mbedtls/tests/suites/test_suite_ssl.function
Neil Armstrong e858996413 Use PSA version of mbedtls_ct_hmac() in mbedtls_ssl_decrypt_buf()
Due to mbedtls_ct_hmac() implementation the decryption MAC key
must be exportable.

Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
2022-02-25 15:17:50 +01:00

5380 lines
185 KiB
Text

/* BEGIN_HEADER */
#include <mbedtls/ssl.h>
#include <ssl_misc.h>
#include <mbedtls/ctr_drbg.h>
#include <mbedtls/entropy.h>
#include <mbedtls/timing.h>
#include <mbedtls/debug.h>
#include <ssl_tls13_keys.h>
#include <ssl_tls13_invasive.h>
#include "test/certs.h"
#include <psa/crypto.h>
#include <constant_time_internal.h>
#include <test/constant_flow.h>
enum
{
#define MBEDTLS_SSL_TLS1_3_LABEL( name, string ) \
tls13_label_ ## name,
MBEDTLS_SSL_TLS1_3_LABEL_LIST
#undef MBEDTLS_SSL_TLS1_3_LABEL
};
typedef struct log_pattern
{
const char *pattern;
size_t counter;
} log_pattern;
/*
* This function can be passed to mbedtls to receive output logs from it. In
* this case, it will count the instances of a log_pattern in the received
* logged messages.
*/
void log_analyzer( void *ctx, int level,
const char *file, int line,
const char *str )
{
log_pattern *p = (log_pattern *) ctx;
(void) level;
(void) line;
(void) file;
if( NULL != p &&
NULL != p->pattern &&
NULL != strstr( str, p->pattern ) )
{
p->counter++;
}
}
/* Invalid minor version used when not specifying a min/max version or expecting a test to fail */
#define TEST_SSL_MINOR_VERSION_NONE -1
typedef struct handshake_test_options
{
const char *cipher;
int client_min_version;
int client_max_version;
int server_min_version;
int server_max_version;
int expected_negotiated_version;
int pk_alg;
data_t *psk_str;
int dtls;
int srv_auth_mode;
int serialize;
int mfl;
int cli_msg_len;
int srv_msg_len;
int expected_cli_fragments;
int expected_srv_fragments;
int renegotiate;
int legacy_renegotiation;
void *srv_log_obj;
void *cli_log_obj;
void (*srv_log_fun)(void *, int, const char *, int, const char *);
void (*cli_log_fun)(void *, int, const char *, int, const char *);
int resize_buffers;
} handshake_test_options;
void init_handshake_options( handshake_test_options *opts )
{
opts->cipher = "";
opts->client_min_version = TEST_SSL_MINOR_VERSION_NONE;
opts->client_max_version = TEST_SSL_MINOR_VERSION_NONE;
opts->server_min_version = TEST_SSL_MINOR_VERSION_NONE;
opts->server_max_version = TEST_SSL_MINOR_VERSION_NONE;
opts->expected_negotiated_version = MBEDTLS_SSL_MINOR_VERSION_3;
opts->pk_alg = MBEDTLS_PK_RSA;
opts->psk_str = NULL;
opts->dtls = 0;
opts->srv_auth_mode = MBEDTLS_SSL_VERIFY_NONE;
opts->serialize = 0;
opts->mfl = MBEDTLS_SSL_MAX_FRAG_LEN_NONE;
opts->cli_msg_len = 100;
opts->srv_msg_len = 100;
opts->expected_cli_fragments = 1;
opts->expected_srv_fragments = 1;
opts->renegotiate = 0;
opts->legacy_renegotiation = MBEDTLS_SSL_LEGACY_NO_RENEGOTIATION;
opts->srv_log_obj = NULL;
opts->srv_log_obj = NULL;
opts->srv_log_fun = NULL;
opts->cli_log_fun = NULL;
opts->resize_buffers = 1;
}
/*
* Buffer structure for custom I/O callbacks.
*/
typedef struct mbedtls_test_buffer
{
size_t start;
size_t content_length;
size_t capacity;
unsigned char *buffer;
} mbedtls_test_buffer;
/*
* Initialises \p buf. After calling this function it is safe to call
* `mbedtls_test_buffer_free()` on \p buf.
*/
void mbedtls_test_buffer_init( mbedtls_test_buffer *buf )
{
memset( buf, 0, sizeof( *buf ) );
}
/*
* Sets up \p buf. After calling this function it is safe to call
* `mbedtls_test_buffer_put()` and `mbedtls_test_buffer_get()` on \p buf.
*/
int mbedtls_test_buffer_setup( mbedtls_test_buffer *buf, size_t capacity )
{
buf->buffer = (unsigned char*) mbedtls_calloc( capacity,
sizeof(unsigned char) );
if( NULL == buf->buffer )
return MBEDTLS_ERR_SSL_ALLOC_FAILED;
buf->capacity = capacity;
return 0;
}
void mbedtls_test_buffer_free( mbedtls_test_buffer *buf )
{
if( buf->buffer != NULL )
mbedtls_free( buf->buffer );
memset( buf, 0, sizeof( *buf ) );
}
/*
* Puts \p input_len bytes from the \p input buffer into the ring buffer \p buf.
*
* \p buf must have been initialized and set up by calling
* `mbedtls_test_buffer_init()` and `mbedtls_test_buffer_setup()`.
*
* \retval \p input_len, if the data fits.
* \retval 0 <= value < \p input_len, if the data does not fit.
* \retval -1, if \p buf is NULL, it hasn't been set up or \p input_len is not
* zero and \p input is NULL.
*/
int mbedtls_test_buffer_put( mbedtls_test_buffer *buf,
const unsigned char *input, size_t input_len )
{
size_t overflow = 0;
if( ( buf == NULL ) || ( buf->buffer == NULL ) )
return -1;
/* Reduce input_len to a number that fits in the buffer. */
if ( ( buf->content_length + input_len ) > buf->capacity )
{
input_len = buf->capacity - buf->content_length;
}
if( input == NULL )
{
return ( input_len == 0 ) ? 0 : -1;
}
/* Check if the buffer has not come full circle and free space is not in
* the middle */
if( buf->start + buf->content_length < buf->capacity )
{
/* Calculate the number of bytes that need to be placed at lower memory
* address */
if( buf->start + buf->content_length + input_len
> buf->capacity )
{
overflow = ( buf->start + buf->content_length + input_len )
% buf->capacity;
}
memcpy( buf->buffer + buf->start + buf->content_length, input,
input_len - overflow );
memcpy( buf->buffer, input + input_len - overflow, overflow );
}
else
{
/* The buffer has come full circle and free space is in the middle */
memcpy( buf->buffer + buf->start + buf->content_length - buf->capacity,
input, input_len );
}
buf->content_length += input_len;
return input_len;
}
/*
* Gets \p output_len bytes from the ring buffer \p buf into the
* \p output buffer. The output buffer can be NULL, in this case a part of the
* ring buffer will be dropped, if the requested length is available.
*
* \p buf must have been initialized and set up by calling
* `mbedtls_test_buffer_init()` and `mbedtls_test_buffer_setup()`.
*
* \retval \p output_len, if the data is available.
* \retval 0 <= value < \p output_len, if the data is not available.
* \retval -1, if \buf is NULL or it hasn't been set up.
*/
int mbedtls_test_buffer_get( mbedtls_test_buffer *buf,
unsigned char* output, size_t output_len )
{
size_t overflow = 0;
if( ( buf == NULL ) || ( buf->buffer == NULL ) )
return -1;
if( output == NULL && output_len == 0 )
return 0;
if( buf->content_length < output_len )
output_len = buf->content_length;
/* Calculate the number of bytes that need to be drawn from lower memory
* address */
if( buf->start + output_len > buf->capacity )
{
overflow = ( buf->start + output_len ) % buf->capacity;
}
if( output != NULL )
{
memcpy( output, buf->buffer + buf->start, output_len - overflow );
memcpy( output + output_len - overflow, buf->buffer, overflow );
}
buf->content_length -= output_len;
buf->start = ( buf->start + output_len ) % buf->capacity;
return output_len;
}
/*
* Errors used in the message transport mock tests
*/
#define MBEDTLS_TEST_ERROR_ARG_NULL -11
#define MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED -44
/*
* Context for a message metadata queue (fifo) that is on top of the ring buffer.
*/
typedef struct mbedtls_test_message_queue
{
size_t *messages;
int pos;
int num;
int capacity;
} mbedtls_test_message_queue;
/*
* Setup and free functions for the message metadata queue.
*
* \p capacity describes the number of message metadata chunks that can be held
* within the queue.
*
* \retval 0, if a metadata queue of a given length can be allocated.
* \retval MBEDTLS_ERR_SSL_ALLOC_FAILED, if allocation failed.
*/
int mbedtls_test_message_queue_setup( mbedtls_test_message_queue *queue,
size_t capacity )
{
queue->messages = (size_t*) mbedtls_calloc( capacity, sizeof(size_t) );
if( NULL == queue->messages )
return MBEDTLS_ERR_SSL_ALLOC_FAILED;
queue->capacity = capacity;
queue->pos = 0;
queue->num = 0;
return 0;
}
void mbedtls_test_message_queue_free( mbedtls_test_message_queue *queue )
{
if( queue == NULL )
return;
if( queue->messages != NULL )
mbedtls_free( queue->messages );
memset( queue, 0, sizeof( *queue ) );
}
/*
* Push message length information onto the message metadata queue.
* This will become the last element to leave it (fifo).
*
* \retval MBEDTLS_TEST_ERROR_ARG_NULL, if the queue is null.
* \retval MBEDTLS_ERR_SSL_WANT_WRITE, if the queue is full.
* \retval \p len, if the push was successful.
*/
int mbedtls_test_message_queue_push_info( mbedtls_test_message_queue *queue,
size_t len )
{
int place;
if( queue == NULL )
return MBEDTLS_TEST_ERROR_ARG_NULL;
if( queue->num >= queue->capacity )
return MBEDTLS_ERR_SSL_WANT_WRITE;
place = ( queue->pos + queue->num ) % queue->capacity;
queue->messages[place] = len;
queue->num++;
return len;
}
/*
* Pop information about the next message length from the queue. This will be
* the oldest inserted message length(fifo). \p msg_len can be null, in which
* case the data will be popped from the queue but not copied anywhere.
*
* \retval MBEDTLS_TEST_ERROR_ARG_NULL, if the queue is null.
* \retval MBEDTLS_ERR_SSL_WANT_READ, if the queue is empty.
* \retval message length, if the pop was successful, up to the given
\p buf_len.
*/
int mbedtls_test_message_queue_pop_info( mbedtls_test_message_queue *queue,
size_t buf_len )
{
size_t message_length;
if( queue == NULL )
return MBEDTLS_TEST_ERROR_ARG_NULL;
if( queue->num == 0 )
return MBEDTLS_ERR_SSL_WANT_READ;
message_length = queue->messages[queue->pos];
queue->messages[queue->pos] = 0;
queue->num--;
queue->pos++;
queue->pos %= queue->capacity;
if( queue->pos < 0 )
queue->pos += queue->capacity;
return ( message_length > buf_len ) ? buf_len : message_length;
}
/*
* Take a peek on the info about the next message length from the queue.
* This will be the oldest inserted message length(fifo).
*
* \retval MBEDTLS_TEST_ERROR_ARG_NULL, if the queue is null.
* \retval MBEDTLS_ERR_SSL_WANT_READ, if the queue is empty.
* \retval 0, if the peek was successful.
* \retval MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED, if the given buffer length is
* too small to fit the message. In this case the \p msg_len will be
* set to the full message length so that the
* caller knows what portion of the message can be dropped.
*/
int mbedtls_test_message_queue_peek_info( mbedtls_test_message_queue *queue,
size_t buf_len, size_t* msg_len )
{
if( queue == NULL || msg_len == NULL )
return MBEDTLS_TEST_ERROR_ARG_NULL;
if( queue->num == 0 )
return MBEDTLS_ERR_SSL_WANT_READ;
*msg_len = queue->messages[queue->pos];
return ( *msg_len > buf_len ) ? MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED : 0;
}
/*
* Context for the I/O callbacks simulating network connection.
*/
#define MBEDTLS_MOCK_SOCKET_CONNECTED 1
typedef struct mbedtls_mock_socket
{
int status;
mbedtls_test_buffer *input;
mbedtls_test_buffer *output;
struct mbedtls_mock_socket *peer;
} mbedtls_mock_socket;
/*
* Setup and teardown functions for mock sockets.
*/
void mbedtls_mock_socket_init( mbedtls_mock_socket *socket )
{
memset( socket, 0, sizeof( *socket ) );
}
/*
* Closes the socket \p socket.
*
* \p socket must have been previously initialized by calling
* mbedtls_mock_socket_init().
*
* This function frees all allocated resources and both sockets are aware of the
* new connection state.
*
* That is, this function does not simulate half-open TCP connections and the
* phenomenon that when closing a UDP connection the peer is not aware of the
* connection having been closed.
*/
void mbedtls_mock_socket_close( mbedtls_mock_socket* socket )
{
if( socket == NULL )
return;
if( socket->input != NULL )
{
mbedtls_test_buffer_free( socket->input );
mbedtls_free( socket->input );
}
if( socket->output != NULL )
{
mbedtls_test_buffer_free( socket->output );
mbedtls_free( socket->output );
}
if( socket->peer != NULL )
memset( socket->peer, 0, sizeof( *socket->peer ) );
memset( socket, 0, sizeof( *socket ) );
}
/*
* Establishes a connection between \p peer1 and \p peer2.
*
* \p peer1 and \p peer2 must have been previously initialized by calling
* mbedtls_mock_socket_init().
*
* The capacites of the internal buffers are set to \p bufsize. Setting this to
* the correct value allows for simulation of MTU, sanity testing the mock
* implementation and mocking TCP connections with lower memory cost.
*/
int mbedtls_mock_socket_connect( mbedtls_mock_socket* peer1,
mbedtls_mock_socket* peer2,
size_t bufsize )
{
int ret = -1;
peer1->output =
(mbedtls_test_buffer*) mbedtls_calloc( 1, sizeof(mbedtls_test_buffer) );
if( peer1->output == NULL )
{
ret = MBEDTLS_ERR_SSL_ALLOC_FAILED;
goto exit;
}
mbedtls_test_buffer_init( peer1->output );
if( 0 != ( ret = mbedtls_test_buffer_setup( peer1->output, bufsize ) ) )
{
goto exit;
}
peer2->output =
(mbedtls_test_buffer*) mbedtls_calloc( 1, sizeof(mbedtls_test_buffer) );
if( peer2->output == NULL )
{
ret = MBEDTLS_ERR_SSL_ALLOC_FAILED;
goto exit;
}
mbedtls_test_buffer_init( peer2->output );
if( 0 != ( ret = mbedtls_test_buffer_setup( peer2->output, bufsize ) ) )
{
goto exit;
}
peer1->peer = peer2;
peer2->peer = peer1;
peer1->input = peer2->output;
peer2->input = peer1->output;
peer1->status = peer2->status = MBEDTLS_MOCK_SOCKET_CONNECTED;
ret = 0;
exit:
if( ret != 0 )
{
mbedtls_mock_socket_close( peer1 );
mbedtls_mock_socket_close( peer2 );
}
return ret;
}
/*
* Callbacks for simulating blocking I/O over connection-oriented transport.
*/
int mbedtls_mock_tcp_send_b( void *ctx, const unsigned char *buf, size_t len )
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx;
if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED )
return -1;
return mbedtls_test_buffer_put( socket->output, buf, len );
}
int mbedtls_mock_tcp_recv_b( void *ctx, unsigned char *buf, size_t len )
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx;
if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED )
return -1;
return mbedtls_test_buffer_get( socket->input, buf, len );
}
/*
* Callbacks for simulating non-blocking I/O over connection-oriented transport.
