_MAX */
#if SIZE_MAX > UINT32_MAX
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
if (operation.alg == PSA_ALG_GCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
SIZE_MAX),
PSA_ERROR_INVALID_ARGUMENT);
TEST_EQUAL(psa_aead_set_nonce(&operation, nonce->x, nonce->len),
PSA_ERROR_BAD_STATE);
} else if (operation.alg != PSA_ALG_CCM) {
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
SIZE_MAX));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
}
psa_aead_abort(&operation);
#endif
/* Test for calling set lengths with a plaintext length of SIZE_MAX, after setting nonce */
#if SIZE_MAX > UINT32_MAX
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
if (operation.alg == PSA_ALG_GCM) {
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
SIZE_MAX),
PSA_ERROR_INVALID_ARGUMENT);
} else if (operation.alg != PSA_ALG_CCM) {
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
SIZE_MAX));
}
psa_aead_abort(&operation);
#endif
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
TEST_EQUAL(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for generating nonce in decrypt setup. */
PSA_ASSERT(psa_aead_decrypt_setup(&operation, key, alg));
TEST_EQUAL(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for setting lengths twice. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test for setting lengths after setting nonce + already starting data. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
if (operation.alg == PSA_ALG_CCM) {
PSA_ASSERT(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size));
} else {
PSA_ASSERT(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* Test for setting lengths after generating nonce + already starting data. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
if (operation.alg == PSA_ALG_CCM) {
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length),
PSA_ERROR_BAD_STATE);
} else {
PSA_ASSERT(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_generate_nonce(&operation, nonce_buffer,
PSA_AEAD_NONCE_MAX_SIZE,
&nonce_length));
if (operation.alg == PSA_ALG_CCM) {
PSA_ASSERT(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size));
} else {
PSA_ASSERT(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size));
TEST_EQUAL(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* Test for not sending any additional data or data after setting non zero
* lengths for them. (encrypt) */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
TEST_EQUAL(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* Test for not sending any additional data or data after setting non-zero
* lengths for them. (decrypt) */
PSA_ASSERT(psa_aead_decrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
TEST_EQUAL(psa_aead_verify(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer,
tag_length),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* Test for not sending any additional data after setting a non-zero length
* for it. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* Test for not sending any data after setting a non-zero length for it.*/
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
TEST_EQUAL(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* Test for sending too much additional data after setting lengths. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, 0, 0));
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
1),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* Test for sending too much data after setting lengths. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, 0, 0));
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* ------------------------------------------------------- */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
PSA_ASSERT(psa_aead_set_lengths(&operation, additional_data->len,
input_data->len));
PSA_ASSERT(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len));
PSA_ASSERT(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length));
TEST_EQUAL(psa_aead_update(&operation, input_data->x,
1, output_data,
output_size, &output_length),
PSA_ERROR_INVALID_ARGUMENT);
psa_aead_abort(&operation);
/* Test sending additional data after data. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
if (operation.alg != PSA_ALG_CCM) {
PSA_ASSERT(psa_aead_update(&operation, input_data->x,
input_data->len, output_data,
output_size, &output_length));
TEST_EQUAL(psa_aead_update_ad(&operation, additional_data->x,
additional_data->len),
PSA_ERROR_BAD_STATE);
}
psa_aead_abort(&operation);
/* Test calling finish on decryption. */
PSA_ASSERT(psa_aead_decrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
TEST_EQUAL(psa_aead_finish(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer, tag_length,
&tag_size),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
/* Test calling verify on encryption. */
PSA_ASSERT(psa_aead_encrypt_setup(&operation, key, alg));
PSA_ASSERT(psa_aead_set_nonce(&operation, nonce->x, nonce->len));
TEST_EQUAL(psa_aead_verify(&operation, final_data,
finish_output_size,
&output_part_length,
tag_buffer,
tag_length),
PSA_ERROR_BAD_STATE);
psa_aead_abort(&operation);
exit:
psa_destroy_key(key);
psa_aead_abort(&operation);
mbedtls_free(output_data);
mbedtls_free(final_data);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void signature_size(int type_arg,
int bits,
int alg_arg,
int expected_size_arg)
{
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
size_t actual_size = PSA_SIGN_OUTPUT_SIZE(type, bits, alg);
TEST_EQUAL(actual_size, (size_t) expected_size_arg);
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void sign_hash_deterministic(int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *output_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
/* Perform the signature. */
PSA_ASSERT(psa_sign_hash(key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length));
/* Verify that the signature is what is expected. */
ASSERT_COMPARE(output_data->x, output_data->len,
signature, signature_length);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* sign_hash_interruptible() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test interruptible sign hash with known outcomes (deterministic ECDSA
* and private keys / keypairs only).
*
* 2. Test the number of calls to psa_sign_hash_complete() required are as
* expected for different max_ops values.
*
* 3. Test that the number of ops done prior to start and after abort is zero
* and that each successful stage completes some ops (this is not mandated by
* the PSA specification, but is currently the case).
*
* 4. Test that calling psa_sign_hash_get_num_ops() multiple times between
* complete() calls does not alter the number of ops returned.
*/
void sign_hash_interruptible(int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *output_data, int max_ops_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_OPERATION_INCOMPLETE;
uint32_t num_ops = 0;
uint32_t max_ops = max_ops_arg;
size_t num_ops_prior = 0;
size_t num_completes = 0;
size_t min_completes = 0;
size_t max_completes = 0;
psa_sign_hash_interruptible_operation_t operation =
psa_sign_hash_interruptible_operation_init();
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
psa_interruptible_set_max_ops(max_ops);
interruptible_signverify_get_minmax_completes(max_ops, PSA_SUCCESS,
&min_completes, &max_completes);
num_ops_prior = psa_sign_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Start performing the signature. */
PSA_ASSERT(psa_sign_hash_start(&operation, key, alg,
input_data->x, input_data->len));
num_ops_prior = psa_sign_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Continue performing the signature until complete. */
do {
status = psa_sign_hash_complete(&operation, signature, signature_size,
&signature_length);
num_completes++;
if (status == PSA_SUCCESS || status == PSA_OPERATION_INCOMPLETE) {
num_ops = psa_sign_hash_get_num_ops(&operation);
/* We are asserting here that every complete makes progress
* (completes some ops), which is true of the internal
* implementation and probably any implementation, however this is
* not mandated by the PSA specification. */
TEST_ASSERT(num_ops > num_ops_prior);
num_ops_prior = num_ops;
/* Ensure calling get_num_ops() twice still returns the same
* number of ops as previously reported. */
num_ops = psa_sign_hash_get_num_ops(&operation);
TEST_EQUAL(num_ops, num_ops_prior);
}
} while (status == PSA_OPERATION_INCOMPLETE);
TEST_ASSERT(status == PSA_SUCCESS);
TEST_LE_U(min_completes, num_completes);
TEST_LE_U(num_completes, max_completes);
/* Verify that the signature is what is expected. */
ASSERT_COMPARE(output_data->x, output_data->len,
signature, signature_length);
PSA_ASSERT(psa_sign_hash_abort(&operation));
num_ops = psa_sign_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops == 0);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void sign_hash_fail(int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int signature_size_arg, int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ASSERT_ALLOC(signature, signature_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
actual_status = psa_sign_hash(key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length);
TEST_EQUAL(actual_status, expected_status);
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_LE_U(signature_length, signature_size);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* sign_hash_fail_interruptible() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test that various failure cases for interruptible sign hash fail with the
* correct error codes, and at the correct point (at start or during
* complete).
*
* 2. Test the number of calls to psa_sign_hash_complete() required are as
* expected for different max_ops values.
*
* 3. Test that the number of ops done prior to start and after abort is zero
* and that each successful stage completes some ops (this is not mandated by
* the PSA specification, but is currently the case).
*
* 4. Check that calling complete() when start() fails and complete()
* after completion results in a BAD_STATE error.
*
* 5. Check that calling start() again after start fails results in a BAD_STATE
* error.
*/
void sign_hash_fail_interruptible(int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int signature_size_arg,
int expected_start_status_arg,
int expected_complete_status_arg,
int max_ops_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_start_status = expected_start_status_arg;
psa_status_t expected_complete_status = expected_complete_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
uint32_t num_ops = 0;
uint32_t max_ops = max_ops_arg;
size_t num_ops_prior = 0;
size_t num_completes = 0;
size_t min_completes = 0;
size_t max_completes = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_sign_hash_interruptible_operation_t operation =
psa_sign_hash_interruptible_operation_init();
ASSERT_ALLOC(signature, signature_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
psa_interruptible_set_max_ops(max_ops);
interruptible_signverify_get_minmax_completes(max_ops,
expected_complete_status,
&min_completes,
&max_completes);
num_ops_prior = psa_sign_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Start performing the signature. */
actual_status = psa_sign_hash_start(&operation, key, alg,
input_data->x, input_data->len);
TEST_EQUAL(actual_status, expected_start_status);
if (expected_start_status != PSA_SUCCESS) {
/* Emulate poor application code, and call complete anyway, even though
* start failed. */
actual_status = psa_sign_hash_complete(&operation, signature,
signature_size,
&signature_length);
TEST_EQUAL(actual_status, PSA_ERROR_BAD_STATE);
/* Test that calling start again after failure also causes BAD_STATE. */
actual_status = psa_sign_hash_start(&operation, key, alg,
input_data->x, input_data->len);
TEST_EQUAL(actual_status, PSA_ERROR_BAD_STATE);
}
num_ops_prior = psa_sign_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Continue performing the signature until complete. */
do {
actual_status = psa_sign_hash_complete(&operation, signature,
signature_size,
&signature_length);
num_completes++;
if (actual_status == PSA_SUCCESS ||
actual_status == PSA_OPERATION_INCOMPLETE) {
num_ops = psa_sign_hash_get_num_ops(&operation);
/* We are asserting here that every complete makes progress
* (completes some ops), which is true of the internal
* implementation and probably any implementation, however this is
* not mandated by the PSA specification. */
TEST_ASSERT(num_ops > num_ops_prior);
num_ops_prior = num_ops;
}
} while (actual_status == PSA_OPERATION_INCOMPLETE);
TEST_EQUAL(actual_status, expected_complete_status);
/* Check that another complete returns BAD_STATE. */
actual_status = psa_sign_hash_complete(&operation, signature,
signature_size,
&signature_length);
TEST_EQUAL(actual_status, PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_sign_hash_abort(&operation));
num_ops = psa_sign_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops == 0);
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_LE_U(signature_length, signature_size);
TEST_LE_U(min_completes, num_completes);
TEST_LE_U(num_completes, max_completes);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void sign_verify_hash(int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
/* Perform the signature. */
PSA_ASSERT(psa_sign_hash(key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length));
/* Check that the signature length looks sensible. */
TEST_LE_U(signature_length, signature_size);
TEST_ASSERT(signature_length > 0);
/* Use the library to verify that the signature is correct. */
PSA_ASSERT(psa_verify_hash(key, alg,
input_data->x, input_data->len,
signature, signature_length));
if (input_data->len != 0) {
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
TEST_EQUAL(psa_verify_hash(key, alg,
input_data->x, input_data->len,
signature, signature_length),
PSA_ERROR_INVALID_SIGNATURE);
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* sign_verify_hash_interruptible() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test that we can sign an input hash with the given keypair and then
* afterwards verify that signature. This is currently the only way to test
* non deterministic ECDSA, but this test can also handle deterministic.
