ba1e78f1c2
Signed-off-by: Jerry Yu <jerry.h.yu@arm.com>
257 lines
7.8 KiB
C
257 lines
7.8 KiB
C
/*
|
|
* Arm64 crypto extension support functions
|
|
*
|
|
* Copyright The Mbed TLS Contributors
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include "common.h"
|
|
|
|
#if defined(MBEDTLS_AESCE_C)
|
|
|
|
#include "aesce.h"
|
|
|
|
#if defined(MBEDTLS_HAVE_ARM64)
|
|
|
|
#if defined(__clang__)
|
|
# if __clang_major__ < 4
|
|
# error "A more recent Clang is required for MBEDTLS_AESCE_C"
|
|
# endif
|
|
#elif defined(__GNUC__)
|
|
# if __GNUC__ < 6
|
|
# error "A more recent GCC is required for MBEDTLS_AESCE_C"
|
|
# endif
|
|
#else
|
|
# error "Only GCC and Clang supported for MBEDTLS_AESCE_C"
|
|
#endif
|
|
|
|
#if !defined(__ARM_FEATURE_CRYPTO)
|
|
# error "`crypto` feature moddifier MUST be enabled for MBEDTLS_AESCE_C."
|
|
# error "Typical option for GCC and Clang is `-march=armv8-a+crypto`."
|
|
#endif /* !__ARM_FEATURE_CRYPTO */
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#if defined(__linux__)
|
|
#include <asm/hwcap.h>
|
|
#include <sys/auxv.h>
|
|
#endif
|
|
|
|
/*
|
|
* AES instruction support detection routine
|
|
*/
|
|
int mbedtls_aesce_has_support(void)
|
|
{
|
|
#if defined(__linux__)
|
|
unsigned long auxval = getauxval(AT_HWCAP);
|
|
return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
|
|
(HWCAP_ASIMD | HWCAP_AES);
|
|
#else
|
|
/* Assume AES instructions are supported. */
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
static uint8x16_t aesce_encrypt_block(uint8x16_t block,
|
|
unsigned char *keys,
|
|
int rounds)
|
|
{
|
|
for (int i = 0; i < rounds - 1; i++) {
|
|
/* AES AddRoundKey, SubBytes, ShiftRows (in this order).
|
|
* AddRoundKey adds the round key for the previous round. */
|
|
block = vaeseq_u8(block, vld1q_u8(keys + i * 16));
|
|
/* AES mix columns */
|
|
block = vaesmcq_u8(block);
|
|
}
|
|
|
|
/* AES AddRoundKey for the previous round.
|
|
* SubBytes, ShiftRows for the final round. */
|
|
block = vaeseq_u8(block, vld1q_u8(keys + (rounds -1) * 16));
|
|
|
|
/* Final round: no MixColumns */
|
|
|
|
/* Final AddRoundKey */
|
|
block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
|
|
|
|
return block;
|
|
}
|
|
|
|
static uint8x16_t aesce_decrypt_block(uint8x16_t block,
|
|
unsigned char *keys,
|
|
int rounds)
|
|
{
|
|
|
|
for (int i = 0; i < rounds - 1; i++) {
|
|
/* AES AddRoundKey, SubBytes, ShiftRows */
|
|
block = vaesdq_u8(block, vld1q_u8(keys + i * 16));
|
|
/* AES inverse MixColumns for the next round.
|
|
*
|
|
* This means that we switch the order of the inverse AddRoundKey and
|
|
* inverse MixColumns operations. We have to do this as AddRoundKey is
|
|
* done in an atomic instruction together with the inverses of SubBytes
|
|
* and ShiftRows.