*/
int mbedtls_mock_tcp_send_nb( void *ctx, const unsigned char *buf, size_t len )
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx;
if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED )
return -1;
if( socket->output->capacity == socket->output->content_length )
{
return MBEDTLS_ERR_SSL_WANT_WRITE;
}
return mbedtls_test_buffer_put( socket->output, buf, len );
}
int mbedtls_mock_tcp_recv_nb( void *ctx, unsigned char *buf, size_t len )
{
mbedtls_mock_socket *socket = (mbedtls_mock_socket*) ctx;
if( socket == NULL || socket->status != MBEDTLS_MOCK_SOCKET_CONNECTED )
return -1;
if( socket->input->content_length == 0 )
{
return MBEDTLS_ERR_SSL_WANT_READ;
}
return mbedtls_test_buffer_get( socket->input, buf, len );
}
/* Errors used in the message socket mocks */
#define MBEDTLS_TEST_ERROR_CONTEXT_ERROR -55
#define MBEDTLS_TEST_ERROR_SEND_FAILED -66
#define MBEDTLS_TEST_ERROR_RECV_FAILED -77
/*
* Structure used as an addon, or a wrapper, around the mocked sockets.
* Contains an input queue, to which the other socket pushes metadata,
* and an output queue, to which this one pushes metadata. This context is
* considered as an owner of the input queue only, which is initialized and
* freed in the respective setup and free calls.
*/
typedef struct mbedtls_test_message_socket_context
{
mbedtls_test_message_queue* queue_input;
mbedtls_test_message_queue* queue_output;
mbedtls_mock_socket* socket;
} mbedtls_test_message_socket_context;
void mbedtls_message_socket_init( mbedtls_test_message_socket_context *ctx )
{
ctx->queue_input = NULL;
ctx->queue_output = NULL;
ctx->socket = NULL;
}
/*
* Setup a given mesasge socket context including initialization of
* input/output queues to a chosen capacity of messages. Also set the
* corresponding mock socket.
*
* \retval 0, if everything succeeds.
* \retval MBEDTLS_ERR_SSL_ALLOC_FAILED, if allocation of a message
* queue failed.
*/
int mbedtls_message_socket_setup( mbedtls_test_message_queue* queue_input,
mbedtls_test_message_queue* queue_output,
size_t queue_capacity,
mbedtls_mock_socket* socket,
mbedtls_test_message_socket_context* ctx )
{
int ret = mbedtls_test_message_queue_setup( queue_input, queue_capacity );
if( ret != 0 )
return ret;
ctx->queue_input = queue_input;
ctx->queue_output = queue_output;
ctx->socket = socket;
mbedtls_mock_socket_init( socket );
return 0;
}
/*
* Close a given message socket context, along with the socket itself. Free the
* memory allocated by the input queue.
*/
void mbedtls_message_socket_close( mbedtls_test_message_socket_context* ctx )
{
if( ctx == NULL )
return;
mbedtls_test_message_queue_free( ctx->queue_input );
mbedtls_mock_socket_close( ctx->socket );
memset( ctx, 0, sizeof( *ctx ) );
}
/*
* Send one message through a given message socket context.
*
* \retval \p len, if everything succeeds.
* \retval MBEDTLS_TEST_ERROR_CONTEXT_ERROR, if any of the needed context
* elements or the context itself is null.
* \retval MBEDTLS_TEST_ERROR_SEND_FAILED if mbedtls_mock_tcp_send_b failed.
* \retval MBEDTLS_ERR_SSL_WANT_WRITE, if the output queue is full.
*
* This function will also return any error from
* mbedtls_test_message_queue_push_info.
*/
int mbedtls_mock_tcp_send_msg( void *ctx, const unsigned char *buf, size_t len )
{
mbedtls_test_message_queue* queue;
mbedtls_mock_socket* socket;
mbedtls_test_message_socket_context *context = (mbedtls_test_message_socket_context*) ctx;
if( context == NULL || context->socket == NULL
|| context->queue_output == NULL )
{
return MBEDTLS_TEST_ERROR_CONTEXT_ERROR;
}
queue = context->queue_output;
socket = context->socket;
if( queue->num >= queue->capacity )
return MBEDTLS_ERR_SSL_WANT_WRITE;
if( mbedtls_mock_tcp_send_b( socket, buf, len ) != (int) len )
return MBEDTLS_TEST_ERROR_SEND_FAILED;
return mbedtls_test_message_queue_push_info( queue, len );
}
/*
* Receive one message from a given message socket context and return message
* length or an error.
*
* \retval message length, if everything succeeds.
* \retval MBEDTLS_TEST_ERROR_CONTEXT_ERROR, if any of the needed context
* elements or the context itself is null.
* \retval MBEDTLS_TEST_ERROR_RECV_FAILED if mbedtls_mock_tcp_recv_b failed.
*
* This function will also return any error other than
* MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED from mbedtls_test_message_queue_peek_info.
*/
int mbedtls_mock_tcp_recv_msg( void *ctx, unsigned char *buf, size_t buf_len )
{
mbedtls_test_message_queue* queue;
mbedtls_mock_socket* socket;
mbedtls_test_message_socket_context *context = (mbedtls_test_message_socket_context*) ctx;
size_t drop_len = 0;
size_t msg_len;
int ret;
if( context == NULL || context->socket == NULL
|| context->queue_input == NULL )
{
return MBEDTLS_TEST_ERROR_CONTEXT_ERROR;
}
queue = context->queue_input;
socket = context->socket;
/* Peek first, so that in case of a socket error the data remains in
* the queue. */
ret = mbedtls_test_message_queue_peek_info( queue, buf_len, &msg_len );
if( ret == MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED )
{
/* Calculate how much to drop */
drop_len = msg_len - buf_len;
/* Set the requested message len to be buffer length */
msg_len = buf_len;
} else if( ret != 0 )
{
return ret;
}
if( mbedtls_mock_tcp_recv_b( socket, buf, msg_len ) != (int) msg_len )
return MBEDTLS_TEST_ERROR_RECV_FAILED;
if( ret == MBEDTLS_TEST_ERROR_MESSAGE_TRUNCATED )
{
/* Drop the remaining part of the message */
if( mbedtls_mock_tcp_recv_b( socket, NULL, drop_len ) != (int) drop_len )
{
/* Inconsistent state - part of the message was read,
* and a part couldn't. Not much we can do here, but it should not
* happen in test environment, unless forced manually. */
}
}
mbedtls_test_message_queue_pop_info( queue, buf_len );
return msg_len;
}
#if defined(MBEDTLS_X509_CRT_PARSE_C) && \
defined(MBEDTLS_ENTROPY_C) && \
defined(MBEDTLS_CTR_DRBG_C)
/*
* Structure with endpoint's certificates for SSL communication tests.
*/
typedef struct mbedtls_endpoint_certificate
{
mbedtls_x509_crt ca_cert;
mbedtls_x509_crt cert;
mbedtls_pk_context pkey;
} mbedtls_endpoint_certificate;
/*
* Endpoint structure for SSL communication tests.
*/
typedef struct mbedtls_endpoint
{
const char *name;
mbedtls_ssl_context ssl;
mbedtls_ssl_config conf;
mbedtls_ctr_drbg_context ctr_drbg;
mbedtls_entropy_context entropy;
mbedtls_mock_socket socket;
mbedtls_endpoint_certificate cert;
} mbedtls_endpoint;
/*
* Initializes \p ep_cert structure and assigns it to endpoint
* represented by \p ep.
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_endpoint_certificate_init( mbedtls_endpoint *ep, int pk_alg )
{
int i = 0;
int ret = -1;
mbedtls_endpoint_certificate *cert;
if( ep == NULL )
{
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
}
cert = &( ep->cert );
mbedtls_x509_crt_init( &( cert->ca_cert ) );
mbedtls_x509_crt_init( &( cert->cert ) );
mbedtls_pk_init( &( cert->pkey ) );
/* Load the trusted CA */
for( i = 0; mbedtls_test_cas_der[i] != NULL; i++ )
{
ret = mbedtls_x509_crt_parse_der( &( cert->ca_cert ),
(const unsigned char *) mbedtls_test_cas_der[i],
mbedtls_test_cas_der_len[i] );
TEST_ASSERT( ret == 0 );
}
/* Load own certificate and private key */
if( ep->conf.endpoint == MBEDTLS_SSL_IS_SERVER )
{
if( pk_alg == MBEDTLS_PK_RSA )
{
ret = mbedtls_x509_crt_parse( &( cert->cert ),
(const unsigned char*) mbedtls_test_srv_crt_rsa_sha256_der,
mbedtls_test_srv_crt_rsa_sha256_der_len );
TEST_ASSERT( ret == 0 );
ret = mbedtls_pk_parse_key( &( cert->pkey ),
(const unsigned char*) mbedtls_test_srv_key_rsa_der,
mbedtls_test_srv_key_rsa_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL );
TEST_ASSERT( ret == 0 );
}
else
{
ret = mbedtls_x509_crt_parse( &( cert->cert ),
(const unsigned char*) mbedtls_test_srv_crt_ec_der,
mbedtls_test_srv_crt_ec_der_len );
TEST_ASSERT( ret == 0 );
ret = mbedtls_pk_parse_key( &( cert->pkey ),
(const unsigned char*) mbedtls_test_srv_key_ec_der,
mbedtls_test_srv_key_ec_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL );
TEST_ASSERT( ret == 0 );
}
}
else
{
if( pk_alg == MBEDTLS_PK_RSA )
{
ret = mbedtls_x509_crt_parse( &( cert->cert ),
(const unsigned char *) mbedtls_test_cli_crt_rsa_der,
mbedtls_test_cli_crt_rsa_der_len );
TEST_ASSERT( ret == 0 );
ret = mbedtls_pk_parse_key( &( cert->pkey ),
(const unsigned char *) mbedtls_test_cli_key_rsa_der,
mbedtls_test_cli_key_rsa_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL );
TEST_ASSERT( ret == 0 );
}
else
{
ret = mbedtls_x509_crt_parse( &( cert->cert ),
(const unsigned char *) mbedtls_test_cli_crt_ec_der,
mbedtls_test_cli_crt_ec_len );
TEST_ASSERT( ret == 0 );
ret = mbedtls_pk_parse_key( &( cert->pkey ),
(const unsigned char *) mbedtls_test_cli_key_ec_der,
mbedtls_test_cli_key_ec_der_len, NULL, 0,
mbedtls_test_rnd_std_rand, NULL );
TEST_ASSERT( ret == 0 );
}
}
mbedtls_ssl_conf_ca_chain( &( ep->conf ), &( cert->ca_cert ), NULL );
ret = mbedtls_ssl_conf_own_cert( &( ep->conf ), &( cert->cert ),
&( cert->pkey ) );
TEST_ASSERT( ret == 0 );
exit:
if( ret != 0 )
{
mbedtls_x509_crt_free( &( cert->ca_cert ) );
mbedtls_x509_crt_free( &( cert->cert ) );
mbedtls_pk_free( &( cert->pkey ) );
}
return ret;
}
/*
* Initializes \p ep structure. It is important to call `mbedtls_endpoint_free()`
* after calling this function even if it fails.
*
* \p endpoint_type must be set as MBEDTLS_SSL_IS_SERVER or
* MBEDTLS_SSL_IS_CLIENT.
* \p pk_alg the algorithm to use, currently only MBEDTLS_PK_RSA and
* MBEDTLS_PK_ECDSA are supported.
* \p dtls_context - in case of DTLS - this is the context handling metadata.
* \p input_queue - used only in case of DTLS.
* \p output_queue - used only in case of DTLS.
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_endpoint_init( mbedtls_endpoint *ep, int endpoint_type, int pk_alg,
mbedtls_test_message_socket_context *dtls_context,
mbedtls_test_message_queue *input_queue,
mbedtls_test_message_queue *output_queue )
{
int ret = -1;
uintptr_t user_data_n;
if( dtls_context != NULL && ( input_queue == NULL || output_queue == NULL ) )
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
if( ep == NULL )
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
memset( ep, 0, sizeof( *ep ) );
ep->name = ( endpoint_type == MBEDTLS_SSL_IS_SERVER ) ? "Server" : "Client";
mbedtls_ssl_init( &( ep->ssl ) );
mbedtls_ssl_config_init( &( ep->conf ) );
mbedtls_ctr_drbg_init( &( ep->ctr_drbg ) );
mbedtls_ssl_conf_rng( &( ep->conf ),
mbedtls_ctr_drbg_random,
&( ep->ctr_drbg ) );
mbedtls_entropy_init( &( ep->entropy ) );
TEST_ASSERT( mbedtls_ssl_conf_get_user_data_p( &ep->conf ) == NULL );
TEST_EQUAL( mbedtls_ssl_conf_get_user_data_n( &ep->conf ), 0 );
TEST_ASSERT( mbedtls_ssl_get_user_data_p( &ep->ssl ) == NULL );
TEST_EQUAL( mbedtls_ssl_get_user_data_n( &ep->ssl ), 0 );
(void) mbedtls_test_rnd_std_rand( NULL,
(void*) &user_data_n,
sizeof( user_data_n ) );
mbedtls_ssl_conf_set_user_data_n( &ep->conf, user_data_n );
mbedtls_ssl_set_user_data_n( &ep->ssl, user_data_n );
if( dtls_context != NULL )
{
TEST_ASSERT( mbedtls_message_socket_setup( input_queue, output_queue,
100, &( ep->socket ),
dtls_context ) == 0 );
}
else
{
mbedtls_mock_socket_init( &( ep->socket ) );
}
ret = mbedtls_ctr_drbg_seed( &( ep->ctr_drbg ), mbedtls_entropy_func,
&( ep->entropy ), (const unsigned char *) ( ep->name ),
strlen( ep->name ) );
TEST_ASSERT( ret == 0 );
/* Non-blocking callbacks without timeout */
if( dtls_context != NULL )
{
mbedtls_ssl_set_bio( &( ep->ssl ), dtls_context,
mbedtls_mock_tcp_send_msg,
mbedtls_mock_tcp_recv_msg,
NULL );
}
else
{
mbedtls_ssl_set_bio( &( ep->ssl ), &( ep->socket ),
mbedtls_mock_tcp_send_nb,
mbedtls_mock_tcp_recv_nb,
NULL );
}
ret = mbedtls_ssl_config_defaults( &( ep->conf ), endpoint_type,
( dtls_context != NULL ) ?
MBEDTLS_SSL_TRANSPORT_DATAGRAM :
MBEDTLS_SSL_TRANSPORT_STREAM,
MBEDTLS_SSL_PRESET_DEFAULT );
TEST_ASSERT( ret == 0 );
ret = mbedtls_ssl_setup( &( ep->ssl ), &( ep->conf ) );
TEST_ASSERT( ret == 0 );
#if defined(MBEDTLS_SSL_PROTO_DTLS) && defined(MBEDTLS_SSL_SRV_C)
if( endpoint_type == MBEDTLS_SSL_IS_SERVER && dtls_context != NULL )
mbedtls_ssl_conf_dtls_cookies( &( ep->conf ), NULL, NULL, NULL );
#endif
ret = mbedtls_endpoint_certificate_init( ep, pk_alg );
TEST_ASSERT( ret == 0 );
TEST_EQUAL( mbedtls_ssl_conf_get_user_data_n( &ep->conf ), user_data_n );
mbedtls_ssl_conf_set_user_data_p( &ep->conf, ep );
TEST_EQUAL( mbedtls_ssl_get_user_data_n( &ep->ssl ), user_data_n );
mbedtls_ssl_set_user_data_p( &ep->ssl, ep );
exit:
return ret;
}
/*
* Deinitializes certificates from endpoint represented by \p ep.
*/
void mbedtls_endpoint_certificate_free( mbedtls_endpoint *ep )
{
mbedtls_endpoint_certificate *cert = &( ep->cert );
mbedtls_x509_crt_free( &( cert->ca_cert ) );
mbedtls_x509_crt_free( &( cert->cert ) );
mbedtls_pk_free( &( cert->pkey ) );
}
/*
* Deinitializes endpoint represented by \p ep.