*
* 2. Test that after corrupting the hash, the verification detects an invalid
* signature.
*
* 3. Test the number of calls to psa_sign_hash_complete() required are as
* expected for different max_ops values.
*
* 4. Test that the number of ops done prior to starting signing and after abort
* is zero and that each successful signing stage completes some ops (this is
* not mandated by the PSA specification, but is currently the case).
*/
void sign_verify_hash_interruptible(int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int max_ops_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_OPERATION_INCOMPLETE;
uint32_t max_ops = max_ops_arg;
uint32_t num_ops = 0;
uint32_t num_ops_prior = 0;
size_t num_completes = 0;
size_t min_completes = 0;
size_t max_completes = 0;
psa_sign_hash_interruptible_operation_t sign_operation =
psa_sign_hash_interruptible_operation_init();
psa_verify_hash_interruptible_operation_t verify_operation =
psa_verify_hash_interruptible_operation_init();
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |
PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
psa_interruptible_set_max_ops(max_ops);
interruptible_signverify_get_minmax_completes(max_ops, PSA_SUCCESS,
&min_completes, &max_completes);
num_ops_prior = psa_sign_hash_get_num_ops(&sign_operation);
TEST_ASSERT(num_ops_prior == 0);
/* Start performing the signature. */
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
num_ops_prior = psa_sign_hash_get_num_ops(&sign_operation);
TEST_ASSERT(num_ops_prior == 0);
/* Continue performing the signature until complete. */
do {
status = psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length);
num_completes++;
if (status == PSA_SUCCESS || status == PSA_OPERATION_INCOMPLETE) {
num_ops = psa_sign_hash_get_num_ops(&sign_operation);
/* We are asserting here that every complete makes progress
* (completes some ops), which is true of the internal
* implementation and probably any implementation, however this is
* not mandated by the PSA specification. */
TEST_ASSERT(num_ops > num_ops_prior);
num_ops_prior = num_ops;
}
} while (status == PSA_OPERATION_INCOMPLETE);
TEST_ASSERT(status == PSA_SUCCESS);
TEST_LE_U(min_completes, num_completes);
TEST_LE_U(num_completes, max_completes);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
num_ops = psa_sign_hash_get_num_ops(&sign_operation);
TEST_ASSERT(num_ops == 0);
/* Check that the signature length looks sensible. */
TEST_LE_U(signature_length, signature_size);
TEST_ASSERT(signature_length > 0);
num_completes = 0;
/* Start verification. */
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
/* Continue performing the signature until complete. */
do {
status = psa_verify_hash_complete(&verify_operation);
num_completes++;
} while (status == PSA_OPERATION_INCOMPLETE);
TEST_ASSERT(status == PSA_SUCCESS);
TEST_LE_U(min_completes, num_completes);
TEST_LE_U(num_completes, max_completes);
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
verify_operation = psa_verify_hash_interruptible_operation_init();
if (input_data->len != 0) {
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
/* Start verification. */
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
/* Continue performing the signature until complete. */
do {
status = psa_verify_hash_complete(&verify_operation);
} while (status == PSA_OPERATION_INCOMPLETE);
TEST_ASSERT(status == PSA_ERROR_INVALID_SIGNATURE);
}
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void verify_hash(int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
TEST_LE_U(signature_data->len, PSA_SIGNATURE_MAX_SIZE);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_verify_hash(key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len));
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* verify_hash_interruptible() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test interruptible verify hash with known outcomes (deterministic ECDSA
* only). Given this test only does verification it can accept public keys as
* well as private keys / keypairs.
*
* 2. Test the number of calls to psa_verify_hash_complete() required are as
* expected for different max_ops values.
*
* 3. Test that the number of ops done prior to start and after abort is zero
* and that each successful stage completes some ops (this is not mandated by
* the PSA specification, but is currently the case).
*
* 4. Test that calling psa_sign_hash_get_num_ops() multiple times between
* complete() calls does not alter the number of ops returned.
*
* 5. Test that after corrupting the hash, the verification detects an invalid
* signature.
*/
void verify_hash_interruptible(int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data, int max_ops_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status = PSA_OPERATION_INCOMPLETE;
uint32_t num_ops = 0;
uint32_t max_ops = max_ops_arg;
size_t num_ops_prior = 0;
size_t num_completes = 0;
size_t min_completes = 0;
size_t max_completes = 0;
psa_verify_hash_interruptible_operation_t operation =
psa_verify_hash_interruptible_operation_init();
TEST_LE_U(signature_data->len, PSA_SIGNATURE_MAX_SIZE);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
psa_interruptible_set_max_ops(max_ops);
interruptible_signverify_get_minmax_completes(max_ops, PSA_SUCCESS,
&min_completes, &max_completes);
num_ops_prior = psa_verify_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Start verification. */
PSA_ASSERT(psa_verify_hash_start(&operation, key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len)
);
num_ops_prior = psa_verify_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Continue performing the signature until complete. */
do {
status = psa_verify_hash_complete(&operation);
num_completes++;
if (status == PSA_SUCCESS || status == PSA_OPERATION_INCOMPLETE) {
num_ops = psa_verify_hash_get_num_ops(&operation);
/* We are asserting here that every complete makes progress
* (completes some ops), which is true of the internal
* implementation and probably any implementation, however this is
* not mandated by the PSA specification. */
TEST_ASSERT(num_ops > num_ops_prior);
num_ops_prior = num_ops;
/* Ensure calling get_num_ops() twice still returns the same
* number of ops as previously reported. */
num_ops = psa_verify_hash_get_num_ops(&operation);
TEST_EQUAL(num_ops, num_ops_prior);
}
} while (status == PSA_OPERATION_INCOMPLETE);
TEST_ASSERT(status == PSA_SUCCESS);
TEST_LE_U(min_completes, num_completes);
TEST_LE_U(num_completes, max_completes);
PSA_ASSERT(psa_verify_hash_abort(&operation));
num_ops = psa_verify_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops == 0);
if (hash_data->len != 0) {
/* Flip a bit in the hash and verify that the signature is now detected
* as invalid. Flip a bit at the beginning, not at the end, because
* ECDSA may ignore the last few bits of the input. */
hash_data->x[0] ^= 1;
/* Start verification. */
PSA_ASSERT(psa_verify_hash_start(&operation, key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len));
/* Continue performing the signature until complete. */
do {
status = psa_verify_hash_complete(&operation);
} while (status == PSA_OPERATION_INCOMPLETE);
TEST_ASSERT(status == PSA_ERROR_INVALID_SIGNATURE);
}
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void verify_hash_fail(int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
actual_status = psa_verify_hash(key, alg,
hash_data->x, hash_data->len,
signature_data->x, signature_data->len);
TEST_EQUAL(actual_status, expected_status);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* verify_hash_fail_interruptible() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test that various failure cases for interruptible verify hash fail with
* the correct error codes, and at the correct point (at start or during
* complete).
*
* 2. Test the number of calls to psa_verify_hash_complete() required are as
* expected for different max_ops values.
*
* 3. Test that the number of ops done prior to start and after abort is zero
* and that each successful stage completes some ops (this is not mandated by
* the PSA specification, but is currently the case).
*
* 4. Check that calling complete() when start() fails and complete()
* after completion results in a BAD_STATE error.
*
* 5. Check that calling start() again after start fails results in a BAD_STATE
* error.
*/
void verify_hash_fail_interruptible(int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data,
int expected_start_status_arg,
int expected_complete_status_arg,
int max_ops_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_start_status = expected_start_status_arg;
psa_status_t expected_complete_status = expected_complete_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint32_t num_ops = 0;
uint32_t max_ops = max_ops_arg;
size_t num_ops_prior = 0;
size_t num_completes = 0;
size_t min_completes = 0;
size_t max_completes = 0;
psa_verify_hash_interruptible_operation_t operation =
psa_verify_hash_interruptible_operation_init();
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
psa_interruptible_set_max_ops(max_ops);
interruptible_signverify_get_minmax_completes(max_ops,
expected_complete_status,
&min_completes,
&max_completes);
num_ops_prior = psa_verify_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Start verification. */
actual_status = psa_verify_hash_start(&operation, key, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len);
TEST_EQUAL(actual_status, expected_start_status);
if (expected_start_status != PSA_SUCCESS) {
/* Emulate poor application code, and call complete anyway, even though
* start failed. */
actual_status = psa_verify_hash_complete(&operation);
TEST_EQUAL(actual_status, PSA_ERROR_BAD_STATE);
/* Test that calling start again after failure also causes BAD_STATE. */
actual_status = psa_verify_hash_start(&operation, key, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len);
TEST_EQUAL(actual_status, PSA_ERROR_BAD_STATE);
}
num_ops_prior = psa_verify_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops_prior == 0);
/* Continue performing the signature until complete. */
do {
actual_status = psa_verify_hash_complete(&operation);
num_completes++;
if (actual_status == PSA_SUCCESS ||
actual_status == PSA_OPERATION_INCOMPLETE) {
num_ops = psa_verify_hash_get_num_ops(&operation);
/* We are asserting here that every complete makes progress
* (completes some ops), which is true of the internal
* implementation and probably any implementation, however this is
* not mandated by the PSA specification. */
TEST_ASSERT(num_ops > num_ops_prior);
num_ops_prior = num_ops;
}
} while (actual_status == PSA_OPERATION_INCOMPLETE);
TEST_EQUAL(actual_status, expected_complete_status);
/* Check that another complete returns BAD_STATE. */
actual_status = psa_verify_hash_complete(&operation);
TEST_EQUAL(actual_status, PSA_ERROR_BAD_STATE);
TEST_LE_U(min_completes, num_completes);
TEST_LE_U(num_completes, max_completes);
PSA_ASSERT(psa_verify_hash_abort(&operation));
num_ops = psa_verify_hash_get_num_ops(&operation);
TEST_ASSERT(num_ops == 0);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* interruptible_signverify_hash_state_test() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test that calling the various interruptible sign and verify hash functions
* in incorrect orders returns BAD_STATE errors.
*/
void interruptible_signverify_hash_state_test(int key_type_arg,
data_t *key_data, int alg_arg, data_t *input_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_sign_hash_interruptible_operation_t sign_operation =
psa_sign_hash_interruptible_operation_init();
psa_verify_hash_interruptible_operation_t verify_operation =
psa_verify_hash_interruptible_operation_init();
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |
PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
psa_interruptible_set_max_ops(PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
/* --- Attempt completes prior to starts --- */
TEST_EQUAL(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
TEST_EQUAL(psa_verify_hash_complete(&verify_operation),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
/* --- Aborts in all other places. --- */
psa_sign_hash_abort(&sign_operation);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
psa_interruptible_set_max_ops(1);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
TEST_EQUAL(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length),
PSA_OPERATION_INCOMPLETE);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
psa_interruptible_set_max_ops(PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
PSA_ASSERT(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length));
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
psa_interruptible_set_max_ops(1);
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
TEST_EQUAL(psa_verify_hash_complete(&verify_operation),
PSA_OPERATION_INCOMPLETE);
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
psa_interruptible_set_max_ops(PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
PSA_ASSERT(psa_verify_hash_complete(&verify_operation));
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
/* --- Attempt double starts. --- */
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
TEST_EQUAL(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
TEST_EQUAL(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* interruptible_signverify_hash_edgecase_tests() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test various edge cases in the interruptible sign and verify hash
* interfaces.