|
|
*
|
|
* It works because MixColumns is a linear operation over GF(2^8) and
|
|
* AddRoundKey is an exclusive or, which is equivalent to addition over
|
|
* GF(2^8). (The inverse of MixColumns needs to be applied to the
|
|
* affected round keys separately which has been done when the
|
|
* decryption round keys were calculated.) */
|
|
block = vaesimcq_u8(block);
|
|
}
|
|
|
|
/* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
|
|
* last full round. */
|
|
block = vaesdq_u8(block, vld1q_u8(keys + (rounds - 1) * 16));
|
|
|
|
/* Inverse AddRoundKey for inverting the initial round key addition. */
|
|
block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
|
|
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* AES-ECB block en(de)cryption
|
|
*/
|
|
int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
|
|
int mode,
|
|
const unsigned char input[16],
|
|
unsigned char output[16])
|
|
{
|
|
uint8x16_t block = vld1q_u8(&input[0]);
|
|
unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
|
|
|
|
if (mode == MBEDTLS_AES_ENCRYPT) {
|
|
block = aesce_encrypt_block(block, keys, ctx->nr);
|
|
} else {
|
|
block = aesce_decrypt_block(block, keys, ctx->nr);
|
|
}
|
|
vst1q_u8(&output[0], block);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute decryption round keys from encryption round keys
|
|
*/
|
|
void mbedtls_aesce_inverse_key(unsigned char *invkey,
|
|
const unsigned char *fwdkey,
|
|
int nr)
|
|
{
|
|
int i, j;
|
|
j = nr;
|
|
vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
|
|
for (i = 1, j--; j > 0; i++, j--) {
|
|
vst1q_u8(invkey + i * 16,
|
|
vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
|
|
}
|
|
vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
|
|
|
|
}
|
|
|
|
static inline uint32_t aes_rot_word(uint32_t word)
|
|
{
|
|
return (word << (32 - 8)) | (word >> 8);
|
|
}
|
|
|
|
static inline uint32_t aes_sub_word(uint32_t in)
|
|
{
|
|
uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
|
|
uint8x16_t zero = vdupq_n_u8(0);
|
|
|
|
/* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
|
|
* the correct result as ShiftRows doesn't change the first row. */
|
|
v = vaeseq_u8(zero, v);
|
|
return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
|
|
}
|
|
|
|
/*
|
|
* Key expansion function
|
|
*/
|
|
static void aesce_setkey_enc(unsigned char *rk,
|
|
const unsigned char *key,
|
|
const size_t key_bit_length)
|
|
{
|
|
static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
|
|
0x20, 0x40, 0x80, 0x1b, 0x36 };
|
|
/* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
|
|
* - Section 5, Nr = Nk + 6
|
|
* - Section 5.2, the key expansion size is Nb*(Nr+1)
|
|
*/
|
|
const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
|
|
const size_t round_key_len_in_words = 4; /* Nb */
|
|
const size_t round_keys_needed = key_len_in_words + 6; /* Nr */
|
|
const size_t key_expansion_size_in_words =
|
|
round_key_len_in_words * (round_keys_needed + 1); /* Nb*(Nr+1) */
|
|
const uint32_t *rko_end = (uint32_t *) rk + key_expansion_size_in_words;
|
|
|
|
memcpy(rk, key, key_len_in_words * 4);
|
|
|
|
for (uint32_t *rki = (uint32_t *) rk;
|
|
rki + key_len_in_words < rko_end;
|
|
rki += key_len_in_words) {
|
|
|
|
size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
|
|
uint32_t *rko;
|
|
rko = rki + key_len_in_words;
|
|
rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
|
|
rko[0] ^= rcon[iteration] ^ rki[0];
|
|
rko[1] = rko[0] ^ rki[1];
|
|
rko[2] = rko[1] ^ rki[2];
|
|
rko[3] = rko[2] ^ rki[3];
|
|
if (rko + key_len_in_words > rko_end) {
|
|
/* Do not write overflow words.*/
|
|
continue;
|
|
}
|
|
switch (key_bit_length) {
|
|
case 128:
|
|
break;
|
|
case 192:
|
|
rko[4] = rko[3] ^ rki[4];
|
|
rko[5] = rko[4] ^ rki[5];
|
|
break;
|
|
case 256:
|
|
rko[4] = aes_sub_word(rko[3]) ^ rki[4];
|
|
rko[5] = rko[4] ^ rki[5];
|
|
rko[6] = rko[5] ^ rki[6];
|
|
rko[7] = rko[6] ^ rki[7];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Key expansion, wrapper
|
|
*/
|
|
int mbedtls_aesce_setkey_enc(unsigned char *rk,
|
|
const unsigned char *key,
|
|
size_t bits)
|
|
{
|
|
switch (bits) {
|
|
case 128:
|
|
case 192:
|
|
case 256:
|
|
aesce_setkey_enc(rk, key, bits);
|
|
break;
|
|
default:
|
|
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* MBEDTLS_HAVE_ARM64 */
|
|
|
|
#endif /* MBEDTLS_AESCE_C */
|