*/
void mbedtls_endpoint_free( mbedtls_endpoint *ep,
mbedtls_test_message_socket_context *context )
{
mbedtls_endpoint_certificate_free( ep );
mbedtls_ssl_free( &( ep->ssl ) );
mbedtls_ssl_config_free( &( ep->conf ) );
mbedtls_ctr_drbg_free( &( ep->ctr_drbg ) );
mbedtls_entropy_free( &( ep->entropy ) );
if( context != NULL )
{
mbedtls_message_socket_close( context );
}
else
{
mbedtls_mock_socket_close( &( ep->socket ) );
}
}
/*
* This function moves ssl handshake from \p ssl to prescribed \p state.
* /p second_ssl is used as second endpoint and their sockets have to be
* connected before calling this function.
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_move_handshake_to_state( mbedtls_ssl_context *ssl,
mbedtls_ssl_context *second_ssl,
int state )
{
enum { BUFFSIZE = 1024 };
int max_steps = 1000;
int ret = 0;
if( ssl == NULL || second_ssl == NULL )
{
return MBEDTLS_ERR_SSL_BAD_INPUT_DATA;
}
/* Perform communication via connected sockets */
while( ( ssl->state != state ) && ( --max_steps >= 0 ) )
{
/* If /p second_ssl ends the handshake procedure before /p ssl then
* there is no need to call the next step */
if( second_ssl->state != MBEDTLS_SSL_HANDSHAKE_OVER )
{
ret = mbedtls_ssl_handshake_step( second_ssl );
if( ret != 0 && ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE )
{
return ret;
}
}
/* We only care about the \p ssl state and returns, so we call it last,
* to leave the iteration as soon as the state is as expected. */
ret = mbedtls_ssl_handshake_step( ssl );
if( ret != 0 && ret != MBEDTLS_ERR_SSL_WANT_READ &&
ret != MBEDTLS_ERR_SSL_WANT_WRITE )
{
return ret;
}
}
return ( max_steps >= 0 ) ? ret : -1;
}
#endif /* MBEDTLS_X509_CRT_PARSE_C && MBEDTLS_ENTROPY_C && MBEDTLS_CTR_DRBG_C */
/*
* Write application data. Increase write counter if necessary.
*/
int mbedtls_ssl_write_fragment( mbedtls_ssl_context *ssl, unsigned char *buf,
int buf_len, int *written,
const int expected_fragments )
{
int ret = mbedtls_ssl_write( ssl, buf + *written, buf_len - *written );
if( ret > 0 )
{
*written += ret;
}
if( expected_fragments == 0 )
{
/* Used for DTLS and the message size larger than MFL. In that case
* the message can not be fragmented and the library should return
* MBEDTLS_ERR_SSL_BAD_INPUT_DATA error. This error must be returned
* to prevent a dead loop inside mbedtls_exchange_data(). */
return ret;
}
else if( expected_fragments == 1 )
{
/* Used for TLS/DTLS and the message size lower than MFL */
TEST_ASSERT( ret == buf_len ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE );
}
else
{
/* Used for TLS and the message size larger than MFL */
TEST_ASSERT( expected_fragments > 1 );
TEST_ASSERT( ( ret >= 0 && ret <= buf_len ) ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE );
}
return 0;
exit:
/* Some of the tests failed */
return -1;
}
/*
* Read application data and increase read counter and fragments counter if necessary.
*/
int mbedtls_ssl_read_fragment( mbedtls_ssl_context *ssl, unsigned char *buf,
int buf_len, int *read,
int *fragments, const int expected_fragments )
{
int ret = mbedtls_ssl_read( ssl, buf + *read, buf_len - *read );
if( ret > 0 )
{
( *fragments )++;
*read += ret;
}
if( expected_fragments == 0 )
{
TEST_ASSERT( ret == 0 );
}
else if( expected_fragments == 1 )
{
TEST_ASSERT( ret == buf_len ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE );
}
else
{
TEST_ASSERT( expected_fragments > 1 );
TEST_ASSERT( ( ret >= 0 && ret <= buf_len ) ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE );
}
return 0;
exit:
/* Some of the tests failed */
return -1;
}
/*
* Helper function setting up inverse record transformations
* using given cipher, hash, EtM mode, authentication tag length,
* and version.
*/
#define CHK( x ) \
do \
{ \
if( !( x ) ) \
{ \
ret = -1; \
goto cleanup; \
} \
} while( 0 )
void set_ciphersuite( mbedtls_ssl_config *conf, const char *cipher,
int* forced_ciphersuite )
{
const mbedtls_ssl_ciphersuite_t *ciphersuite_info;
forced_ciphersuite[0] = mbedtls_ssl_get_ciphersuite_id( cipher );
forced_ciphersuite[1] = 0;
ciphersuite_info =
mbedtls_ssl_ciphersuite_from_id( forced_ciphersuite[0] );
TEST_ASSERT( ciphersuite_info != NULL );
TEST_ASSERT( ciphersuite_info->min_minor_ver <= conf->max_minor_ver );
TEST_ASSERT( ciphersuite_info->max_minor_ver >= conf->min_minor_ver );
if( conf->max_minor_ver > ciphersuite_info->max_minor_ver )
{
conf->max_minor_ver = ciphersuite_info->max_minor_ver;
}
if( conf->min_minor_ver < ciphersuite_info->min_minor_ver )
{
conf->min_minor_ver = ciphersuite_info->min_minor_ver;
}
mbedtls_ssl_conf_ciphersuites( conf, forced_ciphersuite );
exit:
return;
}
int psk_dummy_callback( void *p_info, mbedtls_ssl_context *ssl,
const unsigned char *name, size_t name_len )
{
(void) p_info;
(void) ssl;
(void) name;
(void) name_len;
return ( 0 );
}
#if MBEDTLS_SSL_CID_OUT_LEN_MAX > MBEDTLS_SSL_CID_IN_LEN_MAX
#define SSL_CID_LEN_MIN MBEDTLS_SSL_CID_IN_LEN_MAX
#else
#define SSL_CID_LEN_MIN MBEDTLS_SSL_CID_OUT_LEN_MAX
#endif
#if defined(MBEDTLS_SSL_PROTO_TLS1_2)
static int psa_cipher_encrypt_helper( mbedtls_ssl_transform *transform,
const unsigned char *iv, size_t iv_len,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen )
{
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
psa_cipher_operation_t cipher_op = PSA_CIPHER_OPERATION_INIT;
size_t part_len;
status = psa_cipher_encrypt_setup( &cipher_op,
transform->psa_key_enc, transform->psa_alg );
if( status != PSA_SUCCESS )
return( psa_ssl_status_to_mbedtls( status ) );
status = psa_cipher_set_iv( &cipher_op, iv, iv_len );
if( status != PSA_SUCCESS )
return( psa_ssl_status_to_mbedtls( status ) );
status = psa_cipher_update( &cipher_op,
input, ilen, output, ilen, olen );
if( status != PSA_SUCCESS )
return( psa_ssl_status_to_mbedtls( status ) );
status = psa_cipher_finish( &cipher_op,
output + *olen, ilen - *olen, &part_len );
if( status != PSA_SUCCESS )
return( psa_ssl_status_to_mbedtls( status ) );
*olen += part_len;
return( 0 );
#else
return mbedtls_cipher_crypt( &transform->cipher_ctx_enc,
iv, iv_len, input, ilen, output, olen );
#endif /* MBEDTLS_USE_PSA_CRYPTO */
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_2 */
static int build_transforms( mbedtls_ssl_transform *t_in,
mbedtls_ssl_transform *t_out,
int cipher_type, int hash_id,
int etm, int tag_mode, int ver,
size_t cid0_len,
size_t cid1_len )
{
mbedtls_cipher_info_t const *cipher_info;
int ret = 0;
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_key_type_t key_type;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_algorithm_t alg;
size_t key_bits;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
#endif
size_t keylen, maclen, ivlen;
unsigned char *key0 = NULL, *key1 = NULL;
unsigned char *md0 = NULL, *md1 = NULL;
unsigned char iv_enc[16], iv_dec[16];
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
unsigned char cid0[ SSL_CID_LEN_MIN ];
unsigned char cid1[ SSL_CID_LEN_MIN ];
mbedtls_test_rnd_std_rand( NULL, cid0, sizeof( cid0 ) );
mbedtls_test_rnd_std_rand( NULL, cid1, sizeof( cid1 ) );
#else
((void) cid0_len);
((void) cid1_len);
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
maclen = 0;
/* Pick cipher */
cipher_info = mbedtls_cipher_info_from_type( cipher_type );
CHK( cipher_info != NULL );
CHK( cipher_info->iv_size <= 16 );
CHK( cipher_info->key_bitlen % 8 == 0 );
/* Pick keys */
keylen = cipher_info->key_bitlen / 8;
/* Allocate `keylen + 1` bytes to ensure that we get
* a non-NULL pointers from `mbedtls_calloc` even if
* `keylen == 0` in the case of the NULL cipher. */
CHK( ( key0 = mbedtls_calloc( 1, keylen + 1 ) ) != NULL );
CHK( ( key1 = mbedtls_calloc( 1, keylen + 1 ) ) != NULL );
memset( key0, 0x1, keylen );
memset( key1, 0x2, keylen );
#if !defined(MBEDTLS_USE_PSA_CRYPTO)
/* Setup cipher contexts */
CHK( mbedtls_cipher_setup( &t_in->cipher_ctx_enc, cipher_info ) == 0 );
CHK( mbedtls_cipher_setup( &t_in->cipher_ctx_dec, cipher_info ) == 0 );
CHK( mbedtls_cipher_setup( &t_out->cipher_ctx_enc, cipher_info ) == 0 );
CHK( mbedtls_cipher_setup( &t_out->cipher_ctx_dec, cipher_info ) == 0 );
#if defined(MBEDTLS_CIPHER_MODE_CBC)
if( cipher_info->mode == MBEDTLS_MODE_CBC )
{
CHK( mbedtls_cipher_set_padding_mode( &t_in->cipher_ctx_enc,
MBEDTLS_PADDING_NONE ) == 0 );
CHK( mbedtls_cipher_set_padding_mode( &t_in->cipher_ctx_dec,
MBEDTLS_PADDING_NONE ) == 0 );
CHK( mbedtls_cipher_set_padding_mode( &t_out->cipher_ctx_enc,
MBEDTLS_PADDING_NONE ) == 0 );
CHK( mbedtls_cipher_set_padding_mode( &t_out->cipher_ctx_dec,
MBEDTLS_PADDING_NONE ) == 0 );
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
CHK( mbedtls_cipher_setkey( &t_in->cipher_ctx_enc, key0,
keylen << 3, MBEDTLS_ENCRYPT ) == 0 );
CHK( mbedtls_cipher_setkey( &t_in->cipher_ctx_dec, key1,
keylen << 3, MBEDTLS_DECRYPT ) == 0 );
CHK( mbedtls_cipher_setkey( &t_out->cipher_ctx_enc, key1,
keylen << 3, MBEDTLS_ENCRYPT ) == 0 );
CHK( mbedtls_cipher_setkey( &t_out->cipher_ctx_dec, key0,
keylen << 3, MBEDTLS_DECRYPT ) == 0 );
#endif
/* Setup MAC contexts */
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
if( cipher_info->mode == MBEDTLS_MODE_CBC ||
cipher_info->mode == MBEDTLS_MODE_STREAM )
{
mbedtls_md_info_t const *md_info;
/* Pick hash */
md_info = mbedtls_md_info_from_type( hash_id );
CHK( md_info != NULL );
/* Pick hash keys */
maclen = mbedtls_md_get_size( md_info );
CHK( ( md0 = mbedtls_calloc( 1, maclen ) ) != NULL );
CHK( ( md1 = mbedtls_calloc( 1, maclen ) ) != NULL );
memset( md0, 0x5, maclen );
memset( md1, 0x6, maclen );
#if defined(MBEDTLS_USE_PSA_CRYPTO)
alg = mbedtls_psa_translate_md( mbedtls_md_get_type( md_info ) );
CHK( alg != 0 );
t_out->psa_mac_alg = PSA_ALG_HMAC( alg );
t_in->psa_mac_alg = PSA_ALG_HMAC( alg );
t_in->psa_mac_enc = MBEDTLS_SVC_KEY_ID_INIT;
t_out->psa_mac_enc = MBEDTLS_SVC_KEY_ID_INIT;
t_in->psa_mac_dec = MBEDTLS_SVC_KEY_ID_INIT;
t_out->psa_mac_dec = MBEDTLS_SVC_KEY_ID_INIT;
psa_reset_key_attributes( &attributes );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_MESSAGE );
psa_set_key_algorithm( &attributes, PSA_ALG_HMAC( alg ) );
psa_set_key_type( &attributes, PSA_KEY_TYPE_HMAC );
CHK( psa_import_key( &attributes,
md0, maclen,
&t_in->psa_mac_enc ) == PSA_SUCCESS );
CHK( psa_import_key( &attributes,
md1, maclen,
&t_out->psa_mac_enc ) == PSA_SUCCESS );
/* mbedtls_ct_hmac() requires the key to be exportable */
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_EXPORT |
PSA_KEY_USAGE_VERIFY_HASH );
CHK( psa_import_key( &attributes,
md1, maclen,
&t_in->psa_mac_dec ) == PSA_SUCCESS );
CHK( psa_import_key( &attributes,
md0, maclen,
&t_out->psa_mac_dec ) == PSA_SUCCESS );
#else
CHK( mbedtls_md_setup( &t_out->md_ctx_enc, md_info, 1 ) == 0 );
CHK( mbedtls_md_setup( &t_out->md_ctx_dec, md_info, 1 ) == 0 );
CHK( mbedtls_md_setup( &t_in->md_ctx_enc, md_info, 1 ) == 0 );
CHK( mbedtls_md_setup( &t_in->md_ctx_dec, md_info, 1 ) == 0 );
CHK( mbedtls_md_hmac_starts( &t_in->md_ctx_enc,
md0, maclen ) == 0 );
CHK( mbedtls_md_hmac_starts( &t_in->md_ctx_dec,
md1, maclen ) == 0 );
CHK( mbedtls_md_hmac_starts( &t_out->md_ctx_enc,
md1, maclen ) == 0 );
CHK( mbedtls_md_hmac_starts( &t_out->md_ctx_dec,
md0, maclen ) == 0 );
#endif
}
#else
((void) hash_id);
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
/* Pick IV's (regardless of whether they
* are being used by the transform). */
ivlen = cipher_info->iv_size;
memset( iv_enc, 0x3, sizeof( iv_enc ) );
memset( iv_dec, 0x4, sizeof( iv_dec ) );
/*
* Setup transforms
*/
#if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC) && \
defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
t_out->encrypt_then_mac = etm;
t_in->encrypt_then_mac = etm;
#else
((void) etm);
#endif
t_out->minor_ver = ver;
t_in->minor_ver = ver;
t_out->ivlen = ivlen;
t_in->ivlen = ivlen;
switch( cipher_info->mode )
{
case MBEDTLS_MODE_GCM:
case MBEDTLS_MODE_CCM:
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if( ver == MBEDTLS_SSL_MINOR_VERSION_4 )
{
t_out->fixed_ivlen = 12;
t_in->fixed_ivlen = 12;
}
else
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
{
t_out->fixed_ivlen = 4;
t_in->fixed_ivlen = 4;
}
t_out->maclen = 0;
t_in->maclen = 0;
switch( tag_mode )
{
case 0: /* Full tag */
t_out->taglen = 16;
t_in->taglen = 16;
break;
case 1: /* Partial tag */
t_out->taglen = 8;
t_in->taglen = 8;
break;
default:
ret = 1;
goto cleanup;
}
break;
case MBEDTLS_MODE_CHACHAPOLY:
t_out->fixed_ivlen = 12;
t_in->fixed_ivlen = 12;
t_out->maclen = 0;
t_in->maclen = 0;
switch( tag_mode )
{
case 0: /* Full tag */
t_out->taglen = 16;
t_in->taglen = 16;
break;
case 1: /* Partial tag */
t_out->taglen = 8;
t_in->taglen = 8;
break;
default:
ret = 1;
goto cleanup;
}
break;
case MBEDTLS_MODE_STREAM:
case MBEDTLS_MODE_CBC:
t_out->fixed_ivlen = 0; /* redundant, must be 0 */
t_in->fixed_ivlen = 0; /* redundant, must be 0 */
t_out->taglen = 0;
t_in->taglen = 0;
switch( tag_mode )
{
case 0: /* Full tag */
t_out->maclen = maclen;
t_in->maclen = maclen;
break;
default:
ret = 1;
goto cleanup;
}
break;
default:
ret = 1;
goto cleanup;
break;
}
/* Setup IV's */
memcpy( &t_in->iv_dec, iv_dec, sizeof( iv_dec ) );
memcpy( &t_in->iv_enc, iv_enc, sizeof( iv_enc ) );
memcpy( &t_out->iv_dec, iv_enc, sizeof( iv_enc ) );
memcpy( &t_out->iv_enc, iv_dec, sizeof( iv_dec ) );
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
/* Add CID */
memcpy( &t_in->in_cid, cid0, cid0_len );
memcpy( &t_in->out_cid, cid1, cid1_len );
t_in->in_cid_len = cid0_len;
t_in->out_cid_len = cid1_len;
memcpy( &t_out->in_cid, cid1, cid1_len );
memcpy( &t_out->out_cid, cid0, cid0_len );
t_out->in_cid_len = cid1_len;
t_out->out_cid_len = cid0_len;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
status = mbedtls_ssl_cipher_to_psa( cipher_type,
t_in->taglen,
&alg,
&key_type,
&key_bits );
if ( status != PSA_SUCCESS )
{
ret = psa_ssl_status_to_mbedtls( status );
goto cleanup;
}
t_in->psa_alg = alg;
t_out->psa_alg = alg;
if ( alg != MBEDTLS_SSL_NULL_CIPHER )
{
psa_reset_key_attributes( &attributes );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
status = psa_import_key( &attributes,
key0,
PSA_BITS_TO_BYTES( key_bits ),
&t_in->psa_key_enc );
if ( status != PSA_SUCCESS )
{
ret = psa_ssl_status_to_mbedtls( status );
goto cleanup;
}
status = psa_import_key( &attributes,
key1,
PSA_BITS_TO_BYTES( key_bits ),
&t_out->psa_key_enc );
if ( status != PSA_SUCCESS )
{
ret = psa_ssl_status_to_mbedtls( status );
goto cleanup;
}
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT );
status = psa_import_key( &attributes,
key1,
PSA_BITS_TO_BYTES( key_bits ),
&t_in->psa_key_dec );
if ( status != PSA_SUCCESS )
{
ret = psa_ssl_status_to_mbedtls( status );
goto cleanup;
}
status = psa_import_key( &attributes,
key0,
PSA_BITS_TO_BYTES( key_bits ),
&t_out->psa_key_dec );
if ( status != PSA_SUCCESS )
{
ret = psa_ssl_status_to_mbedtls( status );
goto cleanup;
}
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
cleanup:
mbedtls_free( key0 );
mbedtls_free( key1 );
mbedtls_free( md0 );
mbedtls_free( md1 );
return( ret );
}
/*
* Populate a session structure for serialization tests.