*/
void interruptible_signverify_hash_edgecase_tests(int key_type_arg,
data_t *key_data, int alg_arg, data_t *input_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *input_buffer = NULL;
psa_sign_hash_interruptible_operation_t sign_operation =
psa_sign_hash_interruptible_operation_init();
psa_verify_hash_interruptible_operation_t verify_operation =
psa_verify_hash_interruptible_operation_init();
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |
PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
/* --- Change function inputs mid run, to cause an error (sign only,
* verify passes all inputs to start. --- */
psa_interruptible_set_max_ops(1);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
TEST_EQUAL(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length),
PSA_OPERATION_INCOMPLETE);
TEST_EQUAL(psa_sign_hash_complete(&sign_operation, signature,
0,
&signature_length),
PSA_ERROR_BUFFER_TOO_SMALL);
/* And test that this invalidates the operation. */
TEST_EQUAL(psa_sign_hash_complete(&sign_operation, signature,
0,
&signature_length),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
/* Trash the hash buffer in between start and complete, to ensure
* no reliance on external buffers. */
psa_interruptible_set_max_ops(PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
input_buffer = mbedtls_calloc(1, input_data->len);
TEST_ASSERT(input_buffer != NULL);
memcpy(input_buffer, input_data->x, input_data->len);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_buffer, input_data->len));
memset(input_buffer, '!', input_data->len);
mbedtls_free(input_buffer);
input_buffer = NULL;
PSA_ASSERT(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length));
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
input_buffer = mbedtls_calloc(1, input_data->len);
TEST_ASSERT(input_buffer != NULL);
memcpy(input_buffer, input_data->x, input_data->len);
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_buffer, input_data->len,
signature, signature_length));
memset(input_buffer, '!', input_data->len);
mbedtls_free(input_buffer);
input_buffer = NULL;
PSA_ASSERT(psa_verify_hash_complete(&verify_operation));
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE */
/**
* interruptible_signverify_hash_ops_tests() test intentions:
*
* Note: This test can currently only handle ECDSA.
*
* 1. Test that setting max ops is reflected in both interruptible sign and
* verify hash
* 2. Test that changing the value of max_ops to unlimited during an operation
* causes that operation to complete in the next call.
*
* 3. Test that calling get_num_ops() between complete calls gives the same
* result as calling get_num_ops() once at the end of the operation.
*/
void interruptible_signverify_hash_ops_tests(int key_type_arg,
data_t *key_data, int alg_arg,
data_t *input_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
uint32_t num_ops = 0;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_sign_hash_interruptible_operation_t sign_operation =
psa_sign_hash_interruptible_operation_init();
psa_verify_hash_interruptible_operation_t verify_operation =
psa_verify_hash_interruptible_operation_init();
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |
PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len, &key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Allocate a buffer which has the size advertised by the
* library. */
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
/* Check that default max ops gets set if we don't set it. */
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
TEST_EQUAL(psa_interruptible_get_max_ops(),
PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_size));
TEST_EQUAL(psa_interruptible_get_max_ops(),
PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
/* Check that max ops gets set properly. */
psa_interruptible_set_max_ops(0xbeef);
TEST_EQUAL(psa_interruptible_get_max_ops(), 0xbeef);
/* --- Ensure changing the max ops mid operation works (operation should
* complete successfully after setting max ops to unlimited --- */
psa_interruptible_set_max_ops(1);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
TEST_EQUAL(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length),
PSA_OPERATION_INCOMPLETE);
psa_interruptible_set_max_ops(PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
PSA_ASSERT(psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length));
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
psa_interruptible_set_max_ops(1);
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
TEST_EQUAL(psa_verify_hash_complete(&verify_operation),
PSA_OPERATION_INCOMPLETE);
psa_interruptible_set_max_ops(PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED);
PSA_ASSERT(psa_verify_hash_complete(&verify_operation));
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
/* --- Test that not calling get_num_ops inbetween complete calls does not
* result in lost ops. ---*/
psa_interruptible_set_max_ops(1);
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
/* Continue performing the signature until complete. */
do {
status = psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length);
num_ops = psa_sign_hash_get_num_ops(&sign_operation);
} while (status == PSA_OPERATION_INCOMPLETE);
PSA_ASSERT(status);
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
PSA_ASSERT(psa_sign_hash_start(&sign_operation, key, alg,
input_data->x, input_data->len));
/* Continue performing the signature until complete. */
do {
status = psa_sign_hash_complete(&sign_operation, signature,
signature_size,
&signature_length);
} while (status == PSA_OPERATION_INCOMPLETE);
PSA_ASSERT(status);
TEST_EQUAL(num_ops, psa_sign_hash_get_num_ops(&sign_operation));
PSA_ASSERT(psa_sign_hash_abort(&sign_operation));
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
/* Continue performing the verification until complete. */
do {
status = psa_verify_hash_complete(&verify_operation);
num_ops = psa_verify_hash_get_num_ops(&verify_operation);
} while (status == PSA_OPERATION_INCOMPLETE);
PSA_ASSERT(status);
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
PSA_ASSERT(psa_verify_hash_start(&verify_operation, key, alg,
input_data->x, input_data->len,
signature, signature_length));
/* Continue performing the verification until complete. */
do {
status = psa_verify_hash_complete(&verify_operation);
} while (status == PSA_OPERATION_INCOMPLETE);
PSA_ASSERT(status);
TEST_EQUAL(num_ops, psa_verify_hash_get_num_ops(&verify_operation));
PSA_ASSERT(psa_verify_hash_abort(&verify_operation));
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void sign_message_deterministic(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *output_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
PSA_ASSERT(psa_sign_message(key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length));
ASSERT_COMPARE(output_data->x, output_data->len,
signature, signature_length);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void sign_message_fail(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
int signature_size_arg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ASSERT_ALLOC(signature, signature_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
actual_status = psa_sign_message(key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length);
TEST_EQUAL(actual_status, expected_status);
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_LE_U(signature_length, signature_size);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void sign_verify_message(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE |
PSA_KEY_USAGE_VERIFY_MESSAGE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
signature_size = PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg);
TEST_ASSERT(signature_size != 0);
TEST_LE_U(signature_size, PSA_SIGNATURE_MAX_SIZE);
ASSERT_ALLOC(signature, signature_size);
PSA_ASSERT(psa_sign_message(key, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length));
TEST_LE_U(signature_length, signature_size);
TEST_ASSERT(signature_length > 0);
PSA_ASSERT(psa_verify_message(key, alg,
input_data->x, input_data->len,
signature, signature_length));
if (input_data->len != 0) {
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
TEST_EQUAL(psa_verify_message(key, alg,
input_data->x, input_data->len,
signature, signature_length),
PSA_ERROR_INVALID_SIGNATURE);
}
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(signature);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void verify_message(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *signature_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
TEST_LE_U(signature_data->len, PSA_SIGNATURE_MAX_SIZE);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_MESSAGE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_verify_message(key, alg,
input_data->x, input_data->len,
signature_data->x, signature_data->len));
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void verify_message_fail(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *hash_data,
data_t *signature_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_MESSAGE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
actual_status = psa_verify_message(key, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len);
TEST_EQUAL(actual_status, expected_status);
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int expected_output_length_arg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t expected_output_length = expected_output_length_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
/* Import the key */
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Determine the maximum output length */
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg);
TEST_LE_U(output_size, PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(output, output_size);
/* Encrypt the input */
actual_status = psa_asymmetric_encrypt(key, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length);
TEST_EQUAL(actual_status, expected_status);
if (actual_status == PSA_SUCCESS) {
TEST_EQUAL(output_length, expected_output_length);
} else {
TEST_LE_U(output_length, output_size);
}
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if (label->len == 0) {
output_length = ~0;
if (output_size != 0) {
memset(output, 0, output_size);
}
actual_status = psa_asymmetric_encrypt(key, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length);
TEST_EQUAL(actual_status, expected_status);
if (actual_status == PSA_SUCCESS) {
TEST_EQUAL(output_length, expected_output_length);
} else {
TEST_LE_U(output_length, output_size);
}
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(output);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt_decrypt(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
unsigned char *output2 = NULL;
size_t output2_size;
size_t output2_length = ~0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
/* Determine the maximum ciphertext length */
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg);
TEST_LE_U(output_size, PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(output, output_size);
output2_size = input_data->len;
TEST_LE_U(output2_size,
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg));
TEST_LE_U(output2_size, PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(output2, output2_size);
/* We test encryption by checking that encrypt-then-decrypt gives back
* the original plaintext because of the non-optional random
* part of encryption process which prevents using fixed vectors. */
PSA_ASSERT(psa_asymmetric_encrypt(key, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length));
/* We don't know what ciphertext length to expect, but check that
* it looks sensible. */
TEST_LE_U(output_length, output_size);
PSA_ASSERT(psa_asymmetric_decrypt(key, alg,
output, output_length,
label->x, label->len,
output2, output2_size,
&output2_length));
ASSERT_COMPARE(input_data->x, input_data->len,
output2, output2_length);
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(output);
mbedtls_free(output2);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
data_t *expected_data)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = ~0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Determine the maximum ciphertext length */
output_size = PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg);
TEST_LE_U(output_size, PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE);
ASSERT_ALLOC(output, output_size);
PSA_ASSERT(psa_asymmetric_decrypt(key, alg,
input_data->x, input_data->len,
label->x, label->len,
output,
output_size,
&output_length));
ASSERT_COMPARE(expected_data->x, expected_data->len,
output, output_length);
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if (label->len == 0) {