* Choose dummy values, mostly non-0 to distinguish from the init default.
*/
static int ssl_populate_session_tls12( mbedtls_ssl_session *session,
int ticket_len,
const char *crt_file )
{
#if defined(MBEDTLS_HAVE_TIME)
session->start = mbedtls_time( NULL ) - 42;
#endif
session->minor_ver = MBEDTLS_SSL_MINOR_VERSION_3;
session->ciphersuite = 0xabcd;
session->compression = 1;
session->id_len = sizeof( session->id );
memset( session->id, 66, session->id_len );
memset( session->master, 17, sizeof( session->master ) );
#if defined(MBEDTLS_X509_CRT_PARSE_C) && defined(MBEDTLS_FS_IO)
if( crt_file != NULL && strlen( crt_file ) != 0 )
{
mbedtls_x509_crt tmp_crt;
int ret;
mbedtls_x509_crt_init( &tmp_crt );
ret = mbedtls_x509_crt_parse_file( &tmp_crt, crt_file );
if( ret != 0 )
return( ret );
#if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE)
/* Move temporary CRT. */
session->peer_cert = mbedtls_calloc( 1, sizeof( *session->peer_cert ) );
if( session->peer_cert == NULL )
return( -1 );
*session->peer_cert = tmp_crt;
memset( &tmp_crt, 0, sizeof( tmp_crt ) );
#else /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
/* Calculate digest of temporary CRT. */
session->peer_cert_digest =
mbedtls_calloc( 1, MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN );
if( session->peer_cert_digest == NULL )
return( -1 );
ret = mbedtls_md( mbedtls_md_info_from_type(
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE ),
tmp_crt.raw.p, tmp_crt.raw.len,
session->peer_cert_digest );
if( ret != 0 )
return( ret );
session->peer_cert_digest_type =
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_TYPE;
session->peer_cert_digest_len =
MBEDTLS_SSL_PEER_CERT_DIGEST_DFL_LEN;
#endif /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
mbedtls_x509_crt_free( &tmp_crt );
}
#else /* MBEDTLS_X509_CRT_PARSE_C && MBEDTLS_FS_IO */
(void) crt_file;
#endif /* MBEDTLS_X509_CRT_PARSE_C && MBEDTLS_FS_IO */
session->verify_result = 0xdeadbeef;
#if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C)
if( ticket_len != 0 )
{
session->ticket = mbedtls_calloc( 1, ticket_len );
if( session->ticket == NULL )
return( -1 );
memset( session->ticket, 33, ticket_len );
}
session->ticket_len = ticket_len;
session->ticket_lifetime = 86401;
#else
(void) ticket_len;
#endif
#if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)
session->mfl_code = 1;
#endif
#if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC)
session->encrypt_then_mac = 1;
#endif
return( 0 );
}
/*
* Perform data exchanging between \p ssl_1 and \p ssl_2 and check if the
* message was sent in the correct number of fragments.
*
* /p ssl_1 and /p ssl_2 Endpoints represented by mbedtls_ssl_context. Both
* of them must be initialized and connected beforehand.
* /p msg_len_1 and /p msg_len_2 specify the size of the message to send.
* /p expected_fragments_1 and /p expected_fragments_2 determine in how many
* fragments the message should be sent.
* expected_fragments is 0: can be used for DTLS testing while the message
* size is larger than MFL. In that case the message
* cannot be fragmented and sent to the second endpoint.
* This value can be used for negative tests.
* expected_fragments is 1: can be used for TLS/DTLS testing while the
* message size is below MFL
* expected_fragments > 1: can be used for TLS testing while the message
* size is larger than MFL
*
* \retval 0 on success, otherwise error code.
*/
int mbedtls_exchange_data( mbedtls_ssl_context *ssl_1,
int msg_len_1, const int expected_fragments_1,
mbedtls_ssl_context *ssl_2,
int msg_len_2, const int expected_fragments_2 )
{
unsigned char *msg_buf_1 = malloc( msg_len_1 );
unsigned char *msg_buf_2 = malloc( msg_len_2 );
unsigned char *in_buf_1 = malloc( msg_len_2 );
unsigned char *in_buf_2 = malloc( msg_len_1 );
int msg_type, ret = -1;
/* Perform this test with two message types. At first use a message
* consisting of only 0x00 for the client and only 0xFF for the server.
* At the second time use message with generated data */
for( msg_type = 0; msg_type < 2; msg_type++ )
{
int written_1 = 0;
int written_2 = 0;
int read_1 = 0;
int read_2 = 0;
int fragments_1 = 0;
int fragments_2 = 0;
if( msg_type == 0 )
{
memset( msg_buf_1, 0x00, msg_len_1 );
memset( msg_buf_2, 0xff, msg_len_2 );
}
else
{
int i, j = 0;
for( i = 0; i < msg_len_1; i++ )
{
msg_buf_1[i] = j++ & 0xFF;
}
for( i = 0; i < msg_len_2; i++ )
{
msg_buf_2[i] = ( j -= 5 ) & 0xFF;
}
}
while( read_1 < msg_len_2 || read_2 < msg_len_1 )
{
/* ssl_1 sending */
if( msg_len_1 > written_1 )
{
ret = mbedtls_ssl_write_fragment( ssl_1, msg_buf_1,
msg_len_1, &written_1,
expected_fragments_1 );
if( expected_fragments_1 == 0 )
{
/* This error is expected when the message is too large and
* cannot be fragmented */
TEST_ASSERT( ret == MBEDTLS_ERR_SSL_BAD_INPUT_DATA );
msg_len_1 = 0;
}
else
{
TEST_ASSERT( ret == 0 );
}
}
/* ssl_2 sending */
if( msg_len_2 > written_2 )
{
ret = mbedtls_ssl_write_fragment( ssl_2, msg_buf_2,
msg_len_2, &written_2,
expected_fragments_2 );
if( expected_fragments_2 == 0 )
{
/* This error is expected when the message is too large and
* cannot be fragmented */
TEST_ASSERT( ret == MBEDTLS_ERR_SSL_BAD_INPUT_DATA );
msg_len_2 = 0;
}
else
{
TEST_ASSERT( ret == 0 );
}
}
/* ssl_1 reading */
if( read_1 < msg_len_2 )
{
ret = mbedtls_ssl_read_fragment( ssl_1, in_buf_1,
msg_len_2, &read_1,
&fragments_2,
expected_fragments_2 );
TEST_ASSERT( ret == 0 );
}
/* ssl_2 reading */
if( read_2 < msg_len_1 )
{
ret = mbedtls_ssl_read_fragment( ssl_2, in_buf_2,
msg_len_1, &read_2,
&fragments_1,
expected_fragments_1 );
TEST_ASSERT( ret == 0 );
}
}
ret = -1;
TEST_ASSERT( 0 == memcmp( msg_buf_1, in_buf_2, msg_len_1 ) );
TEST_ASSERT( 0 == memcmp( msg_buf_2, in_buf_1, msg_len_2 ) );
TEST_ASSERT( fragments_1 == expected_fragments_1 );
TEST_ASSERT( fragments_2 == expected_fragments_2 );
}
ret = 0;
exit:
free( msg_buf_1 );
free( in_buf_1 );
free( msg_buf_2 );
free( in_buf_2 );
return ret;
}
/*
* Perform data exchanging between \p ssl_1 and \p ssl_2. Both of endpoints
* must be initialized and connected beforehand.
*
* \retval 0 on success, otherwise error code.
*/
int exchange_data( mbedtls_ssl_context *ssl_1,
mbedtls_ssl_context *ssl_2 )
{
return mbedtls_exchange_data( ssl_1, 256, 1,
ssl_2, 256, 1 );
}
int check_ssl_version( int expected_negotiated_version,
const mbedtls_ssl_context *ssl )
{
const char *version_string = mbedtls_ssl_get_version( ssl );
mbedtls_ssl_protocol_version version_number =
mbedtls_ssl_get_version_number( ssl );
TEST_EQUAL( ssl->major_ver, MBEDTLS_SSL_MAJOR_VERSION_3 );
TEST_EQUAL( ssl->minor_ver, expected_negotiated_version );
if( ssl->conf->transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM )
{
TEST_EQUAL( version_string[0], 'D' );
++version_string;
}
switch( expected_negotiated_version )
{
case MBEDTLS_SSL_MINOR_VERSION_3:
TEST_EQUAL( version_number, MBEDTLS_SSL_VERSION_1_2 );
TEST_ASSERT( strcmp( version_string, "TLSv1.2" ) == 0 );
break;
case MBEDTLS_SSL_MINOR_VERSION_4:
TEST_EQUAL( version_number, MBEDTLS_SSL_VERSION_1_3 );
TEST_ASSERT( strcmp( version_string, "TLSv1.3" ) == 0 );
break;
default:
TEST_ASSERT( ! "Version check not implemented for this protocol version" );
}
return( 1 );
exit:
return( 0 );
}
#if defined(MBEDTLS_X509_CRT_PARSE_C) && \
defined(MBEDTLS_ENTROPY_C) && \
defined(MBEDTLS_CTR_DRBG_C)
void perform_handshake( handshake_test_options* options )
{
/* forced_ciphersuite needs to last until the end of the handshake */
int forced_ciphersuite[2];
enum { BUFFSIZE = 17000 };
mbedtls_endpoint client, server;
#if defined(MBEDTLS_KEY_EXCHANGE_SOME_PSK_ENABLED)
const char *psk_identity = "foo";
#endif
#if defined(MBEDTLS_TIMING_C)
mbedtls_timing_delay_context timer_client, timer_server;
#endif
#if defined(MBEDTLS_SSL_CONTEXT_SERIALIZATION)
unsigned char *context_buf = NULL;
size_t context_buf_len;
#endif
#if defined(MBEDTLS_SSL_RENEGOTIATION)
int ret = -1;
#endif
int expected_handshake_result = 0;
USE_PSA_INIT( );
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
/* Client side */
if( options->dtls != 0 )
{
TEST_ASSERT( mbedtls_endpoint_init( &client, MBEDTLS_SSL_IS_CLIENT,
options->pk_alg, &client_context,
&client_queue,
&server_queue ) == 0 );
#if defined(MBEDTLS_TIMING_C)
mbedtls_ssl_set_timer_cb( &client.ssl, &timer_client,
mbedtls_timing_set_delay,
mbedtls_timing_get_delay );
#endif
}
else
{
TEST_ASSERT( mbedtls_endpoint_init( &client, MBEDTLS_SSL_IS_CLIENT,
options->pk_alg, NULL, NULL,
NULL ) == 0 );
}
if( options->client_min_version != TEST_SSL_MINOR_VERSION_NONE )
{
mbedtls_ssl_conf_min_version( &client.conf, MBEDTLS_SSL_MAJOR_VERSION_3,
options->client_min_version );
}
if( options->client_max_version != TEST_SSL_MINOR_VERSION_NONE )
{
mbedtls_ssl_conf_max_version( &client.conf, MBEDTLS_SSL_MAJOR_VERSION_3,
options->client_max_version );
}
if( strlen( options->cipher ) > 0 )
{
set_ciphersuite( &client.conf, options->cipher, forced_ciphersuite );
}
#if defined (MBEDTLS_DEBUG_C)
if( options->cli_log_fun )
{
mbedtls_debug_set_threshold( 4 );
mbedtls_ssl_conf_dbg( &client.conf, options->cli_log_fun,
options->cli_log_obj );
}
#endif
/* Server side */
if( options->dtls != 0 )
{
TEST_ASSERT( mbedtls_endpoint_init( &server, MBEDTLS_SSL_IS_SERVER,
options->pk_alg, &server_context,
&server_queue,
&client_queue) == 0 );
#if defined(MBEDTLS_TIMING_C)
mbedtls_ssl_set_timer_cb( &server.ssl, &timer_server,
mbedtls_timing_set_delay,
mbedtls_timing_get_delay );
#endif
}
else
{
TEST_ASSERT( mbedtls_endpoint_init( &server, MBEDTLS_SSL_IS_SERVER,
options->pk_alg, NULL, NULL, NULL ) == 0 );
}
mbedtls_ssl_conf_authmode( &server.conf, options->srv_auth_mode );
if( options->server_min_version != TEST_SSL_MINOR_VERSION_NONE )
{
mbedtls_ssl_conf_min_version( &server.conf, MBEDTLS_SSL_MAJOR_VERSION_3,
options->server_min_version );
}
if( options->server_max_version != TEST_SSL_MINOR_VERSION_NONE )
{
mbedtls_ssl_conf_max_version( &server.conf, MBEDTLS_SSL_MAJOR_VERSION_3,
options->server_max_version );
}
#if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)
TEST_ASSERT( mbedtls_ssl_conf_max_frag_len( &(server.conf),
(unsigned char) options->mfl ) == 0 );
TEST_ASSERT( mbedtls_ssl_conf_max_frag_len( &(client.conf),
(unsigned char) options->mfl ) == 0 );
#else
TEST_ASSERT( MBEDTLS_SSL_MAX_FRAG_LEN_NONE == options->mfl );
#endif /* MBEDTLS_SSL_MAX_FRAGMENT_LENGTH */
#if defined(MBEDTLS_KEY_EXCHANGE_SOME_PSK_ENABLED)
if( options->psk_str != NULL && options->psk_str->len > 0 )
{
TEST_ASSERT( mbedtls_ssl_conf_psk( &client.conf, options->psk_str->x,
options->psk_str->len,
(const unsigned char *) psk_identity,
strlen( psk_identity ) ) == 0 );
TEST_ASSERT( mbedtls_ssl_conf_psk( &server.conf, options->psk_str->x,
options->psk_str->len,
(const unsigned char *) psk_identity,
strlen( psk_identity ) ) == 0 );
mbedtls_ssl_conf_psk_cb( &server.conf, psk_dummy_callback, NULL );
}
#endif
#if defined(MBEDTLS_SSL_RENEGOTIATION)
if( options->renegotiate )
{
mbedtls_ssl_conf_renegotiation( &(server.conf),
MBEDTLS_SSL_RENEGOTIATION_ENABLED );
mbedtls_ssl_conf_renegotiation( &(client.conf),
MBEDTLS_SSL_RENEGOTIATION_ENABLED );
mbedtls_ssl_conf_legacy_renegotiation( &(server.conf),
options->legacy_renegotiation );
mbedtls_ssl_conf_legacy_renegotiation( &(client.conf),
options->legacy_renegotiation );
}
#endif /* MBEDTLS_SSL_RENEGOTIATION */
#if defined (MBEDTLS_DEBUG_C)
if( options->srv_log_fun )
{
mbedtls_debug_set_threshold( 4 );
mbedtls_ssl_conf_dbg( &server.conf, options->srv_log_fun,
options->srv_log_obj );
}
#endif
TEST_ASSERT( mbedtls_mock_socket_connect( &(client.socket),
&(server.socket),
BUFFSIZE ) == 0 );
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if( options->resize_buffers != 0 )
{
/* Ensure that the buffer sizes are appropriate before resizes */
TEST_ASSERT( client.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN );
TEST_ASSERT( client.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN );
TEST_ASSERT( server.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN );
TEST_ASSERT( server.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN );
}
#endif
if( options->expected_negotiated_version == TEST_SSL_MINOR_VERSION_NONE )
{
expected_handshake_result = MBEDTLS_ERR_SSL_BAD_PROTOCOL_VERSION;
}
TEST_ASSERT( mbedtls_move_handshake_to_state( &(client.ssl),
&(server.ssl),
MBEDTLS_SSL_HANDSHAKE_OVER )
== expected_handshake_result );
if( expected_handshake_result != 0 )
{
/* Connection will have failed by this point, skip to cleanup */
goto exit;
}
TEST_ASSERT( client.ssl.state == MBEDTLS_SSL_HANDSHAKE_OVER );
TEST_ASSERT( server.ssl.state == MBEDTLS_SSL_HANDSHAKE_OVER );
/* Check that both sides have negotiated the expected version. */
mbedtls_test_set_step( 0 );
if( ! check_ssl_version( options->expected_negotiated_version,
&client.ssl ) )
goto exit;
mbedtls_test_set_step( 1 );
if( ! check_ssl_version( options->expected_negotiated_version,
&server.ssl ) )
goto exit;
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if( options->resize_buffers != 0 )
{
/* A server, when using DTLS, might delay a buffer resize to happen
* after it receives a message, so we force it. */
TEST_ASSERT( exchange_data( &(client.ssl), &(server.ssl) ) == 0 );
TEST_ASSERT( client.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen( &client.ssl ) );
TEST_ASSERT( client.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen( &client.ssl ) );
TEST_ASSERT( server.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen( &server.ssl ) );
TEST_ASSERT( server.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen( &server.ssl ) );
}
#endif
if( options->cli_msg_len != 0 || options->srv_msg_len != 0 )
{
/* Start data exchanging test */
TEST_ASSERT( mbedtls_exchange_data( &(client.ssl), options->cli_msg_len,
options->expected_cli_fragments,
&(server.ssl), options->srv_msg_len,
options->expected_srv_fragments )
== 0 );
}
#if defined(MBEDTLS_SSL_CONTEXT_SERIALIZATION)
if( options->serialize == 1 )
{
TEST_ASSERT( options->dtls == 1 );
TEST_ASSERT( mbedtls_ssl_context_save( &(server.ssl), NULL,
0, &context_buf_len )
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
context_buf = mbedtls_calloc( 1, context_buf_len );
TEST_ASSERT( context_buf != NULL );
TEST_ASSERT( mbedtls_ssl_context_save( &(server.ssl), context_buf,
context_buf_len,
&context_buf_len ) == 0 );
mbedtls_ssl_free( &(server.ssl) );
mbedtls_ssl_init( &(server.ssl) );
TEST_ASSERT( mbedtls_ssl_setup( &(server.ssl), &(server.conf) ) == 0 );
mbedtls_ssl_set_bio( &( server.ssl ), &server_context,
mbedtls_mock_tcp_send_msg,
mbedtls_mock_tcp_recv_msg,
NULL );
mbedtls_ssl_set_user_data_p( &server.ssl, &server );
#if defined(MBEDTLS_TIMING_C)
mbedtls_ssl_set_timer_cb( &server.ssl, &timer_server,
mbedtls_timing_set_delay,
mbedtls_timing_get_delay );
#endif
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if( options->resize_buffers != 0 )
{
/* Ensure that the buffer sizes are appropriate before resizes */
TEST_ASSERT( server.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN );
TEST_ASSERT( server.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN );
}
#endif
TEST_ASSERT( mbedtls_ssl_context_load( &( server.ssl ), context_buf,
context_buf_len ) == 0 );
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
/* Validate buffer sizes after context deserialization */
if( options->resize_buffers != 0 )
{
TEST_ASSERT( server.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen( &server.ssl ) );
TEST_ASSERT( server.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen( &server.ssl ) );
}
#endif
/* Retest writing/reading */
if( options->cli_msg_len != 0 || options->srv_msg_len != 0 )
{
TEST_ASSERT( mbedtls_exchange_data( &(client.ssl),
options->cli_msg_len,
options->expected_cli_fragments,
&(server.ssl),
options->srv_msg_len,
options->expected_srv_fragments )
== 0 );
}
}
#endif /* MBEDTLS_SSL_CONTEXT_SERIALIZATION */
#if defined(MBEDTLS_SSL_RENEGOTIATION)
if( options->renegotiate )
{
/* Start test with renegotiation */
TEST_ASSERT( server.ssl.renego_status ==
MBEDTLS_SSL_INITIAL_HANDSHAKE );
TEST_ASSERT( client.ssl.renego_status ==
MBEDTLS_SSL_INITIAL_HANDSHAKE );
/* After calling this function for the server, it only sends a handshake
* request. All renegotiation should happen during data exchanging */
TEST_ASSERT( mbedtls_ssl_renegotiate( &(server.ssl) ) == 0 );
TEST_ASSERT( server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_PENDING );
TEST_ASSERT( client.ssl.renego_status ==
MBEDTLS_SSL_INITIAL_HANDSHAKE );
TEST_ASSERT( exchange_data( &(client.ssl), &(server.ssl) ) == 0 );
TEST_ASSERT( server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE );
TEST_ASSERT( client.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE );
/* After calling mbedtls_ssl_renegotiate for the client all renegotiation
* should happen inside this function. However in this test, we cannot
* perform simultaneous communication betwen client and server so this
* function will return waiting error on the socket. All rest of
* renegotiation should happen during data exchanging */
ret = mbedtls_ssl_renegotiate( &(client.ssl) );
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
if( options->resize_buffers != 0 )
{
/* Ensure that the buffer sizes are appropriate before resizes */
TEST_ASSERT( client.ssl.out_buf_len == MBEDTLS_SSL_OUT_BUFFER_LEN );
TEST_ASSERT( client.ssl.in_buf_len == MBEDTLS_SSL_IN_BUFFER_LEN );
}
#endif
TEST_ASSERT( ret == 0 ||
ret == MBEDTLS_ERR_SSL_WANT_READ ||
ret == MBEDTLS_ERR_SSL_WANT_WRITE );
TEST_ASSERT( server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE );
TEST_ASSERT( client.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_IN_PROGRESS );
TEST_ASSERT( exchange_data( &(client.ssl), &(server.ssl) ) == 0 );
TEST_ASSERT( server.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE );
TEST_ASSERT( client.ssl.renego_status ==
MBEDTLS_SSL_RENEGOTIATION_DONE );
#if defined(MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH)
/* Validate buffer sizes after renegotiation */
if( options->resize_buffers != 0 )
{
TEST_ASSERT( client.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen( &client.ssl ) );
TEST_ASSERT( client.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen( &client.ssl ) );
TEST_ASSERT( server.ssl.out_buf_len ==
mbedtls_ssl_get_output_buflen( &server.ssl ) );
TEST_ASSERT( server.ssl.in_buf_len ==
mbedtls_ssl_get_input_buflen( &server.ssl ) );
}
#endif /* MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH */
}
#endif /* MBEDTLS_SSL_RENEGOTIATION */
TEST_ASSERT( mbedtls_ssl_conf_get_user_data_p( &client.conf ) == &client );
TEST_ASSERT( mbedtls_ssl_get_user_data_p( &client.ssl ) == &client );
TEST_ASSERT( mbedtls_ssl_conf_get_user_data_p( &server.conf ) == &server );
TEST_ASSERT( mbedtls_ssl_get_user_data_p( &server.ssl ) == &server );
exit:
mbedtls_endpoint_free( &client, options->dtls != 0 ? &client_context : NULL );
mbedtls_endpoint_free( &server, options->dtls != 0 ? &server_context : NULL );
#if defined (MBEDTLS_DEBUG_C)
if( options->cli_log_fun || options->srv_log_fun )
{
mbedtls_debug_set_threshold( 0 );
}
#endif
#if defined(MBEDTLS_SSL_CONTEXT_SERIALIZATION)
if( context_buf != NULL )
mbedtls_free( context_buf );
#endif
USE_PSA_DONE( );
}
#endif /* MBEDTLS_X509_CRT_PARSE_C && MBEDTLS_ENTROPY_C && MBEDTLS_CTR_DRBG_C */
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_SSL_TLS_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void test_callback_buffer_sanity()
{
enum { MSGLEN = 10 };
mbedtls_test_buffer buf;
unsigned char input[MSGLEN];
unsigned char output[MSGLEN];
memset( input, 0, sizeof(input) );
/* Make sure calling put and get on NULL buffer results in error. */
TEST_ASSERT( mbedtls_test_buffer_put( NULL, input, sizeof( input ) )
== -1 );
TEST_ASSERT( mbedtls_test_buffer_get( NULL, output, sizeof( output ) )
== -1 );
TEST_ASSERT( mbedtls_test_buffer_put( NULL, NULL, sizeof( input ) ) == -1 );
TEST_ASSERT( mbedtls_test_buffer_put( NULL, NULL, 0 ) == -1 );
TEST_ASSERT( mbedtls_test_buffer_get( NULL, NULL, 0 ) == -1 );
/* Make sure calling put and get on a buffer that hasn't been set up results
* in eror. */
mbedtls_test_buffer_init( &buf );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, input, sizeof( input ) ) == -1 );
TEST_ASSERT( mbedtls_test_buffer_get( &buf, output, sizeof( output ) )
== -1 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, sizeof( input ) ) == -1 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, 0 ) == -1 );
TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, 0 ) == -1 );
/* Make sure calling put and get on NULL input only results in
* error if the length is not zero, and that a NULL output is valid for data
* dropping.
*/
TEST_ASSERT( mbedtls_test_buffer_setup( &buf, sizeof( input ) ) == 0 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, sizeof( input ) ) == -1 );
TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, sizeof( output ) )
== 0 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, NULL, 0 ) == 0 );
TEST_ASSERT( mbedtls_test_buffer_get( &buf, NULL, 0 ) == 0 );
/* Make sure calling put several times in the row is safe */
TEST_ASSERT( mbedtls_test_buffer_put( &buf, input, sizeof( input ) )
== sizeof( input ) );
TEST_ASSERT( mbedtls_test_buffer_get( &buf, output, 2 ) == 2 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, input, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, input, 2 ) == 1 );
TEST_ASSERT( mbedtls_test_buffer_put( &buf, input, 2 ) == 0 );
exit:
mbedtls_test_buffer_free( &buf );
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_test_buffer` related functions is
* correct and works as expected.
*
* That is
* - If we try to put in \p put1 bytes then we can put in \p put1_ret bytes.
* - Afterwards if we try to get \p get1 bytes then we can get \get1_ret bytes.
* - Next, if we try to put in \p put1 bytes then we can put in \p put1_ret
* bytes.
* - Afterwards if we try to get \p get1 bytes then we can get \get1_ret bytes.
* - All of the bytes we got match the bytes we put in in a FIFO manner.
*/
/* BEGIN_CASE */
void test_callback_buffer( int size, int put1, int put1_ret,
int get1, int get1_ret, int put2, int put2_ret,
int get2, int get2_ret )
{
enum { ROUNDS = 2 };
size_t put[ROUNDS];
int put_ret[ROUNDS];
size_t get[ROUNDS];
int get_ret[ROUNDS];
mbedtls_test_buffer buf;
unsigned char* input = NULL;
size_t input_len;
unsigned char* output = NULL;
size_t output_len;
size_t i, j, written, read;
mbedtls_test_buffer_init( &buf );
TEST_ASSERT( mbedtls_test_buffer_setup( &buf, size ) == 0 );
/* Check the sanity of input parameters and initialise local variables. That
* is, ensure that the amount of data is not negative and that we are not
* expecting more to put or get than we actually asked for. */
TEST_ASSERT( put1 >= 0 );
put[0] = put1;
put_ret[0] = put1_ret;
TEST_ASSERT( put1_ret <= put1 );
TEST_ASSERT( put2 >= 0 );
put[1] = put2;
put_ret[1] = put2_ret;
TEST_ASSERT( put2_ret <= put2 );
TEST_ASSERT( get1 >= 0 );
get[0] = get1;
get_ret[0] = get1_ret;
TEST_ASSERT( get1_ret <= get1 );
TEST_ASSERT( get2 >= 0 );
get[1] = get2;
get_ret[1] = get2_ret;
TEST_ASSERT( get2_ret <= get2 );
input_len = 0;
/* Calculate actual input and output lengths */
for( j = 0; j < ROUNDS; j++ )
{
if( put_ret[j] > 0 )
{
input_len += put_ret[j];
}
}
/* In order to always have a valid pointer we always allocate at least 1
* byte. */
if( input_len == 0 )
input_len = 1;
ASSERT_ALLOC( input, input_len );
output_len = 0;
for( j = 0; j < ROUNDS; j++ )
{
if( get_ret[j] > 0 )
{
output_len += get_ret[j];
}
}
TEST_ASSERT( output_len <= input_len );
/* In order to always have a valid pointer we always allocate at least 1
* byte. */
if( output_len == 0 )
output_len = 1;
ASSERT_ALLOC( output, output_len );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < input_len; i++ )
{
input[i] = i & 0xFF;
}
written = read = 0;
for( j = 0; j < ROUNDS; j++ )
{
TEST_ASSERT( put_ret[j] == mbedtls_test_buffer_put( &buf,
input + written, put[j] ) );
written += put_ret[j];
TEST_ASSERT( get_ret[j] == mbedtls_test_buffer_get( &buf,
output + read, get[j] ) );
read += get_ret[j];
TEST_ASSERT( read <= written );
if( get_ret[j] > 0 )
{
TEST_ASSERT( memcmp( output + read - get_ret[j],
input + read - get_ret[j], get_ret[j] )
== 0 );
}
}
exit:
mbedtls_free( input );
mbedtls_free( output );
mbedtls_test_buffer_free( &buf );
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_mock_socket` related I/O functions is
* correct and works as expected on unconnected sockets.