output_length = ~0;
if (output_size != 0) {
memset(output, 0, output_size);
}
PSA_ASSERT(psa_asymmetric_decrypt(key, alg,
input_data->x, input_data->len,
NULL, label->len,
output,
output_size,
&output_length));
ASSERT_COMPARE(expected_data->x, expected_data->len,
output, output_length);
}
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(output);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt_fail(int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int output_size_arg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = output_size_arg;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ASSERT_ALLOC(output, output_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
actual_status = psa_asymmetric_decrypt(key, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length);
TEST_EQUAL(actual_status, expected_status);
TEST_LE_U(output_length, output_size);
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if (label->len == 0) {
output_length = ~0;
if (output_size != 0) {
memset(output, 0, output_size);
}
actual_status = psa_asymmetric_decrypt(key, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length);
TEST_EQUAL(actual_status, expected_status);
TEST_LE_U(output_length, output_size);
}
exit:
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
mbedtls_free(output);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void key_derivation_init()
{
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to suppress the Clang warning for the test. */
size_t capacity;
psa_key_derivation_operation_t func = psa_key_derivation_operation_init();
psa_key_derivation_operation_t init = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_derivation_operation_t zero;
memset(&zero, 0, sizeof(zero));
/* A default operation should not be able to report its capacity. */
TEST_EQUAL(psa_key_derivation_get_capacity(&func, &capacity),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_key_derivation_get_capacity(&init, &capacity),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_key_derivation_get_capacity(&zero, &capacity),
PSA_ERROR_BAD_STATE);
/* A default operation should be abortable without error. */
PSA_ASSERT(psa_key_derivation_abort(&func));
PSA_ASSERT(psa_key_derivation_abort(&init));
PSA_ASSERT(psa_key_derivation_abort(&zero));
}
/* END_CASE */
/* BEGIN_CASE */
void derive_setup(int alg_arg, int expected_status_arg)
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_ASSERT(psa_crypto_init());
TEST_EQUAL(psa_key_derivation_setup(&operation, alg),
expected_status);
exit:
psa_key_derivation_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_set_capacity(int alg_arg, int capacity_arg,
int expected_status_arg)
{
psa_algorithm_t alg = alg_arg;
size_t capacity = capacity_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_ASSERT(psa_crypto_init());
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
TEST_EQUAL(psa_key_derivation_set_capacity(&operation, capacity),
expected_status);
exit:
psa_key_derivation_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void parse_binary_string_test(data_t *input, int output)
{
uint64_t value;
value = parse_binary_string(input);
TEST_EQUAL(value, output);
}
/* END_CASE */
/* BEGIN_CASE */
void derive_input(int alg_arg,
int step_arg1, int key_type_arg1, data_t *input1,
int expected_status_arg1,
int step_arg2, int key_type_arg2, data_t *input2,
int expected_status_arg2,
int step_arg3, int key_type_arg3, data_t *input3,
int expected_status_arg3,
int output_key_type_arg, int expected_output_status_arg)
{
psa_algorithm_t alg = alg_arg;
psa_key_derivation_step_t steps[] = { step_arg1, step_arg2, step_arg3 };
uint32_t key_types[] = { key_type_arg1, key_type_arg2, key_type_arg3 };
psa_status_t expected_statuses[] = { expected_status_arg1,
expected_status_arg2,
expected_status_arg3 };
data_t *inputs[] = { input1, input2, input3 };
mbedtls_svc_key_id_t keys[] = { MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT };
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t i;
psa_key_type_t output_key_type = output_key_type_arg;
mbedtls_svc_key_id_t output_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t expected_output_status = expected_output_status_arg;
psa_status_t actual_output_status;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
for (i = 0; i < ARRAY_LENGTH(steps); i++) {
mbedtls_test_set_step(i);
if (steps[i] == 0) {
/* Skip this step */
} else if (((psa_key_type_t) key_types[i]) != PSA_KEY_TYPE_NONE &&
key_types[i] != INPUT_INTEGER) {
psa_set_key_type(&attributes, ((psa_key_type_t) key_types[i]));
PSA_ASSERT(psa_import_key(&attributes,
inputs[i]->x, inputs[i]->len,
&keys[i]));
if (PSA_KEY_TYPE_IS_KEY_PAIR((psa_key_type_t) key_types[i]) &&
steps[i] == PSA_KEY_DERIVATION_INPUT_SECRET) {
// When taking a private key as secret input, use key agreement
// to add the shared secret to the derivation
TEST_EQUAL(mbedtls_test_psa_key_agreement_with_self(
&operation, keys[i]),
expected_statuses[i]);
} else {
TEST_EQUAL(psa_key_derivation_input_key(&operation, steps[i],
keys[i]),
expected_statuses[i]);
}
} else {
if (key_types[i] == INPUT_INTEGER) {
TEST_EQUAL(psa_key_derivation_input_integer(
&operation, steps[i],
parse_binary_string(inputs[i])),
expected_statuses[i]);
} else {
TEST_EQUAL(psa_key_derivation_input_bytes(
&operation, steps[i],
inputs[i]->x, inputs[i]->len),
expected_statuses[i]);
}
}
}
if (output_key_type != PSA_KEY_TYPE_NONE) {
psa_reset_key_attributes(&attributes);
psa_set_key_type(&attributes, output_key_type);
psa_set_key_bits(&attributes, 8);
actual_output_status =
psa_key_derivation_output_key(&attributes, &operation,
&output_key);
} else {
uint8_t buffer[1];
actual_output_status =
psa_key_derivation_output_bytes(&operation,
buffer, sizeof(buffer));
}
TEST_EQUAL(actual_output_status, expected_output_status);
exit:
psa_key_derivation_abort(&operation);
for (i = 0; i < ARRAY_LENGTH(keys); i++) {
psa_destroy_key(keys[i]);
}
psa_destroy_key(output_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE*/
void derive_input_invalid_cost(int alg_arg, int64_t cost)
{
psa_algorithm_t alg = alg_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
PSA_ASSERT(psa_crypto_init());
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
TEST_EQUAL(psa_key_derivation_input_integer(&operation,
PSA_KEY_DERIVATION_INPUT_COST,
cost),
PSA_ERROR_NOT_SUPPORTED);
exit:
psa_key_derivation_abort(&operation);
PSA_DONE();
}
/* END_CASE*/
/* BEGIN_CASE */
void derive_over_capacity(int alg_arg)
{
psa_algorithm_t alg = alg_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
size_t key_type = PSA_KEY_TYPE_DERIVE;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char input1[] = "Input 1";
size_t input1_length = sizeof(input1);
unsigned char input2[] = "Input 2";
size_t input2_length = sizeof(input2);
uint8_t buffer[42];
size_t capacity = sizeof(buffer);
const uint8_t key_data[22] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b };
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type);
PSA_ASSERT(psa_import_key(&attributes,
key_data, sizeof(key_data),
&key));
/* valid key derivation */
if (!mbedtls_test_psa_setup_key_derivation_wrap(&operation, key, alg,
input1, input1_length,
input2, input2_length,
capacity)) {
goto exit;
}
/* state of operation shouldn't allow additional generation */
TEST_EQUAL(psa_key_derivation_setup(&operation, alg),
PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_key_derivation_output_bytes(&operation, buffer, capacity));
TEST_EQUAL(psa_key_derivation_output_bytes(&operation, buffer, capacity),
PSA_ERROR_INSUFFICIENT_DATA);
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_actions_without_setup()
{
uint8_t output_buffer[16];
size_t buffer_size = 16;
size_t capacity = 0;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
TEST_ASSERT(psa_key_derivation_output_bytes(&operation,
output_buffer, buffer_size)
== PSA_ERROR_BAD_STATE);
TEST_ASSERT(psa_key_derivation_get_capacity(&operation, &capacity)
== PSA_ERROR_BAD_STATE);
PSA_ASSERT(psa_key_derivation_abort(&operation));
TEST_ASSERT(psa_key_derivation_output_bytes(&operation,
output_buffer, buffer_size)
== PSA_ERROR_BAD_STATE);
TEST_ASSERT(psa_key_derivation_get_capacity(&operation, &capacity)
== PSA_ERROR_BAD_STATE);
exit:
psa_key_derivation_abort(&operation);
}
/* END_CASE */
/* BEGIN_CASE */
void derive_output(int alg_arg,
int step1_arg, data_t *input1, int expected_status_arg1,
int step2_arg, data_t *input2, int expected_status_arg2,
int step3_arg, data_t *input3, int expected_status_arg3,
int step4_arg, data_t *input4, int expected_status_arg4,
data_t *key_agreement_peer_key,
int requested_capacity_arg,
data_t *expected_output1,
data_t *expected_output2,
int other_key_input_type,
int key_input_type,
int derive_type)
{
psa_algorithm_t alg = alg_arg;
psa_key_derivation_step_t steps[] = { step1_arg, step2_arg, step3_arg, step4_arg };
data_t *inputs[] = { input1, input2, input3, input4 };
mbedtls_svc_key_id_t keys[] = { MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT,
MBEDTLS_SVC_KEY_ID_INIT };
psa_status_t statuses[] = { expected_status_arg1, expected_status_arg2,
expected_status_arg3, expected_status_arg4 };
size_t requested_capacity = requested_capacity_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
uint8_t *expected_outputs[2] =
{ expected_output1->x, expected_output2->x };
size_t output_sizes[2] =
{ expected_output1->len, expected_output2->len };
size_t output_buffer_size = 0;
uint8_t *output_buffer = NULL;
size_t expected_capacity;
size_t current_capacity;
psa_key_attributes_t attributes1 = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t attributes2 = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t attributes3 = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t attributes4 = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_status_t status;
size_t i;
for (i = 0; i < ARRAY_LENGTH(expected_outputs); i++) {
if (output_sizes[i] > output_buffer_size) {
output_buffer_size = output_sizes[i];
}
if (output_sizes[i] == 0) {
expected_outputs[i] = NULL;
}
}
ASSERT_ALLOC(output_buffer, output_buffer_size);
PSA_ASSERT(psa_crypto_init());
/* Extraction phase. */
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
PSA_ASSERT(psa_key_derivation_set_capacity(&operation,
requested_capacity));
for (i = 0; i < ARRAY_LENGTH(steps); i++) {
switch (steps[i]) {
case 0:
break;
case PSA_KEY_DERIVATION_INPUT_COST:
TEST_EQUAL(psa_key_derivation_input_integer(
&operation, steps[i],
parse_binary_string(inputs[i])),
statuses[i]);
if (statuses[i] != PSA_SUCCESS) {
goto exit;
}
break;
case PSA_KEY_DERIVATION_INPUT_PASSWORD:
case PSA_KEY_DERIVATION_INPUT_SECRET:
switch (key_input_type) {
case 0: // input bytes
TEST_EQUAL(psa_key_derivation_input_bytes(
&operation, steps[i],
inputs[i]->x, inputs[i]->len),
statuses[i]);
if (statuses[i] != PSA_SUCCESS) {
goto exit;
}
break;
case 1: // input key
psa_set_key_usage_flags(&attributes1, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes1, alg);
psa_set_key_type(&attributes1, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&attributes1,
inputs[i]->x, inputs[i]->len,
&keys[i]));
if (PSA_ALG_IS_TLS12_PSK_TO_MS(alg)) {
PSA_ASSERT(psa_get_key_attributes(keys[i], &attributes1));
TEST_LE_U(PSA_BITS_TO_BYTES(psa_get_key_bits(&attributes1)),
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE);
}
TEST_EQUAL(psa_key_derivation_input_key(&operation,
steps[i],
keys[i]),
statuses[i]);
if (statuses[i] != PSA_SUCCESS) {
goto exit;
}
break;
default:
TEST_ASSERT(!"default case not supported");
break;
}
break;
case PSA_KEY_DERIVATION_INPUT_OTHER_SECRET:
switch (other_key_input_type) {
case 0: // input bytes
TEST_EQUAL(psa_key_derivation_input_bytes(&operation,
steps[i],
inputs[i]->x,
inputs[i]->len),
statuses[i]);
break;
case 1: // input key, type DERIVE
case 11: // input key, type RAW
psa_set_key_usage_flags(&attributes2, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes2, alg);
psa_set_key_type(&attributes2, PSA_KEY_TYPE_DERIVE);
// other secret of type RAW_DATA passed with input_key
if (other_key_input_type == 11) {
psa_set_key_type(&attributes2, PSA_KEY_TYPE_RAW_DATA);
}
PSA_ASSERT(psa_import_key(&attributes2,
inputs[i]->x, inputs[i]->len,
&keys[i]));
TEST_EQUAL(psa_key_derivation_input_key(&operation,
steps[i],
keys[i]),
statuses[i]);
break;
case 2: // key agreement
psa_set_key_usage_flags(&attributes3, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes3, alg);
psa_set_key_type(&attributes3,
PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1));
PSA_ASSERT(psa_import_key(&attributes3,
inputs[i]->x, inputs[i]->len,
&keys[i]));
TEST_EQUAL(psa_key_derivation_key_agreement(
&operation,