*/
/* BEGIN_CASE */
void ssl_mock_sanity( )
{
enum { MSGLEN = 105 };
unsigned char message[MSGLEN] = { 0 };
unsigned char received[MSGLEN] = { 0 };
mbedtls_mock_socket socket;
mbedtls_mock_socket_init( &socket );
TEST_ASSERT( mbedtls_mock_tcp_send_b( &socket, message, MSGLEN ) < 0 );
mbedtls_mock_socket_close( &socket );
mbedtls_mock_socket_init( &socket );
TEST_ASSERT( mbedtls_mock_tcp_recv_b( &socket, received, MSGLEN ) < 0 );
mbedtls_mock_socket_close( &socket );
mbedtls_mock_socket_init( &socket );
TEST_ASSERT( mbedtls_mock_tcp_send_nb( &socket, message, MSGLEN ) < 0 );
mbedtls_mock_socket_close( &socket );
mbedtls_mock_socket_init( &socket );
TEST_ASSERT( mbedtls_mock_tcp_recv_nb( &socket, received, MSGLEN ) < 0 );
mbedtls_mock_socket_close( &socket );
exit:
mbedtls_mock_socket_close( &socket );
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_mock_socket` related functions can
* send a single message from the client to the server.
*/
/* BEGIN_CASE */
void ssl_mock_tcp( int blocking )
{
enum { MSGLEN = 105 };
enum { BUFLEN = MSGLEN / 5 };
unsigned char message[MSGLEN];
unsigned char received[MSGLEN];
mbedtls_mock_socket client;
mbedtls_mock_socket server;
size_t written, read;
int send_ret, recv_ret;
mbedtls_ssl_send_t *send;
mbedtls_ssl_recv_t *recv;
unsigned i;
if( blocking == 0 )
{
send = mbedtls_mock_tcp_send_nb;
recv = mbedtls_mock_tcp_recv_nb;
}
else
{
send = mbedtls_mock_tcp_send_b;
recv = mbedtls_mock_tcp_recv_b;
}
mbedtls_mock_socket_init( &client );
mbedtls_mock_socket_init( &server );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
/* Make sure that sending a message takes a few iterations. */
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server, BUFLEN ) );
/* Send the message to the server */
send_ret = recv_ret = 1;
written = read = 0;
while( send_ret != 0 || recv_ret != 0 )
{
send_ret = send( &client, message + written, MSGLEN - written );
TEST_ASSERT( send_ret >= 0 );
TEST_ASSERT( send_ret <= BUFLEN );
written += send_ret;
/* If the buffer is full we can test blocking and non-blocking send */
if ( send_ret == BUFLEN )
{
int blocking_ret = send( &client, message , 1 );
if ( blocking )
{
TEST_ASSERT( blocking_ret == 0 );
}
else
{
TEST_ASSERT( blocking_ret == MBEDTLS_ERR_SSL_WANT_WRITE );
}
}
recv_ret = recv( &server, received + read, MSGLEN - read );
/* The result depends on whether any data was sent */
if ( send_ret > 0 )
{
TEST_ASSERT( recv_ret > 0 );
TEST_ASSERT( recv_ret <= BUFLEN );
read += recv_ret;
}
else if( blocking )
{
TEST_ASSERT( recv_ret == 0 );
}
else
{
TEST_ASSERT( recv_ret == MBEDTLS_ERR_SSL_WANT_READ );
recv_ret = 0;
}
/* If the buffer is empty we can test blocking and non-blocking read */
if ( recv_ret == BUFLEN )
{
int blocking_ret = recv( &server, received, 1 );
if ( blocking )
{
TEST_ASSERT( blocking_ret == 0 );
}
else
{
TEST_ASSERT( blocking_ret == MBEDTLS_ERR_SSL_WANT_READ );
}
}
}
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
exit:
mbedtls_mock_socket_close( &client );
mbedtls_mock_socket_close( &server );
}
/* END_CASE */
/*
* Test if the implementation of `mbedtls_mock_socket` related functions can
* send messages in both direction at the same time (with the I/O calls
* interleaving).
*/
/* BEGIN_CASE */
void ssl_mock_tcp_interleaving( int blocking )
{
enum { ROUNDS = 2 };
enum { MSGLEN = 105 };
enum { BUFLEN = MSGLEN / 5 };
unsigned char message[ROUNDS][MSGLEN];
unsigned char received[ROUNDS][MSGLEN];
mbedtls_mock_socket client;
mbedtls_mock_socket server;
size_t written[ROUNDS];
size_t read[ROUNDS];
int send_ret[ROUNDS];
int recv_ret[ROUNDS];
unsigned i, j, progress;
mbedtls_ssl_send_t *send;
mbedtls_ssl_recv_t *recv;
if( blocking == 0 )
{
send = mbedtls_mock_tcp_send_nb;
recv = mbedtls_mock_tcp_recv_nb;
}
else
{
send = mbedtls_mock_tcp_send_b;
recv = mbedtls_mock_tcp_recv_b;
}
mbedtls_mock_socket_init( &client );
mbedtls_mock_socket_init( &server );
/* Fill up the buffers with structured data so that unwanted changes
* can be detected */
for( i = 0; i < ROUNDS; i++ )
{
for( j = 0; j < MSGLEN; j++ )
{
message[i][j] = ( i * MSGLEN + j ) & 0xFF;
}
}
/* Make sure that sending a message takes a few iterations. */
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server, BUFLEN ) );
/* Send the message from both sides, interleaving. */
progress = 1;
for( i = 0; i < ROUNDS; i++ )
{
written[i] = 0;
read[i] = 0;
}
/* This loop does not stop as long as there was a successful write or read
* of at least one byte on either side. */
while( progress != 0 )
{
mbedtls_mock_socket *socket;
for( i = 0; i < ROUNDS; i++ )
{
/* First sending is from the client */
socket = ( i % 2 == 0 ) ? ( &client ) : ( &server );
send_ret[i] = send( socket, message[i] + written[i],
MSGLEN - written[i] );
TEST_ASSERT( send_ret[i] >= 0 );
TEST_ASSERT( send_ret[i] <= BUFLEN );
written[i] += send_ret[i];
/* If the buffer is full we can test blocking and non-blocking
* send */
if ( send_ret[i] == BUFLEN )
{
int blocking_ret = send( socket, message[i] , 1 );
if ( blocking )
{
TEST_ASSERT( blocking_ret == 0 );
}
else
{
TEST_ASSERT( blocking_ret == MBEDTLS_ERR_SSL_WANT_WRITE );
}
}
}
for( i = 0; i < ROUNDS; i++ )
{
/* First receiving is from the server */
socket = ( i % 2 == 0 ) ? ( &server ) : ( &client );
recv_ret[i] = recv( socket, received[i] + read[i],
MSGLEN - read[i] );
/* The result depends on whether any data was sent */
if ( send_ret[i] > 0 )
{
TEST_ASSERT( recv_ret[i] > 0 );
TEST_ASSERT( recv_ret[i] <= BUFLEN );
read[i] += recv_ret[i];
}
else if( blocking )
{
TEST_ASSERT( recv_ret[i] == 0 );
}
else
{
TEST_ASSERT( recv_ret[i] == MBEDTLS_ERR_SSL_WANT_READ );
recv_ret[i] = 0;
}
/* If the buffer is empty we can test blocking and non-blocking
* read */
if ( recv_ret[i] == BUFLEN )
{
int blocking_ret = recv( socket, received[i], 1 );
if ( blocking )
{
TEST_ASSERT( blocking_ret == 0 );
}
else
{
TEST_ASSERT( blocking_ret == MBEDTLS_ERR_SSL_WANT_READ );
}
}
}
progress = 0;
for( i = 0; i < ROUNDS; i++ )
{
progress += send_ret[i] + recv_ret[i];
}
}
for( i = 0; i < ROUNDS; i++ )
TEST_ASSERT( memcmp( message[i], received[i], MSGLEN ) == 0 );
exit:
mbedtls_mock_socket_close( &client );
mbedtls_mock_socket_close( &server );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_sanity( )
{
mbedtls_test_message_queue queue;
/* Trying to push/pull to an empty queue */
TEST_ASSERT( mbedtls_test_message_queue_push_info( NULL, 1 )
== MBEDTLS_TEST_ERROR_ARG_NULL );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( NULL, 1 )
== MBEDTLS_TEST_ERROR_ARG_NULL );
TEST_ASSERT( mbedtls_test_message_queue_setup( &queue, 3 ) == 0 );
TEST_ASSERT( queue.capacity == 3 );
TEST_ASSERT( queue.num == 0 );
exit:
mbedtls_test_message_queue_free( &queue );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_basic( )
{
mbedtls_test_message_queue queue;
TEST_ASSERT( mbedtls_test_message_queue_setup( &queue, 3 ) == 0 );
/* Sanity test - 3 pushes and 3 pops with sufficient space */
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 1 ) == 1 );
TEST_ASSERT( queue.capacity == 3 );
TEST_ASSERT( queue.num == 1 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 1 ) == 1 );
TEST_ASSERT( queue.capacity == 3 );
TEST_ASSERT( queue.num == 2 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 2 ) == 2 );
TEST_ASSERT( queue.capacity == 3 );
TEST_ASSERT( queue.num == 3 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 2 ) == 2 );
exit:
mbedtls_test_message_queue_free( &queue );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_overflow_underflow( )
{
mbedtls_test_message_queue queue;
TEST_ASSERT( mbedtls_test_message_queue_setup( &queue, 3 ) == 0 );
/* 4 pushes (last one with an error), 4 pops (last one with an error) */
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 2 ) == 2 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 3 )
== MBEDTLS_ERR_SSL_WANT_WRITE );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 2 ) == 2 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 )
== MBEDTLS_ERR_SSL_WANT_READ );
exit:
mbedtls_test_message_queue_free( &queue );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_interleaved( )
{
mbedtls_test_message_queue queue;
TEST_ASSERT( mbedtls_test_message_queue_setup( &queue, 3 ) == 0 );
/* Interleaved test - [2 pushes, 1 pop] twice, and then two pops
* (to wrap around the buffer) */
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 2 ) == 2 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 3 ) == 3 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 1 ) == 1 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 2 ) == 2 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 5 ) == 5 );
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, 8 ) == 8 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 3 ) == 3 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 5 ) == 5 );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, 8 ) == 8 );
exit:
mbedtls_test_message_queue_free( &queue );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_queue_insufficient_buffer( )
{
mbedtls_test_message_queue queue;
size_t message_len = 10;
size_t buffer_len = 5;
TEST_ASSERT( mbedtls_test_message_queue_setup( &queue, 1 ) == 0 );
/* Popping without a sufficient buffer */
TEST_ASSERT( mbedtls_test_message_queue_push_info( &queue, message_len )
== (int) message_len );
TEST_ASSERT( mbedtls_test_message_queue_pop_info( &queue, buffer_len )
== (int) buffer_len );
exit:
mbedtls_test_message_queue_free( &queue );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_uninitialized( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN] = {0}, received[MSGLEN];
mbedtls_mock_socket client, server;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
/* Send with a NULL context */
TEST_ASSERT( mbedtls_mock_tcp_send_msg( NULL, message, MSGLEN )
== MBEDTLS_TEST_ERROR_CONTEXT_ERROR );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( NULL, message, MSGLEN )
== MBEDTLS_TEST_ERROR_CONTEXT_ERROR );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 1,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 1,
&client,
&client_context ) == 0 );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message, MSGLEN )
== MBEDTLS_TEST_ERROR_SEND_FAILED );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MBEDTLS_ERR_SSL_WANT_READ );
/* Push directly to a queue to later simulate a disconnected behavior */
TEST_ASSERT( mbedtls_test_message_queue_push_info( &server_queue, MSGLEN )
== MSGLEN );
/* Test if there's an error when trying to read from a disconnected
* socket */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MBEDTLS_TEST_ERROR_RECV_FAILED );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_basic( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 1,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 1,
&client,
&client_context ) == 0 );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
MSGLEN ) );
/* Send the message to the server */
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
/* Read from the server */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
memset( received, 0, MSGLEN );
/* Send the message to the client */
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &server_context, message,
MSGLEN ) == MSGLEN );
/* Read from the client */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &client_context, received, MSGLEN )
== MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_queue_overflow_underflow( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 2,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 2,
&client,
&client_context ) == 0 );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
MSGLEN*2 ) );
/* Send three message to the server, last one with an error */
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN - 1 ) == MSGLEN - 1 );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN )
== MBEDTLS_ERR_SSL_WANT_WRITE );
/* Read three messages from the server, last one with an error */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received,
MSGLEN - 1 ) == MSGLEN - 1 );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MBEDTLS_ERR_SSL_WANT_READ );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_socket_overflow( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 2,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 2,
&client,
&client_context ) == 0 );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
MSGLEN ) );
/* Send two message to the server, second one with an error */
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN )
== MBEDTLS_TEST_ERROR_SEND_FAILED );
/* Read the only message from the server */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_truncated( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 2,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 2,
&client,
&client_context ) == 0 );
memset( received, 0, MSGLEN );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
2 * MSGLEN ) );
/* Send two messages to the server, the second one small enough to fit in the
* receiver's buffer. */
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN / 2 ) == MSGLEN / 2 );
/* Read a truncated message from the server */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN/2 )
== MSGLEN/2 );
/* Test that the first half of the message is valid, and second one isn't */
TEST_ASSERT( memcmp( message, received, MSGLEN/2 ) == 0 );
TEST_ASSERT( memcmp( message + MSGLEN/2, received + MSGLEN/2, MSGLEN/2 )
!= 0 );
memset( received, 0, MSGLEN );
/* Read a full message from the server */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN/2 )
== MSGLEN / 2 );
/* Test that the first half of the message is valid */
TEST_ASSERT( memcmp( message, received, MSGLEN/2 ) == 0 );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_socket_read_error( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 1,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 1,
&client,
&client_context ) == 0 );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
MSGLEN ) );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
/* Force a read error by disconnecting the socket by hand */
server.status = 0;
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MBEDTLS_TEST_ERROR_RECV_FAILED );
/* Return to a valid state */
server.status = MBEDTLS_MOCK_SOCKET_CONNECTED;
memset( received, 0, sizeof( received ) );
/* Test that even though the server tried to read once disconnected, the
* continuity is preserved */
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_interleaved_one_way( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 3,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 3,
&client,
&client_context ) == 0 );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
MSGLEN*3 ) );
/* Interleaved test - [2 sends, 1 read] twice, and then two reads
* (to wrap around the buffer) */
for( i = 0; i < 2; i++ )
{
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received,
MSGLEN ) == MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
memset( received, 0, sizeof( received ) );
}
for( i = 0; i < 2; i++ )
{
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received,
MSGLEN ) == MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
}
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MBEDTLS_ERR_SSL_WANT_READ );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_message_mock_interleaved_two_ways( )
{
enum { MSGLEN = 10 };
unsigned char message[MSGLEN], received[MSGLEN];
mbedtls_mock_socket client, server;
unsigned i;
mbedtls_test_message_queue server_queue, client_queue;
mbedtls_test_message_socket_context server_context, client_context;
mbedtls_message_socket_init( &server_context );
mbedtls_message_socket_init( &client_context );
TEST_ASSERT( mbedtls_message_socket_setup( &server_queue, &client_queue, 3,
&server,
&server_context ) == 0 );
TEST_ASSERT( mbedtls_message_socket_setup( &client_queue, &server_queue, 3,
&client,
&client_context ) == 0 );
/* Fill up the buffer with structured data so that unwanted changes
* can be detected */
for( i = 0; i < MSGLEN; i++ )
{
message[i] = i & 0xFF;
}
TEST_ASSERT( 0 == mbedtls_mock_socket_connect( &client, &server,
MSGLEN*3 ) );
/* Interleaved test - [2 sends, 1 read] twice, both ways, and then two reads
* (to wrap around the buffer) both ways. */
for( i = 0; i < 2; i++ )
{
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &client_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &server_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_send_msg( &server_context, message,
MSGLEN ) == MSGLEN );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received,
MSGLEN ) == MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
memset( received, 0, sizeof( received ) );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &client_context, received,
MSGLEN ) == MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
memset( received, 0, sizeof( received ) );
}
for( i = 0; i < 2; i++ )
{
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received,
MSGLEN ) == MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
memset( received, 0, sizeof( received ) );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &client_context, received,
MSGLEN ) == MSGLEN );
TEST_ASSERT( memcmp( message, received, MSGLEN ) == 0 );
memset( received, 0, sizeof( received ) );
}
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &server_context, received, MSGLEN )
== MBEDTLS_ERR_SSL_WANT_READ );
TEST_ASSERT( mbedtls_mock_tcp_recv_msg( &client_context, received, MSGLEN )
== MBEDTLS_ERR_SSL_WANT_READ );
exit:
mbedtls_message_socket_close( &server_context );
mbedtls_message_socket_close( &client_context );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_DTLS_ANTI_REPLAY */
void ssl_dtls_replay( data_t * prevs, data_t * new, int ret )
{
uint32_t len = 0;
mbedtls_ssl_context ssl;
mbedtls_ssl_config conf;
mbedtls_ssl_init( &ssl );
mbedtls_ssl_config_init( &conf );
TEST_ASSERT( mbedtls_ssl_config_defaults( &conf,
MBEDTLS_SSL_IS_CLIENT,
MBEDTLS_SSL_TRANSPORT_DATAGRAM,
MBEDTLS_SSL_PRESET_DEFAULT ) == 0 );
TEST_ASSERT( mbedtls_ssl_setup( &ssl, &conf ) == 0 );
/* Read previous record numbers */
for( len = 0; len < prevs->len; len += 6 )
{
memcpy( ssl.in_ctr + 2, prevs->x + len, 6 );
mbedtls_ssl_dtls_replay_update( &ssl );
}
/* Check new number */
memcpy( ssl.in_ctr + 2, new->x, 6 );
TEST_ASSERT( mbedtls_ssl_dtls_replay_check( &ssl ) == ret );
mbedtls_ssl_free( &ssl );
mbedtls_ssl_config_free( &conf );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C */
void ssl_set_hostname_twice( char *hostname0, char *hostname1 )
{
mbedtls_ssl_context ssl;
mbedtls_ssl_init( &ssl );
TEST_ASSERT( mbedtls_ssl_set_hostname( &ssl, hostname0 ) == 0 );
TEST_ASSERT( mbedtls_ssl_set_hostname( &ssl, hostname1 ) == 0 );
mbedtls_ssl_free( &ssl );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_crypt_record( int cipher_type, int hash_id,
int etm, int tag_mode, int ver,
int cid0_len, int cid1_len )
{
/*
* Test several record encryptions and decryptions
* with plenty of space before and after the data
* within the record buffer.