PSA_KEY_DERIVATION_INPUT_OTHER_SECRET,
keys[i], key_agreement_peer_key->x,
key_agreement_peer_key->len), statuses[i]);
break;
default:
TEST_ASSERT(!"default case not supported");
break;
}
if (statuses[i] != PSA_SUCCESS) {
goto exit;
}
break;
default:
TEST_EQUAL(psa_key_derivation_input_bytes(
&operation, steps[i],
inputs[i]->x, inputs[i]->len), statuses[i]);
if (statuses[i] != PSA_SUCCESS) {
goto exit;
}
break;
}
}
PSA_ASSERT(psa_key_derivation_get_capacity(&operation,
&current_capacity));
TEST_EQUAL(current_capacity, requested_capacity);
expected_capacity = requested_capacity;
if (derive_type == 1) { // output key
psa_status_t expected_status = PSA_ERROR_NOT_PERMITTED;
/* For output key derivation secret must be provided using
input key, otherwise operation is not permitted. */
if (key_input_type == 1) {
expected_status = PSA_SUCCESS;
}
psa_set_key_usage_flags(&attributes4, PSA_KEY_USAGE_EXPORT);
psa_set_key_algorithm(&attributes4, alg);
psa_set_key_type(&attributes4, PSA_KEY_TYPE_DERIVE);
psa_set_key_bits(&attributes4, PSA_BYTES_TO_BITS(requested_capacity));
TEST_EQUAL(psa_key_derivation_output_key(&attributes4, &operation,
&derived_key), expected_status);
} else { // output bytes
/* Expansion phase. */
for (i = 0; i < ARRAY_LENGTH(expected_outputs); i++) {
/* Read some bytes. */
status = psa_key_derivation_output_bytes(&operation,
output_buffer, output_sizes[i]);
if (expected_capacity == 0 && output_sizes[i] == 0) {
/* Reading 0 bytes when 0 bytes are available can go either way. */
TEST_ASSERT(status == PSA_SUCCESS ||
status == PSA_ERROR_INSUFFICIENT_DATA);
continue;
} else if (expected_capacity == 0 ||
output_sizes[i] > expected_capacity) {
/* Capacity exceeded. */
TEST_EQUAL(status, PSA_ERROR_INSUFFICIENT_DATA);
expected_capacity = 0;
continue;
}
/* Success. Check the read data. */
PSA_ASSERT(status);
if (output_sizes[i] != 0) {
ASSERT_COMPARE(output_buffer, output_sizes[i],
expected_outputs[i], output_sizes[i]);
}
/* Check the operation status. */
expected_capacity -= output_sizes[i];
PSA_ASSERT(psa_key_derivation_get_capacity(&operation,
&current_capacity));
TEST_EQUAL(expected_capacity, current_capacity);
}
}
PSA_ASSERT(psa_key_derivation_abort(&operation));
exit:
mbedtls_free(output_buffer);
psa_key_derivation_abort(&operation);
for (i = 0; i < ARRAY_LENGTH(keys); i++) {
psa_destroy_key(keys[i]);
}
psa_destroy_key(derived_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_full(int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int requested_capacity_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char output_buffer[16];
size_t expected_capacity = requested_capacity;
size_t current_capacity;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&key));
if (!mbedtls_test_psa_setup_key_derivation_wrap(&operation, key, alg,
input1->x, input1->len,
input2->x, input2->len,
requested_capacity)) {
goto exit;
}
PSA_ASSERT(psa_key_derivation_get_capacity(&operation,
&current_capacity));
TEST_EQUAL(current_capacity, expected_capacity);
/* Expansion phase. */
while (current_capacity > 0) {
size_t read_size = sizeof(output_buffer);
if (read_size > current_capacity) {
read_size = current_capacity;
}
PSA_ASSERT(psa_key_derivation_output_bytes(&operation,
output_buffer,
read_size));
expected_capacity -= read_size;
PSA_ASSERT(psa_key_derivation_get_capacity(&operation,
&current_capacity));
TEST_EQUAL(current_capacity, expected_capacity);
}
/* Check that the operation refuses to go over capacity. */
TEST_EQUAL(psa_key_derivation_output_bytes(&operation, output_buffer, 1),
PSA_ERROR_INSUFFICIENT_DATA);
PSA_ASSERT(psa_key_derivation_abort(&operation));
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_SHA_256:PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS */
void derive_ecjpake_to_pms(data_t *input, int expected_input_status_arg,
int derivation_step,
int capacity, int expected_capacity_status_arg,
data_t *expected_output,
int expected_output_status_arg)
{
psa_algorithm_t alg = PSA_ALG_TLS12_ECJPAKE_TO_PMS;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_derivation_step_t step = (psa_key_derivation_step_t) derivation_step;
uint8_t *output_buffer = NULL;
psa_status_t status;
psa_status_t expected_input_status = (psa_status_t) expected_input_status_arg;
psa_status_t expected_capacity_status = (psa_status_t) expected_capacity_status_arg;
psa_status_t expected_output_status = (psa_status_t) expected_output_status_arg;
ASSERT_ALLOC(output_buffer, expected_output->len);
PSA_ASSERT(psa_crypto_init());
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
TEST_EQUAL(psa_key_derivation_set_capacity(&operation, capacity),
expected_capacity_status);
TEST_EQUAL(psa_key_derivation_input_bytes(&operation,
step, input->x, input->len),
expected_input_status);
if (((psa_status_t) expected_input_status) != PSA_SUCCESS) {
goto exit;
}
status = psa_key_derivation_output_bytes(&operation, output_buffer,
expected_output->len);
TEST_EQUAL(status, expected_output_status);
if (expected_output->len != 0 && expected_output_status == PSA_SUCCESS) {
ASSERT_COMPARE(output_buffer, expected_output->len, expected_output->x,
expected_output->len);
}
exit:
mbedtls_free(output_buffer);
psa_key_derivation_abort(&operation);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_exercise(int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int derived_type_arg,
int derived_bits_arg,
int derived_usage_arg,
int derived_alg_arg)
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t derived_type = derived_type_arg;
size_t derived_bits = derived_bits_arg;
psa_key_usage_t derived_usage = derived_usage_arg;
psa_algorithm_t derived_alg = derived_alg_arg;
size_t capacity = PSA_BITS_TO_BYTES(derived_bits);
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&attributes, key_data->x, key_data->len,
&base_key));
/* Derive a key. */
if (!mbedtls_test_psa_setup_key_derivation_wrap(&operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
capacity)) {
goto exit;
}
psa_set_key_usage_flags(&attributes, derived_usage);
psa_set_key_algorithm(&attributes, derived_alg);
psa_set_key_type(&attributes, derived_type);
psa_set_key_bits(&attributes, derived_bits);
PSA_ASSERT(psa_key_derivation_output_key(&attributes, &operation,
&derived_key));
/* Test the key information */
PSA_ASSERT(psa_get_key_attributes(derived_key, &got_attributes));
TEST_EQUAL(psa_get_key_type(&got_attributes), derived_type);
TEST_EQUAL(psa_get_key_bits(&got_attributes), derived_bits);
/* Exercise the derived key. */
if (!mbedtls_test_psa_exercise_key(derived_key, derived_usage, derived_alg)) {
goto exit;
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_key_derivation_abort(&operation);
psa_destroy_key(base_key);
psa_destroy_key(derived_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_export(int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int bytes1_arg,
int bytes2_arg)
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
size_t bytes1 = bytes1_arg;
size_t bytes2 = bytes2_arg;
size_t capacity = bytes1 + bytes2;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
uint8_t *output_buffer = NULL;
uint8_t *export_buffer = NULL;
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t derived_attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t length;
ASSERT_ALLOC(output_buffer, capacity);
ASSERT_ALLOC(export_buffer, capacity);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&base_attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&base_attributes, alg);
psa_set_key_type(&base_attributes, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&base_attributes, key_data->x, key_data->len,
&base_key));
/* Derive some material and output it. */
if (!mbedtls_test_psa_setup_key_derivation_wrap(&operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
capacity)) {
goto exit;
}
PSA_ASSERT(psa_key_derivation_output_bytes(&operation,
output_buffer,
capacity));
PSA_ASSERT(psa_key_derivation_abort(&operation));
/* Derive the same output again, but this time store it in key objects. */
if (!mbedtls_test_psa_setup_key_derivation_wrap(&operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
capacity)) {
goto exit;
}
psa_set_key_usage_flags(&derived_attributes, PSA_KEY_USAGE_EXPORT);
psa_set_key_algorithm(&derived_attributes, 0);
psa_set_key_type(&derived_attributes, PSA_KEY_TYPE_RAW_DATA);
psa_set_key_bits(&derived_attributes, PSA_BYTES_TO_BITS(bytes1));
PSA_ASSERT(psa_key_derivation_output_key(&derived_attributes, &operation,
&derived_key));
PSA_ASSERT(psa_export_key(derived_key,
export_buffer, bytes1,
&length));
TEST_EQUAL(length, bytes1);
PSA_ASSERT(psa_destroy_key(derived_key));
psa_set_key_bits(&derived_attributes, PSA_BYTES_TO_BITS(bytes2));
PSA_ASSERT(psa_key_derivation_output_key(&derived_attributes, &operation,
&derived_key));
PSA_ASSERT(psa_export_key(derived_key,
export_buffer + bytes1, bytes2,
&length));
TEST_EQUAL(length, bytes2);
/* Compare the outputs from the two runs. */
ASSERT_COMPARE(output_buffer, bytes1 + bytes2,
export_buffer, capacity);
exit:
mbedtls_free(output_buffer);
mbedtls_free(export_buffer);
psa_key_derivation_abort(&operation);
psa_destroy_key(base_key);
psa_destroy_key(derived_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_type(int alg_arg,
data_t *key_data,
data_t *input1,
data_t *input2,
int key_type_arg, int bits_arg,
data_t *expected_export)
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
const psa_algorithm_t alg = alg_arg;
const psa_key_type_t key_type = key_type_arg;
const size_t bits = bits_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
const size_t export_buffer_size =
PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, bits);
uint8_t *export_buffer = NULL;
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t derived_attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t export_length;
ASSERT_ALLOC(export_buffer, export_buffer_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&base_attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&base_attributes, alg);
psa_set_key_type(&base_attributes, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&base_attributes, key_data->x, key_data->len,
&base_key));
if (mbedtls_test_psa_setup_key_derivation_wrap(
&operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY) == 0) {
goto exit;
}
psa_set_key_usage_flags(&derived_attributes, PSA_KEY_USAGE_EXPORT);
psa_set_key_algorithm(&derived_attributes, 0);
psa_set_key_type(&derived_attributes, key_type);
psa_set_key_bits(&derived_attributes, bits);
PSA_ASSERT(psa_key_derivation_output_key(&derived_attributes, &operation,
&derived_key));
PSA_ASSERT(psa_export_key(derived_key,
export_buffer, export_buffer_size,
&export_length));
ASSERT_COMPARE(export_buffer, export_length,
expected_export->x, expected_export->len);
exit:
mbedtls_free(export_buffer);
psa_key_derivation_abort(&operation);
psa_destroy_key(base_key);
psa_destroy_key(derived_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key(int alg_arg,
data_t *key_data, data_t *input1, data_t *input2,
int type_arg, int bits_arg,
int expected_status_arg,
int is_large_output)
{
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t derived_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t derived_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&base_attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&base_attributes, alg);
psa_set_key_type(&base_attributes, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&base_attributes, key_data->x, key_data->len,
&base_key));
if (!mbedtls_test_psa_setup_key_derivation_wrap(&operation, base_key, alg,
input1->x, input1->len,
input2->x, input2->len,
SIZE_MAX)) {
goto exit;
}
psa_set_key_usage_flags(&derived_attributes, PSA_KEY_USAGE_EXPORT);
psa_set_key_algorithm(&derived_attributes, 0);
psa_set_key_type(&derived_attributes, type);
psa_set_key_bits(&derived_attributes, bits);
psa_status_t status =
psa_key_derivation_output_key(&derived_attributes,
&operation,
&derived_key);
if (is_large_output > 0) {
TEST_ASSUME(status != PSA_ERROR_INSUFFICIENT_MEMORY);
}
TEST_EQUAL(status, expected_status);
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(base_key);
psa_destroy_key(derived_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_setup(int alg_arg,
int our_key_type_arg, int our_key_alg_arg,
data_t *our_key_data, data_t *peer_key_data,
int expected_status_arg)
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_algorithm_t our_key_alg = our_key_alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, our_key_alg);
psa_set_key_type(&attributes, our_key_type);
PSA_ASSERT(psa_import_key(&attributes,
our_key_data->x, our_key_data->len,
&our_key));
/* The tests currently include inputs that should fail at either step.
* Test cases that fail at the setup step should be changed to call
* key_derivation_setup instead, and this function should be renamed
* to key_agreement_fail. */
status = psa_key_derivation_setup(&operation, alg);
if (status == PSA_SUCCESS) {
TEST_EQUAL(psa_key_derivation_key_agreement(
&operation, PSA_KEY_DERIVATION_INPUT_SECRET,
our_key,
peer_key_data->x, peer_key_data->len),
expected_status);
} else {
TEST_ASSERT(status == expected_status);
}
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(our_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void raw_key_agreement(int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
data_t *expected_output)
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
unsigned char *output = NULL;
size_t output_length = ~0;
size_t key_bits;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, our_key_type);
PSA_ASSERT(psa_import_key(&attributes,
our_key_data->x, our_key_data->len,
&our_key));
PSA_ASSERT(psa_get_key_attributes(our_key, &attributes));
key_bits = psa_get_key_bits(&attributes);
/* Validate size macros */
TEST_LE_U(expected_output->len,
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(our_key_type, key_bits));
TEST_LE_U(PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(our_key_type, key_bits),
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE);
/* Good case with exact output size */
ASSERT_ALLOC(output, expected_output->len);
PSA_ASSERT(psa_raw_key_agreement(alg, our_key,
peer_key_data->x, peer_key_data->len,
output, expected_output->len,
&output_length));
ASSERT_COMPARE(output, output_length,
expected_output->x, expected_output->len);
mbedtls_free(output);
output = NULL;
output_length = ~0;
/* Larger buffer */
ASSERT_ALLOC(output, expected_output->len + 1);
PSA_ASSERT(psa_raw_key_agreement(alg, our_key,
peer_key_data->x, peer_key_data->len,
output, expected_output->len + 1,
&output_length));
ASSERT_COMPARE(output, output_length,
expected_output->x, expected_output->len);
mbedtls_free(output);
output = NULL;
output_length = ~0;
/* Buffer too small */
ASSERT_ALLOC(output, expected_output->len - 1);
TEST_EQUAL(psa_raw_key_agreement(alg, our_key,
peer_key_data->x, peer_key_data->len,
output, expected_output->len - 1,
&output_length),
PSA_ERROR_BUFFER_TOO_SMALL);
/* Not required by the spec, but good robustness */
TEST_LE_U(output_length, expected_output->len - 1);
mbedtls_free(output);
output = NULL;
exit:
mbedtls_free(output);
psa_destroy_key(our_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_capacity(int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
int expected_capacity_arg)
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t actual_capacity;
unsigned char output[16];
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, our_key_type);
PSA_ASSERT(psa_import_key(&attributes,
our_key_data->x, our_key_data->len,
&our_key));
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
PSA_ASSERT(psa_key_derivation_key_agreement(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET, our_key,
peer_key_data->x, peer_key_data->len));
if (PSA_ALG_IS_HKDF(PSA_ALG_KEY_AGREEMENT_GET_KDF(alg))) {
/* The test data is for info="" */
PSA_ASSERT(psa_key_derivation_input_bytes(&operation,
PSA_KEY_DERIVATION_INPUT_INFO,
NULL, 0));
}
/* Test the advertised capacity. */
PSA_ASSERT(psa_key_derivation_get_capacity(
&operation, &actual_capacity));
TEST_EQUAL(actual_capacity, (size_t) expected_capacity_arg);
/* Test the actual capacity by reading the output. */
while (actual_capacity > sizeof(output)) {
PSA_ASSERT(psa_key_derivation_output_bytes(&operation,
output, sizeof(output)));
actual_capacity -= sizeof(output);
}
PSA_ASSERT(psa_key_derivation_output_bytes(&operation,
output, actual_capacity));
TEST_EQUAL(psa_key_derivation_output_bytes(&operation, output, 1),
PSA_ERROR_INSUFFICIENT_DATA);
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(our_key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_output(int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
data_t *expected_output1, data_t *expected_output2)
{
mbedtls_svc_key_id_t our_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *actual_output = NULL;
ASSERT_ALLOC(actual_output, MAX(expected_output1->len,
expected_output2->len));
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, our_key_type);
PSA_ASSERT(psa_import_key(&attributes,
our_key_data->x, our_key_data->len,
&our_key));
PSA_ASSERT(psa_key_derivation_setup(&operation, alg));
PSA_ASSERT(psa_key_derivation_key_agreement(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET, our_key,
peer_key_data->x, peer_key_data->len));
if (PSA_ALG_IS_HKDF(PSA_ALG_KEY_AGREEMENT_GET_KDF(alg))) {
/* The test data is for info="" */
PSA_ASSERT(psa_key_derivation_input_bytes(&operation,
PSA_KEY_DERIVATION_INPUT_INFO,
NULL, 0));
}
PSA_ASSERT(psa_key_derivation_output_bytes(&operation,
actual_output,
expected_output1->len));
ASSERT_COMPARE(actual_output, expected_output1->len,
expected_output1->x, expected_output1->len);
if (expected_output2->len != 0) {
PSA_ASSERT(psa_key_derivation_output_bytes(&operation,
actual_output,
expected_output2->len));
ASSERT_COMPARE(actual_output, expected_output2->len,
expected_output2->x, expected_output2->len);
}
exit:
psa_key_derivation_abort(&operation);
psa_destroy_key(our_key);
PSA_DONE();
mbedtls_free(actual_output);
}
/* END_CASE */
/* BEGIN_CASE */
void generate_random(int bytes_arg)
{
size_t bytes = bytes_arg;
unsigned char *output = NULL;
unsigned char *changed = NULL;
size_t i;
unsigned run;
TEST_ASSERT(bytes_arg >= 0);
ASSERT_ALLOC(output, bytes);
ASSERT_ALLOC(changed, bytes);
PSA_ASSERT(psa_crypto_init());
/* Run several times, to ensure that every output byte will be
* nonzero at least once with overwhelming probability
* (2^(-8*number_of_runs)). */
for (run = 0; run < 10; run++) {
if (bytes != 0) {
memset(output, 0, bytes);
}
PSA_ASSERT(psa_generate_random(output, bytes));
for (i = 0; i < bytes; i++) {
if (output[i] != 0) {
++changed[i];
}
}
}
/* Check that every byte was changed to nonzero at least once. This
* validates that psa_generate_random is overwriting every byte of
* the output buffer. */
for (i = 0; i < bytes; i++) {
TEST_ASSERT(changed[i] != 0);
}
exit:
PSA_DONE();
mbedtls_free(output);
mbedtls_free(changed);
}
/* END_CASE */
/* BEGIN_CASE */
void generate_key(int type_arg,
int bits_arg,
int usage_arg,
int alg_arg,
int expected_status_arg,
int is_large_key)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, usage);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, type);
psa_set_key_bits(&attributes, bits);
/* Generate a key */
psa_status_t status = psa_generate_key(&attributes, &key);
if (is_large_key > 0) {
TEST_ASSUME(status != PSA_ERROR_INSUFFICIENT_MEMORY);
}
TEST_EQUAL(status, expected_status);
if (expected_status != PSA_SUCCESS) {
goto exit;
}
/* Test the key information */
PSA_ASSERT(psa_get_key_attributes(key, &got_attributes));
TEST_EQUAL(psa_get_key_type(&got_attributes), type);
TEST_EQUAL(psa_get_key_bits(&got_attributes), bits);
/* Do something with the key according to its type and permitted usage. */
if (!mbedtls_test_psa_exercise_key(key, usage, alg)) {
goto exit;
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&got_attributes);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_LEGACY:PSA_WANT_ALG_RSA_PKCS1V15_CRYPT:PSA_WANT_ALG_RSA_PKCS1V15_SIGN:MBEDTLS_GENPRIME */
void generate_key_rsa(int bits_arg,
data_t *e_arg,
int expected_status_arg)
{
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = PSA_KEY_TYPE_RSA_KEY_PAIR;
size_t bits = bits_arg;
psa_key_usage_t usage = PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT;
psa_algorithm_t alg = PSA_ALG_RSA_PKCS1V15_SIGN_RAW;
psa_status_t expected_status = expected_status_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *exported = NULL;
size_t exported_size =
PSA_EXPORT_KEY_OUTPUT_SIZE(PSA_KEY_TYPE_RSA_PUBLIC_KEY, bits);
size_t exported_length = SIZE_MAX;
uint8_t *e_read_buffer = NULL;
int is_default_public_exponent = 0;
size_t e_read_size = PSA_KEY_DOMAIN_PARAMETERS_SIZE(type, bits);
size_t e_read_length = SIZE_MAX;
if (e_arg->len == 0 ||
(e_arg->len == 3 &&
e_arg->x[0] == 1 && e_arg->x[1] == 0 && e_arg->x[2] == 1)) {
is_default_public_exponent = 1;
e_read_size = 0;
}
ASSERT_ALLOC(e_read_buffer, e_read_size);
ASSERT_ALLOC(exported, exported_size);
PSA_ASSERT(psa_crypto_init());
psa_set_key_usage_flags(&attributes, usage);
psa_set_key_algorithm(&attributes, alg);
PSA_ASSERT(psa_set_key_domain_parameters(&attributes, type,
e_arg->x, e_arg->len));
psa_set_key_bits(&attributes, bits);
/* Generate a key */
TEST_EQUAL(psa_generate_key(&attributes, &key), expected_status);
if (expected_status != PSA_SUCCESS) {
goto exit;
}
/* Test the key information */
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
TEST_EQUAL(psa_get_key_type(&attributes), type);
TEST_EQUAL(psa_get_key_bits(&attributes), bits);
PSA_ASSERT(psa_get_key_domain_parameters(&attributes,
e_read_buffer, e_read_size,
&e_read_length));
if (is_default_public_exponent) {
TEST_EQUAL(e_read_length, 0);