*/
int ret;
int num_records = 16;
mbedtls_ssl_context ssl; /* ONLY for debugging */
mbedtls_ssl_transform t0, t1;
unsigned char *buf = NULL;
size_t const buflen = 512;
mbedtls_record rec, rec_backup;
USE_PSA_INIT( );
mbedtls_ssl_init( &ssl );
mbedtls_ssl_transform_init( &t0 );
mbedtls_ssl_transform_init( &t1 );
ret = build_transforms( &t0, &t1, cipher_type, hash_id,
etm, tag_mode, ver,
(size_t) cid0_len,
(size_t) cid1_len );
TEST_ASSERT( ret == 0 );
TEST_ASSERT( ( buf = mbedtls_calloc( 1, buflen ) ) != NULL );
while( num_records-- > 0 )
{
mbedtls_ssl_transform *t_dec, *t_enc;
/* Take turns in who's sending and who's receiving. */
if( num_records % 3 == 0 )
{
t_dec = &t0;
t_enc = &t1;
}
else
{
t_dec = &t1;
t_enc = &t0;
}
/*
* The record header affects the transformation in two ways:
* 1) It determines the AEAD additional data
* 2) The record counter sometimes determines the IV.
*
* Apart from that, the fields don't have influence.
* In particular, it is currently not the responsibility
* of ssl_encrypt/decrypt_buf to check if the transform
* version matches the record version, or that the
* type is sensible.
*/
memset( rec.ctr, num_records, sizeof( rec.ctr ) );
rec.type = 42;
rec.ver[0] = num_records;
rec.ver[1] = num_records;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
rec.buf = buf;
rec.buf_len = buflen;
rec.data_offset = 16;
/* Make sure to vary the length to exercise different
* paddings. */
rec.data_len = 1 + num_records;
memset( rec.buf + rec.data_offset, 42, rec.data_len );
/* Make a copy for later comparison */
rec_backup = rec;
/* Encrypt record */
ret = mbedtls_ssl_encrypt_buf( &ssl, t_enc, &rec,
mbedtls_test_rnd_std_rand, NULL );
TEST_ASSERT( ret == 0 || ret == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
if( ret != 0 )
{
continue;
}
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
if( rec.cid_len != 0 )
{
/* DTLS 1.2 + CID hides the real content type and
* uses a special CID content type in the protected
* record. Double-check this. */
TEST_ASSERT( rec.type == MBEDTLS_SSL_MSG_CID );
}
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if( t_enc->minor_ver == MBEDTLS_SSL_MINOR_VERSION_4 )
{
/* TLS 1.3 hides the real content type and
* always uses Application Data as the content type
* for protected records. Double-check this. */
TEST_ASSERT( rec.type == MBEDTLS_SSL_MSG_APPLICATION_DATA );
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
/* Decrypt record with t_dec */
ret = mbedtls_ssl_decrypt_buf( &ssl, t_dec, &rec );
TEST_ASSERT( ret == 0 );
/* Compare results */
TEST_ASSERT( rec.type == rec_backup.type );
TEST_ASSERT( memcmp( rec.ctr, rec_backup.ctr, 8 ) == 0 );
TEST_ASSERT( rec.ver[0] == rec_backup.ver[0] );
TEST_ASSERT( rec.ver[1] == rec_backup.ver[1] );
TEST_ASSERT( rec.data_len == rec_backup.data_len );
TEST_ASSERT( rec.data_offset == rec_backup.data_offset );
TEST_ASSERT( memcmp( rec.buf + rec.data_offset,
rec_backup.buf + rec_backup.data_offset,
rec.data_len ) == 0 );
}
exit:
/* Cleanup */
mbedtls_ssl_free( &ssl );
mbedtls_ssl_transform_free( &t0 );
mbedtls_ssl_transform_free( &t1 );
mbedtls_free( buf );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_crypt_record_small( int cipher_type, int hash_id,
int etm, int tag_mode, int ver,
int cid0_len, int cid1_len )
{
/*
* Test pairs of encryption and decryption with an increasing
* amount of space in the record buffer - in more detail:
* 1) Try to encrypt with 0, 1, 2, ... bytes available
* in front of the plaintext, and expect the encryption
* to succeed starting from some offset. Always keep
* enough space in the end of the buffer.
* 2) Try to encrypt with 0, 1, 2, ... bytes available
* at the end of the plaintext, and expect the encryption
* to succeed starting from some offset. Always keep
* enough space at the beginning of the buffer.
* 3) Try to encrypt with 0, 1, 2, ... bytes available
* both at the front and end of the plaintext,
* and expect the encryption to succeed starting from
* some offset.
*
* If encryption succeeds, check that decryption succeeds
* and yields the original record.
*/
mbedtls_ssl_context ssl; /* ONLY for debugging */
mbedtls_ssl_transform t0, t1;
unsigned char *buf = NULL;
size_t const buflen = 256;
mbedtls_record rec, rec_backup;
int ret;
int mode; /* Mode 1, 2 or 3 as explained above */
size_t offset; /* Available space at beginning/end/both */
size_t threshold = 96; /* Maximum offset to test against */
size_t default_pre_padding = 64; /* Pre-padding to use in mode 2 */
size_t default_post_padding = 128; /* Post-padding to use in mode 1 */
int seen_success; /* Indicates if in the current mode we've
* already seen a successful test. */
USE_PSA_INIT( );
mbedtls_ssl_init( &ssl );
mbedtls_ssl_transform_init( &t0 );
mbedtls_ssl_transform_init( &t1 );
ret = build_transforms( &t0, &t1, cipher_type, hash_id,
etm, tag_mode, ver,
(size_t) cid0_len,
(size_t) cid1_len );
TEST_ASSERT( ret == 0 );
TEST_ASSERT( ( buf = mbedtls_calloc( 1, buflen ) ) != NULL );
for( mode=1; mode <= 3; mode++ )
{
seen_success = 0;
for( offset=0; offset <= threshold; offset++ )
{
mbedtls_ssl_transform *t_dec, *t_enc;
t_dec = &t0;
t_enc = &t1;
memset( rec.ctr, offset, sizeof( rec.ctr ) );
rec.type = 42;
rec.ver[0] = offset;
rec.ver[1] = offset;
rec.buf = buf;
rec.buf_len = buflen;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
switch( mode )
{
case 1: /* Space in the beginning */
rec.data_offset = offset;
rec.data_len = buflen - offset - default_post_padding;
break;
case 2: /* Space in the end */
rec.data_offset = default_pre_padding;
rec.data_len = buflen - default_pre_padding - offset;
break;
case 3: /* Space in the beginning and end */
rec.data_offset = offset;
rec.data_len = buflen - 2 * offset;
break;
default:
TEST_ASSERT( 0 );
break;
}
memset( rec.buf + rec.data_offset, 42, rec.data_len );
/* Make a copy for later comparison */
rec_backup = rec;
/* Encrypt record */
ret = mbedtls_ssl_encrypt_buf( &ssl, t_enc, &rec,
mbedtls_test_rnd_std_rand, NULL );
if( ( mode == 1 || mode == 2 ) && seen_success )
{
TEST_ASSERT( ret == 0 );
}
else
{
TEST_ASSERT( ret == 0 || ret == MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
if( ret == 0 )
seen_success = 1;
}
if( ret != 0 )
continue;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
if( rec.cid_len != 0 )
{
/* DTLS 1.2 + CID hides the real content type and
* uses a special CID content type in the protected
* record. Double-check this. */
TEST_ASSERT( rec.type == MBEDTLS_SSL_MSG_CID );
}
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
#if defined(MBEDTLS_SSL_PROTO_TLS1_3)
if( t_enc->minor_ver == MBEDTLS_SSL_MINOR_VERSION_4 )
{
/* TLS 1.3 hides the real content type and
* always uses Application Data as the content type
* for protected records. Double-check this. */
TEST_ASSERT( rec.type == MBEDTLS_SSL_MSG_APPLICATION_DATA );
}
#endif /* MBEDTLS_SSL_PROTO_TLS1_3 */
/* Decrypt record with t_dec */
TEST_ASSERT( mbedtls_ssl_decrypt_buf( &ssl, t_dec, &rec ) == 0 );
/* Compare results */
TEST_ASSERT( rec.type == rec_backup.type );
TEST_ASSERT( memcmp( rec.ctr, rec_backup.ctr, 8 ) == 0 );
TEST_ASSERT( rec.ver[0] == rec_backup.ver[0] );
TEST_ASSERT( rec.ver[1] == rec_backup.ver[1] );
TEST_ASSERT( rec.data_len == rec_backup.data_len );
TEST_ASSERT( rec.data_offset == rec_backup.data_offset );
TEST_ASSERT( memcmp( rec.buf + rec.data_offset,
rec_backup.buf + rec_backup.data_offset,
rec.data_len ) == 0 );
}
TEST_ASSERT( seen_success == 1 );
}
exit:
/* Cleanup */
mbedtls_ssl_free( &ssl );
mbedtls_ssl_transform_free( &t0 );
mbedtls_ssl_transform_free( &t1 );
mbedtls_free( buf );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_CIPHER_MODE_CBC:MBEDTLS_AES_C:MBEDTLS_SSL_PROTO_TLS1_2 */
void ssl_decrypt_non_etm_cbc( int cipher_type, int hash_id, int trunc_hmac,
int length_selector )
{
/*
* Test record decryption for CBC without EtM, focused on the verification
* of padding and MAC.
*
* Actually depends on TLS 1.2 and either AES, ARIA or Camellia, but since
* the test framework doesn't support alternation in dependency statements,
* just depend on AES.
*
* The length_selector argument is interpreted as follows:
* - if it's -1, the plaintext length is 0 and minimal padding is applied
* - if it's -2, the plaintext length is 0 and maximal padding is applied
* - otherwise it must be in [0, 255] and is padding_length from RFC 5246:
* it's the length of the rest of the padding, that is, excluding the
* byte that encodes the length. The minimal non-zero plaintext length
* that gives this padding_length is automatically selected.
*/
mbedtls_ssl_context ssl; /* ONLY for debugging */
mbedtls_ssl_transform t0, t1;
mbedtls_record rec, rec_save;
unsigned char *buf = NULL, *buf_save = NULL;
size_t buflen, olen = 0;
size_t plaintext_len, block_size, i;
unsigned char padlen; /* excluding the padding_length byte */
unsigned char add_data[13];
unsigned char mac[MBEDTLS_MD_MAX_SIZE];
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
size_t sign_mac_length = 0;
#endif
int exp_ret;
int ret;
const unsigned char pad_max_len = 255; /* Per the standard */
USE_PSA_INIT( );
mbedtls_ssl_init( &ssl );
mbedtls_ssl_transform_init( &t0 );
mbedtls_ssl_transform_init( &t1 );
/* Set up transforms with dummy keys */
ret = build_transforms( &t0, &t1, cipher_type, hash_id,
0, trunc_hmac,
MBEDTLS_SSL_MINOR_VERSION_3,
0 , 0 );
TEST_ASSERT( ret == 0 );
/* Determine padding/plaintext length */
TEST_ASSERT( length_selector >= -2 && length_selector <= 255 );
block_size = t0.ivlen;
if( length_selector < 0 )
{
plaintext_len = 0;
/* Minimal padding
* The +1 is for the padding_length byte, not counted in padlen. */
padlen = block_size - ( t0.maclen + 1 ) % block_size;
/* Maximal padding? */
if( length_selector == -2 )
padlen += block_size * ( ( pad_max_len - padlen ) / block_size );
}
else
{
padlen = length_selector;
/* Minimal non-zero plaintext_length giving desired padding.
* The +1 is for the padding_length byte, not counted in padlen. */
plaintext_len = block_size - ( padlen + t0.maclen + 1 ) % block_size;
}
/* Prepare a buffer for record data */
buflen = block_size
+ plaintext_len
+ t0.maclen
+ padlen + 1;
ASSERT_ALLOC( buf, buflen );
ASSERT_ALLOC( buf_save, buflen );
/* Prepare a dummy record header */
memset( rec.ctr, 0, sizeof( rec.ctr ) );
rec.type = MBEDTLS_SSL_MSG_APPLICATION_DATA;
rec.ver[0] = MBEDTLS_SSL_MAJOR_VERSION_3;
rec.ver[1] = MBEDTLS_SSL_MINOR_VERSION_3;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
/* Prepare dummy record content */
rec.buf = buf;
rec.buf_len = buflen;
rec.data_offset = block_size;
rec.data_len = plaintext_len;
memset( rec.buf + rec.data_offset, 42, rec.data_len );
/* Serialized version of record header for MAC purposes */
memcpy( add_data, rec.ctr, 8 );
add_data[8] = rec.type;
add_data[9] = rec.ver[0];
add_data[10] = rec.ver[1];
add_data[11] = ( rec.data_len >> 8 ) & 0xff;
add_data[12] = ( rec.data_len >> 0 ) & 0xff;
/* Set dummy IV */
memset( t0.iv_enc, 0x55, t0.ivlen );
memcpy( rec.buf, t0.iv_enc, t0.ivlen );
/*
* Prepare a pre-encryption record (with MAC and padding), and save it.