} else {
ASSERT_COMPARE(e_read_buffer, e_read_length, e_arg->x, e_arg->len);
}
/* Do something with the key according to its type and permitted usage. */
if (!mbedtls_test_psa_exercise_key(key, usage, alg)) {
goto exit;
}
/* Export the key and check the public exponent. */
PSA_ASSERT(psa_export_public_key(key,
exported, exported_size,
&exported_length));
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
/* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
*/
TEST_EQUAL(0, mbedtls_asn1_get_tag(&p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED));
TEST_ASSERT(mbedtls_test_asn1_skip_integer(&p, end, bits, bits, 1));
TEST_EQUAL(0, mbedtls_asn1_get_tag(&p, end, &len,
MBEDTLS_ASN1_INTEGER));
if (len >= 1 && p[0] == 0) {
++p;
--len;
}
if (e_arg->len == 0) {
TEST_EQUAL(len, 3);
TEST_EQUAL(p[0], 1);
TEST_EQUAL(p[1], 0);
TEST_EQUAL(p[2], 1);
} else {
ASSERT_COMPARE(p, len, e_arg->x, e_arg->len);
}
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes() or
* set by psa_set_key_domain_parameters() thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
psa_destroy_key(key);
PSA_DONE();
mbedtls_free(e_read_buffer);
mbedtls_free(exported);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PSA_CRYPTO_STORAGE_C */
void persistent_key_load_key_from_storage(data_t *data,
int type_arg, int bits_arg,
int usage_flags_arg, int alg_arg,
int generation_method)
{
mbedtls_svc_key_id_t key_id = mbedtls_svc_key_id_make(1, 1);
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
mbedtls_svc_key_id_t base_key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_key_usage_t usage_flags = usage_flags_arg;
psa_algorithm_t alg = alg_arg;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
unsigned char *first_export = NULL;
unsigned char *second_export = NULL;
size_t export_size = PSA_EXPORT_KEY_OUTPUT_SIZE(type, bits);
size_t first_exported_length;
size_t second_exported_length;
if (usage_flags & PSA_KEY_USAGE_EXPORT) {
ASSERT_ALLOC(first_export, export_size);
ASSERT_ALLOC(second_export, export_size);
}
PSA_ASSERT(psa_crypto_init());
psa_set_key_id(&attributes, key_id);
psa_set_key_usage_flags(&attributes, usage_flags);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, type);
psa_set_key_bits(&attributes, bits);
switch (generation_method) {
case IMPORT_KEY:
/* Import the key */
PSA_ASSERT(psa_import_key(&attributes, data->x, data->len,
&key));
break;
case GENERATE_KEY:
/* Generate a key */
PSA_ASSERT(psa_generate_key(&attributes, &key));
break;
case DERIVE_KEY:
#if defined(PSA_WANT_ALG_HKDF) && defined(PSA_WANT_ALG_SHA_256)
{
/* Create base key */
psa_algorithm_t derive_alg = PSA_ALG_HKDF(PSA_ALG_SHA_256);
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_usage_flags(&base_attributes,
PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&base_attributes, derive_alg);
psa_set_key_type(&base_attributes, PSA_KEY_TYPE_DERIVE);
PSA_ASSERT(psa_import_key(&base_attributes,
data->x, data->len,
&base_key));
/* Derive a key. */
PSA_ASSERT(psa_key_derivation_setup(&operation, derive_alg));
PSA_ASSERT(psa_key_derivation_input_key(
&operation,
PSA_KEY_DERIVATION_INPUT_SECRET, base_key));
PSA_ASSERT(psa_key_derivation_input_bytes(
&operation, PSA_KEY_DERIVATION_INPUT_INFO,
NULL, 0));
PSA_ASSERT(psa_key_derivation_output_key(&attributes,
&operation,
&key));
PSA_ASSERT(psa_key_derivation_abort(&operation));
PSA_ASSERT(psa_destroy_key(base_key));
base_key = MBEDTLS_SVC_KEY_ID_INIT;
}
#else
TEST_ASSUME(!"KDF not supported in this configuration");
#endif
break;
default:
TEST_ASSERT(!"generation_method not implemented in test");
break;
}
psa_reset_key_attributes(&attributes);
/* Export the key if permitted by the key policy. */
if (usage_flags & PSA_KEY_USAGE_EXPORT) {
PSA_ASSERT(psa_export_key(key,
first_export, export_size,
&first_exported_length));
if (generation_method == IMPORT_KEY) {
ASSERT_COMPARE(data->x, data->len,
first_export, first_exported_length);
}
}
/* Shutdown and restart */
PSA_ASSERT(psa_purge_key(key));
PSA_DONE();
PSA_ASSERT(psa_crypto_init());
/* Check key slot still contains key data */
PSA_ASSERT(psa_get_key_attributes(key, &attributes));
TEST_ASSERT(mbedtls_svc_key_id_equal(
psa_get_key_id(&attributes), key_id));
TEST_EQUAL(psa_get_key_lifetime(&attributes),
PSA_KEY_LIFETIME_PERSISTENT);
TEST_EQUAL(psa_get_key_type(&attributes), type);
TEST_EQUAL(psa_get_key_bits(&attributes), bits);
TEST_EQUAL(psa_get_key_usage_flags(&attributes),
mbedtls_test_update_key_usage_flags(usage_flags));
TEST_EQUAL(psa_get_key_algorithm(&attributes), alg);
/* Export the key again if permitted by the key policy. */
if (usage_flags & PSA_KEY_USAGE_EXPORT) {
PSA_ASSERT(psa_export_key(key,
second_export, export_size,
&second_exported_length));
ASSERT_COMPARE(first_export, first_exported_length,
second_export, second_exported_length);
}
/* Do something with the key according to its type and permitted usage. */
if (!mbedtls_test_psa_exercise_key(key, usage_flags, alg)) {
goto exit;
}
exit:
/*
* Key attributes may have been returned by psa_get_key_attributes()
* thus reset them as required.
*/
psa_reset_key_attributes(&attributes);
mbedtls_free(first_export);
mbedtls_free(second_export);
psa_key_derivation_abort(&operation);
psa_destroy_key(base_key);
psa_destroy_key(key);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_JPAKE */
void ecjpake_setup(int alg_arg, int key_type_pw_arg, int key_usage_pw_arg,
int primitive_arg, int hash_arg, int role_arg,
int test_input, data_t *pw_data,
int inj_err_type_arg,
int expected_error_arg)
{
psa_pake_cipher_suite_t cipher_suite = psa_pake_cipher_suite_init();
psa_pake_operation_t operation = psa_pake_operation_init();
psa_algorithm_t alg = alg_arg;
psa_pake_primitive_t primitive = primitive_arg;
psa_key_type_t key_type_pw = key_type_pw_arg;
psa_key_usage_t key_usage_pw = key_usage_pw_arg;
psa_algorithm_t hash_alg = hash_arg;
psa_pake_role_t role = role_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
ecjpake_injected_failure_t inj_err_type = inj_err_type_arg;
psa_status_t expected_error = expected_error_arg;
psa_status_t status;
unsigned char *output_buffer = NULL;
size_t output_len = 0;
PSA_INIT();
size_t buf_size = PSA_PAKE_OUTPUT_SIZE(alg, primitive_arg,
PSA_PAKE_STEP_KEY_SHARE);
ASSERT_ALLOC(output_buffer, buf_size);
if (pw_data->len > 0) {
psa_set_key_usage_flags(&attributes, key_usage_pw);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, key_type_pw);
PSA_ASSERT(psa_import_key(&attributes, pw_data->x, pw_data->len,
&key));
}
psa_pake_cs_set_algorithm(&cipher_suite, alg);
psa_pake_cs_set_primitive(&cipher_suite, primitive);
psa_pake_cs_set_hash(&cipher_suite, hash_alg);
PSA_ASSERT(psa_pake_abort(&operation));
if (inj_err_type == INJECT_ERR_UNINITIALIZED_ACCESS) {
TEST_EQUAL(psa_pake_set_user(&operation, NULL, 0),
expected_error);
PSA_ASSERT(psa_pake_abort(&operation));
TEST_EQUAL(psa_pake_set_peer(&operation, NULL, 0),
expected_error);
PSA_ASSERT(psa_pake_abort(&operation));
TEST_EQUAL(psa_pake_set_password_key(&operation, key),
expected_error);
PSA_ASSERT(psa_pake_abort(&operation));
TEST_EQUAL(psa_pake_set_role(&operation, role),
expected_error);
PSA_ASSERT(psa_pake_abort(&operation));
TEST_EQUAL(psa_pake_output(&operation, PSA_PAKE_STEP_KEY_SHARE,
NULL, 0, NULL),
expected_error);
PSA_ASSERT(psa_pake_abort(&operation));
TEST_EQUAL(psa_pake_input(&operation, PSA_PAKE_STEP_KEY_SHARE, NULL, 0),
expected_error);
PSA_ASSERT(psa_pake_abort(&operation));
goto exit;
}
status = psa_pake_setup(&operation, &cipher_suite);
if (status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_error);
goto exit;
}
if (inj_err_type == INJECT_ERR_DUPLICATE_SETUP) {
TEST_EQUAL(psa_pake_setup(&operation, &cipher_suite),
expected_error);
goto exit;
}
status = psa_pake_set_role(&operation, role);
if (status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_error);
goto exit;
}
if (pw_data->len > 0) {
status = psa_pake_set_password_key(&operation, key);
if (status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_error);
goto exit;
}
}
if (inj_err_type == INJECT_ERR_INVALID_USER) {
TEST_EQUAL(psa_pake_set_user(&operation, NULL, 0),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_ERR_INVALID_PEER) {
TEST_EQUAL(psa_pake_set_peer(&operation, NULL, 0),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_ERR_SET_USER) {
const uint8_t unsupported_id[] = "abcd";
TEST_EQUAL(psa_pake_set_user(&operation, unsupported_id, 4),
PSA_ERROR_NOT_SUPPORTED);
goto exit;
}
if (inj_err_type == INJECT_ERR_SET_PEER) {
const uint8_t unsupported_id[] = "abcd";
TEST_EQUAL(psa_pake_set_peer(&operation, unsupported_id, 4),
PSA_ERROR_NOT_SUPPORTED);
goto exit;
}
const size_t size_key_share = PSA_PAKE_INPUT_SIZE(alg, primitive,
PSA_PAKE_STEP_KEY_SHARE);
const size_t size_zk_public = PSA_PAKE_INPUT_SIZE(alg, primitive,
PSA_PAKE_STEP_ZK_PUBLIC);
const size_t size_zk_proof = PSA_PAKE_INPUT_SIZE(alg, primitive,
PSA_PAKE_STEP_ZK_PROOF);
if (test_input) {
if (inj_err_type == INJECT_EMPTY_IO_BUFFER) {
TEST_EQUAL(psa_pake_input(&operation, PSA_PAKE_STEP_ZK_PROOF, NULL, 0),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_UNKNOWN_STEP) {
TEST_EQUAL(psa_pake_input(&operation, PSA_PAKE_STEP_ZK_PROOF + 10,
output_buffer, size_zk_proof),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_INVALID_FIRST_STEP) {
TEST_EQUAL(psa_pake_input(&operation, PSA_PAKE_STEP_ZK_PROOF,
output_buffer, size_zk_proof),
PSA_ERROR_BAD_STATE);
goto exit;
}
status = psa_pake_input(&operation, PSA_PAKE_STEP_KEY_SHARE,
output_buffer, size_key_share);
if (status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_error);
goto exit;
}
if (inj_err_type == INJECT_WRONG_BUFFER_SIZE) {
TEST_EQUAL(psa_pake_input(&operation, PSA_PAKE_STEP_ZK_PUBLIC,
output_buffer, size_zk_public + 1),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_VALID_OPERATION_AFTER_FAILURE) {
// Just trigger any kind of error. We don't care about the result here
psa_pake_input(&operation, PSA_PAKE_STEP_ZK_PUBLIC,
output_buffer, size_zk_public + 1);
TEST_EQUAL(psa_pake_input(&operation, PSA_PAKE_STEP_ZK_PUBLIC,
output_buffer, size_zk_public),
PSA_ERROR_BAD_STATE);
goto exit;
}
} else {
if (inj_err_type == INJECT_EMPTY_IO_BUFFER) {
TEST_EQUAL(psa_pake_output(&operation, PSA_PAKE_STEP_ZK_PROOF,
NULL, 0, NULL),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_UNKNOWN_STEP) {
TEST_EQUAL(psa_pake_output(&operation, PSA_PAKE_STEP_ZK_PROOF + 10,
output_buffer, buf_size, &output_len),
PSA_ERROR_INVALID_ARGUMENT);
goto exit;
}
if (inj_err_type == INJECT_INVALID_FIRST_STEP) {
TEST_EQUAL(psa_pake_output(&operation, PSA_PAKE_STEP_ZK_PROOF,
output_buffer, buf_size, &output_len),
PSA_ERROR_BAD_STATE);
goto exit;
}
status = psa_pake_output(&operation, PSA_PAKE_STEP_KEY_SHARE,
output_buffer, buf_size, &output_len);
if (status != PSA_SUCCESS) {
TEST_EQUAL(status, expected_error);
goto exit;
}
TEST_ASSERT(output_len > 0);
if (inj_err_type == INJECT_WRONG_BUFFER_SIZE) {
TEST_EQUAL(psa_pake_output(&operation, PSA_PAKE_STEP_ZK_PUBLIC,
output_buffer, size_zk_public - 1, &output_len),
PSA_ERROR_BUFFER_TOO_SMALL);
goto exit;
}
if (inj_err_type == INJECT_VALID_OPERATION_AFTER_FAILURE) {
// Just trigger any kind of error. We don't care about the result here
psa_pake_output(&operation, PSA_PAKE_STEP_ZK_PUBLIC,
output_buffer, size_zk_public - 1, &output_len);
TEST_EQUAL(psa_pake_output(&operation, PSA_PAKE_STEP_ZK_PUBLIC,
output_buffer, buf_size, &output_len),
PSA_ERROR_BAD_STATE);
goto exit;
}
}
exit:
PSA_ASSERT(psa_destroy_key(key));
PSA_ASSERT(psa_pake_abort(&operation));
mbedtls_free(output_buffer);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_JPAKE */
void ecjpake_rounds_inject(int alg_arg, int primitive_arg, int hash_arg,
int client_input_first, int inject_error,
data_t *pw_data)
{
psa_pake_cipher_suite_t cipher_suite = psa_pake_cipher_suite_init();
psa_pake_operation_t server = psa_pake_operation_init();
psa_pake_operation_t client = psa_pake_operation_init();
psa_algorithm_t alg = alg_arg;
psa_algorithm_t hash_alg = hash_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_INIT();
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, PSA_KEY_TYPE_PASSWORD);
PSA_ASSERT(psa_import_key(&attributes, pw_data->x, pw_data->len,
&key));
psa_pake_cs_set_algorithm(&cipher_suite, alg);
psa_pake_cs_set_primitive(&cipher_suite, primitive_arg);
psa_pake_cs_set_hash(&cipher_suite, hash_alg);
PSA_ASSERT(psa_pake_setup(&server, &cipher_suite));
PSA_ASSERT(psa_pake_setup(&client, &cipher_suite));
PSA_ASSERT(psa_pake_set_role(&server, PSA_PAKE_ROLE_SERVER));
PSA_ASSERT(psa_pake_set_role(&client, PSA_PAKE_ROLE_CLIENT));
PSA_ASSERT(psa_pake_set_password_key(&server, key));
PSA_ASSERT(psa_pake_set_password_key(&client, key));
ecjpake_do_round(alg, primitive_arg, &server, &client,
client_input_first, 1, inject_error);
if (inject_error == 1 || inject_error == 2) {
goto exit;
}
ecjpake_do_round(alg, primitive_arg, &server, &client,
client_input_first, 2, inject_error);
exit:
psa_destroy_key(key);
psa_pake_abort(&server);
psa_pake_abort(&client);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE depends_on:PSA_WANT_ALG_JPAKE */
void ecjpake_rounds(int alg_arg, int primitive_arg, int hash_arg,
int derive_alg_arg, data_t *pw_data,
int client_input_first, int inj_err_type_arg)
{
psa_pake_cipher_suite_t cipher_suite = psa_pake_cipher_suite_init();
psa_pake_operation_t server = psa_pake_operation_init();
psa_pake_operation_t client = psa_pake_operation_init();
psa_algorithm_t alg = alg_arg;
psa_algorithm_t hash_alg = hash_arg;
psa_algorithm_t derive_alg = derive_alg_arg;
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_derivation_operation_t server_derive =
PSA_KEY_DERIVATION_OPERATION_INIT;
psa_key_derivation_operation_t client_derive =
PSA_KEY_DERIVATION_OPERATION_INIT;
ecjpake_injected_failure_t inj_err_type = inj_err_type_arg;
PSA_INIT();
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&attributes, alg);
psa_set_key_type(&attributes, PSA_KEY_TYPE_PASSWORD);
PSA_ASSERT(psa_import_key(&attributes, pw_data->x, pw_data->len,
&key));
psa_pake_cs_set_algorithm(&cipher_suite, alg);
psa_pake_cs_set_primitive(&cipher_suite, primitive_arg);
psa_pake_cs_set_hash(&cipher_suite, hash_alg);
/* Get shared key */
PSA_ASSERT(psa_key_derivation_setup(&server_derive, derive_alg));
PSA_ASSERT(psa_key_derivation_setup(&client_derive, derive_alg));
if (PSA_ALG_IS_TLS12_PRF(derive_alg) ||
PSA_ALG_IS_TLS12_PSK_TO_MS(derive_alg)) {
PSA_ASSERT(psa_key_derivation_input_bytes(&server_derive,
PSA_KEY_DERIVATION_INPUT_SEED,
(const uint8_t *) "", 0));
PSA_ASSERT(psa_key_derivation_input_bytes(&client_derive,
PSA_KEY_DERIVATION_INPUT_SEED,
(const uint8_t *) "", 0));
}
PSA_ASSERT(psa_pake_setup(&server, &cipher_suite));
PSA_ASSERT(psa_pake_setup(&client, &cipher_suite));
PSA_ASSERT(psa_pake_set_role(&server, PSA_PAKE_ROLE_SERVER));
PSA_ASSERT(psa_pake_set_role(&client, PSA_PAKE_ROLE_CLIENT));
PSA_ASSERT(psa_pake_set_password_key(&server, key));
PSA_ASSERT(psa_pake_set_password_key(&client, key));
if (inj_err_type == INJECT_ANTICIPATE_KEY_DERIVATION_1) {
TEST_EQUAL(psa_pake_get_implicit_key(&server, &server_derive),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_pake_get_implicit_key(&client, &client_derive),
PSA_ERROR_BAD_STATE);
goto exit;
}
/* First round */
ecjpake_do_round(alg, primitive_arg, &server, &client,
client_input_first, 1, 0);
if (inj_err_type == INJECT_ANTICIPATE_KEY_DERIVATION_2) {
TEST_EQUAL(psa_pake_get_implicit_key(&server, &server_derive),
PSA_ERROR_BAD_STATE);
TEST_EQUAL(psa_pake_get_implicit_key(&client, &client_derive),
PSA_ERROR_BAD_STATE);
goto exit;
}
/* Second round */
ecjpake_do_round(alg, primitive_arg, &server, &client,
client_input_first, 2, 0);
PSA_ASSERT(psa_pake_get_implicit_key(&server, &server_derive));
PSA_ASSERT(psa_pake_get_implicit_key(&client, &client_derive));
exit:
psa_key_derivation_abort(&server_derive);
psa_key_derivation_abort(&client_derive);
psa_destroy_key(key);
psa_pake_abort(&server);
psa_pake_abort(&client);
PSA_DONE();
}
/* END_CASE */
/* BEGIN_CASE */
void ecjpake_size_macros()
{
const psa_algorithm_t alg = PSA_ALG_JPAKE;
const size_t bits = 256;
const psa_pake_primitive_t prim = PSA_PAKE_PRIMITIVE(
PSA_PAKE_PRIMITIVE_TYPE_ECC, PSA_ECC_FAMILY_SECP_R1, bits);
const psa_key_type_t key_type = PSA_KEY_TYPE_ECC_KEY_PAIR(
PSA_ECC_FAMILY_SECP_R1);
// https://armmbed.github.io/mbed-crypto/1.1_PAKE_Extension.0-bet.0/html/pake.html#pake-step-types
/* The output for KEY_SHARE and ZK_PUBLIC is the same as a public key */
TEST_EQUAL(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_KEY_SHARE),
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, bits));
TEST_EQUAL(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PUBLIC),
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, bits));
/* The output for ZK_PROOF is the same bitsize as the curve */
TEST_EQUAL(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PROOF),
PSA_BITS_TO_BYTES(bits));
/* Input sizes are the same as output sizes */
TEST_EQUAL(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_KEY_SHARE),
PSA_PAKE_INPUT_SIZE(alg, prim, PSA_PAKE_STEP_KEY_SHARE));
TEST_EQUAL(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PUBLIC),
PSA_PAKE_INPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PUBLIC));
TEST_EQUAL(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PROOF),
PSA_PAKE_INPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PROOF));
/* These inequalities will always hold even when other PAKEs are added */
TEST_LE_U(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_KEY_SHARE),
PSA_PAKE_OUTPUT_MAX_SIZE);
TEST_LE_U(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PUBLIC),
PSA_PAKE_OUTPUT_MAX_SIZE);
TEST_LE_U(PSA_PAKE_OUTPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PROOF),
PSA_PAKE_OUTPUT_MAX_SIZE);
TEST_LE_U(PSA_PAKE_INPUT_SIZE(alg, prim, PSA_PAKE_STEP_KEY_SHARE),
PSA_PAKE_INPUT_MAX_SIZE);
TEST_LE_U(PSA_PAKE_INPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PUBLIC),
PSA_PAKE_INPUT_MAX_SIZE);
TEST_LE_U(PSA_PAKE_INPUT_SIZE(alg, prim, PSA_PAKE_STEP_ZK_PROOF),
PSA_PAKE_INPUT_MAX_SIZE);
}
/* END_CASE */