*/
/* MAC with additional data */
#if defined(MBEDTLS_USE_PSA_CRYPTO)
TEST_EQUAL( PSA_SUCCESS, psa_mac_sign_setup( &operation,
t0.psa_mac_enc,
t0.psa_mac_alg ) );
TEST_EQUAL( PSA_SUCCESS, psa_mac_update( &operation, add_data, 13 ) );
TEST_EQUAL( PSA_SUCCESS, psa_mac_update( &operation,
rec.buf + rec.data_offset,
rec.data_len ) );
TEST_EQUAL( PSA_SUCCESS, psa_mac_sign_finish( &operation,
mac, MBEDTLS_MD_MAX_SIZE,
&sign_mac_length ) );
#else
TEST_EQUAL( 0, mbedtls_md_hmac_update( &t0.md_ctx_enc, add_data, 13 ) );
TEST_EQUAL( 0, mbedtls_md_hmac_update( &t0.md_ctx_enc,
rec.buf + rec.data_offset,
rec.data_len ) );
TEST_EQUAL( 0, mbedtls_md_hmac_finish( &t0.md_ctx_enc, mac ) );
#endif
memcpy( rec.buf + rec.data_offset + rec.data_len, mac, t0.maclen );
rec.data_len += t0.maclen;
/* Pad */
memset( rec.buf + rec.data_offset + rec.data_len, padlen, padlen + 1 );
rec.data_len += padlen + 1;
/* Save correct pre-encryption record */
rec_save = rec;
rec_save.buf = buf_save;
memcpy( buf_save, buf, buflen );
/*
* Encrypt and decrypt the correct record, expecting success
*/
TEST_EQUAL( 0, psa_cipher_encrypt_helper(&t0, t0.iv_enc, t0.ivlen,
rec.buf + rec.data_offset, rec.data_len,
rec.buf + rec.data_offset, &olen ) );
rec.data_offset -= t0.ivlen;
rec.data_len += t0.ivlen;
TEST_EQUAL( 0, mbedtls_ssl_decrypt_buf( &ssl, &t1, &rec ) );
/*
* Modify each byte of the pre-encryption record before encrypting and
* decrypting it, expecting failure every time.
*/
for( i = block_size; i < buflen; i++ )
{
mbedtls_test_set_step( i );
/* Restore correct pre-encryption record */
rec = rec_save;
rec.buf = buf;
memcpy( buf, buf_save, buflen );
/* Corrupt one byte of the data (could be plaintext, MAC or padding) */
rec.buf[i] ^= 0x01;
/* Encrypt */
TEST_EQUAL( 0, psa_cipher_encrypt_helper(&t0, t0.iv_enc, t0.ivlen,
rec.buf + rec.data_offset, rec.data_len,
rec.buf + rec.data_offset, &olen ) );
rec.data_offset -= t0.ivlen;
rec.data_len += t0.ivlen;
/* Decrypt and expect failure */
TEST_EQUAL( MBEDTLS_ERR_SSL_INVALID_MAC,
mbedtls_ssl_decrypt_buf( &ssl, &t1, &rec ) );
}
/*
* Use larger values of the padding bytes - with small buffers, this tests
* the case where the announced padlen would be larger than the buffer
* (and before that, than the buffer minus the size of the MAC), to make
* sure our padding checking code does not perform any out-of-bounds reads
* in this case. (With larger buffers, ie when the plaintext is long or
* maximal length padding is used, this is less relevant but still doesn't
* hurt to test.)
*
* (Start the loop with correct padding, just to double-check that record
* saving did work, and that we're overwriting the correct bytes.)
*/
for( i = padlen; i <= pad_max_len; i++ )
{
mbedtls_test_set_step( i );
/* Restore correct pre-encryption record */
rec = rec_save;
rec.buf = buf;
memcpy( buf, buf_save, buflen );
/* Set padding bytes to new value */
memset( buf + buflen - padlen - 1, i, padlen + 1 );
/* Encrypt */
TEST_EQUAL( 0, psa_cipher_encrypt_helper(&t0, t0.iv_enc, t0.ivlen,
rec.buf + rec.data_offset, rec.data_len,
rec.buf + rec.data_offset, &olen ) );
rec.data_offset -= t0.ivlen;
rec.data_len += t0.ivlen;
/* Decrypt and expect failure except the first time */
exp_ret = ( i == padlen ) ? 0 : MBEDTLS_ERR_SSL_INVALID_MAC;
TEST_EQUAL( exp_ret, mbedtls_ssl_decrypt_buf( &ssl, &t1, &rec ) );
}
exit:
mbedtls_ssl_free( &ssl );
mbedtls_ssl_transform_free( &t0 );
mbedtls_ssl_transform_free( &t1 );
mbedtls_free( buf );
mbedtls_free( buf_save );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS:MBEDTLS_SSL_PROTO_TLS1_3 */
void psa_hkdf_expand( int alg, char *hex_info_string,
char *hex_prk_string, char *hex_okm_string )
{
enum { OKM_LEN = 1024 };
unsigned char *info = NULL;
unsigned char *prk = NULL;
unsigned char *okm = NULL;
unsigned char *output_okm = NULL;
size_t info_len, prk_len, okm_len;
PSA_INIT( );
ASSERT_ALLOC( output_okm, OKM_LEN );
prk = mbedtls_test_unhexify_alloc( hex_prk_string, &prk_len );
info = mbedtls_test_unhexify_alloc( hex_info_string, &info_len );
okm = mbedtls_test_unhexify_alloc( hex_okm_string, &okm_len );
TEST_ASSERT( prk_len == PSA_HASH_LENGTH( alg ) );
TEST_ASSERT( okm_len < OKM_LEN );
PSA_ASSERT( mbedtls_psa_hkdf_expand( alg, prk, prk_len, info, info_len,
output_okm, OKM_LEN ) );
ASSERT_COMPARE( output_okm, okm_len, okm, okm_len );
exit:
mbedtls_free( info );
mbedtls_free( prk );
mbedtls_free( okm );
mbedtls_free( output_okm );
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_TEST_HOOKS:MBEDTLS_SSL_PROTO_TLS1_3 */
void psa_hkdf_expand_ret( int alg, int prk_len, int okm_len, int ret )
{
int output_ret;
unsigned char *info = NULL;
unsigned char *prk = NULL;
unsigned char *okm = NULL;
size_t info_len;
size_t i;
mbedtls_svc_key_id_t *keys = NULL;
PSA_INIT( );
info_len = 0;
if( prk_len > 0 )
ASSERT_ALLOC( prk, prk_len );
if( okm_len > 0 )
ASSERT_ALLOC( okm, okm_len );
if( ret == PSA_ERROR_INSUFFICIENT_MEMORY )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
/* Reserve all key slot to make the key import fail. */
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_MESSAGE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_HMAC );
ASSERT_ALLOC( keys, MBEDTLS_PSA_KEY_SLOT_COUNT );
for( i = 0; i < MBEDTLS_PSA_KEY_SLOT_COUNT; i++ )
{
/* Do not use the 0 value because it will be passed to
mbedtls_psa_hkdf_expand */
prk[0] = i + 1;
keys[i] = MBEDTLS_SVC_KEY_ID_INIT;
psa_import_key( &attributes, prk, prk_len, &keys[i] );
}
/* reset prk buffer */
prk[0] = 0;
}
output_ret = mbedtls_psa_hkdf_expand( alg, prk, prk_len,
info, info_len,
okm, okm_len );
TEST_ASSERT( output_ret == ret );
exit:
mbedtls_free( prk );
mbedtls_free( okm );
if( ret == PSA_ERROR_INSUFFICIENT_MEMORY )
{
for( i = 0; i < MBEDTLS_PSA_KEY_SLOT_COUNT; i++ )
psa_destroy_key( keys[i] );
mbedtls_free( keys );
}
PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_hkdf_expand_label( int hash_alg,
data_t *secret,
int label_idx,
data_t *ctx,
int desired_length,
data_t *expected )
{
unsigned char dst[ 100 ];
unsigned char const *lbl = NULL;
size_t lbl_len;
#define MBEDTLS_SSL_TLS1_3_LABEL( name, string ) \
if( label_idx == (int) tls13_label_ ## name ) \
{ \
lbl = mbedtls_ssl_tls13_labels.name; \
lbl_len = sizeof( mbedtls_ssl_tls13_labels.name ); \
}
MBEDTLS_SSL_TLS1_3_LABEL_LIST
#undef MBEDTLS_SSL_TLS1_3_LABEL
TEST_ASSERT( lbl != NULL );
/* Check sanity of test parameters. */
TEST_ASSERT( (size_t) desired_length <= sizeof(dst) );
TEST_ASSERT( (size_t) desired_length == expected->len );
TEST_ASSERT( mbedtls_ssl_tls13_hkdf_expand_label(
(mbedtls_md_type_t) hash_alg,
secret->x, secret->len,
lbl, lbl_len,
ctx->x, ctx->len,
dst, desired_length ) == 0 );
ASSERT_COMPARE( dst, (size_t) desired_length,
expected->x, (size_t) expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_traffic_key_generation( int hash_alg,
data_t *server_secret,
data_t *client_secret,
int desired_iv_len,
int desired_key_len,
data_t *expected_server_write_key,
data_t *expected_server_write_iv,
data_t *expected_client_write_key,
data_t *expected_client_write_iv )
{
mbedtls_ssl_key_set keys;
/* Check sanity of test parameters. */
TEST_ASSERT( client_secret->len == server_secret->len );
TEST_ASSERT( expected_client_write_iv->len == expected_server_write_iv->len &&
expected_client_write_iv->len == (size_t) desired_iv_len );
TEST_ASSERT( expected_client_write_key->len == expected_server_write_key->len &&
expected_client_write_key->len == (size_t) desired_key_len );
TEST_ASSERT( mbedtls_ssl_tls13_make_traffic_keys(
(mbedtls_md_type_t) hash_alg,
client_secret->x,
server_secret->x,
client_secret->len /* == server_secret->len */,
desired_key_len, desired_iv_len,
&keys ) == 0 );
ASSERT_COMPARE( keys.client_write_key,
keys.key_len,
expected_client_write_key->x,
(size_t) desired_key_len );
ASSERT_COMPARE( keys.server_write_key,
keys.key_len,
expected_server_write_key->x,
(size_t) desired_key_len );
ASSERT_COMPARE( keys.client_write_iv,
keys.iv_len,
expected_client_write_iv->x,
(size_t) desired_iv_len );
ASSERT_COMPARE( keys.server_write_iv,
keys.iv_len,
expected_server_write_iv->x,
(size_t) desired_iv_len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_secret( int hash_alg,
data_t *secret,
int label_idx,
data_t *ctx,
int desired_length,
int already_hashed,
data_t *expected )
{
unsigned char dst[ 100 ];
unsigned char const *lbl = NULL;
size_t lbl_len;
#define MBEDTLS_SSL_TLS1_3_LABEL( name, string ) \
if( label_idx == (int) tls13_label_ ## name ) \
{ \
lbl = mbedtls_ssl_tls13_labels.name; \
lbl_len = sizeof( mbedtls_ssl_tls13_labels.name ); \
}
MBEDTLS_SSL_TLS1_3_LABEL_LIST
#undef MBEDTLS_SSL_TLS1_3_LABEL
TEST_ASSERT( lbl != NULL );
/* Check sanity of test parameters. */
TEST_ASSERT( (size_t) desired_length <= sizeof(dst) );
TEST_ASSERT( (size_t) desired_length == expected->len );
TEST_ASSERT( mbedtls_ssl_tls13_derive_secret(
(mbedtls_md_type_t) hash_alg,
secret->x, secret->len,
lbl, lbl_len,
ctx->x, ctx->len,
already_hashed,
dst, desired_length ) == 0 );
ASSERT_COMPARE( dst, desired_length,
expected->x, desired_length );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_early_secrets( int hash_alg,
data_t *secret,
data_t *transcript,
data_t *traffic_expected,
data_t *exporter_expected )
{
mbedtls_ssl_tls13_early_secrets secrets;
/* Double-check that we've passed sane parameters. */
mbedtls_md_type_t md_type = (mbedtls_md_type_t) hash_alg;
mbedtls_md_info_t const * const md_info = mbedtls_md_info_from_type( md_type );
size_t const md_size = mbedtls_md_get_size( md_info );
TEST_ASSERT( md_info != 0 &&
secret->len == md_size &&
transcript->len == md_size &&
traffic_expected->len == md_size &&
exporter_expected->len == md_size );
TEST_ASSERT( mbedtls_ssl_tls13_derive_early_secrets(
md_type, secret->x, transcript->x, transcript->len,
&secrets ) == 0 );
ASSERT_COMPARE( secrets.client_early_traffic_secret, md_size,
traffic_expected->x, traffic_expected->len );
ASSERT_COMPARE( secrets.early_exporter_master_secret, md_size,
exporter_expected->x, exporter_expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_handshake_secrets( int hash_alg,
data_t *secret,
data_t *transcript,
data_t *client_expected,
data_t *server_expected )
{
mbedtls_ssl_tls13_handshake_secrets secrets;
/* Double-check that we've passed sane parameters. */
mbedtls_md_type_t md_type = (mbedtls_md_type_t) hash_alg;
mbedtls_md_info_t const * const md_info = mbedtls_md_info_from_type( md_type );
size_t const md_size = mbedtls_md_get_size( md_info );
TEST_ASSERT( md_info != 0 &&
secret->len == md_size &&
transcript->len == md_size &&
client_expected->len == md_size &&
server_expected->len == md_size );
TEST_ASSERT( mbedtls_ssl_tls13_derive_handshake_secrets(
md_type, secret->x, transcript->x, transcript->len,
&secrets ) == 0 );
ASSERT_COMPARE( secrets.client_handshake_traffic_secret, md_size,
client_expected->x, client_expected->len );
ASSERT_COMPARE( secrets.server_handshake_traffic_secret, md_size,
server_expected->x, server_expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_application_secrets( int hash_alg,
data_t *secret,
data_t *transcript,
data_t *client_expected,
data_t *server_expected,
data_t *exporter_expected )
{
mbedtls_ssl_tls13_application_secrets secrets;
/* Double-check that we've passed sane parameters. */
mbedtls_md_type_t md_type = (mbedtls_md_type_t) hash_alg;
mbedtls_md_info_t const * const md_info = mbedtls_md_info_from_type( md_type );
size_t const md_size = mbedtls_md_get_size( md_info );
TEST_ASSERT( md_info != 0 &&
secret->len == md_size &&
transcript->len == md_size &&
client_expected->len == md_size &&
server_expected->len == md_size &&
exporter_expected->len == md_size );
TEST_ASSERT( mbedtls_ssl_tls13_derive_application_secrets(
md_type, secret->x, transcript->x, transcript->len,
&secrets ) == 0 );
ASSERT_COMPARE( secrets.client_application_traffic_secret_N, md_size,
client_expected->x, client_expected->len );
ASSERT_COMPARE( secrets.server_application_traffic_secret_N, md_size,
server_expected->x, server_expected->len );
ASSERT_COMPARE( secrets.exporter_master_secret, md_size,
exporter_expected->x, exporter_expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_derive_resumption_secrets( int hash_alg,
data_t *secret,
data_t *transcript,
data_t *resumption_expected )
{
mbedtls_ssl_tls13_application_secrets secrets;
/* Double-check that we've passed sane parameters. */
mbedtls_md_type_t md_type = (mbedtls_md_type_t) hash_alg;
mbedtls_md_info_t const * const md_info = mbedtls_md_info_from_type( md_type );
size_t const md_size = mbedtls_md_get_size( md_info );
TEST_ASSERT( md_info != 0 &&
secret->len == md_size &&
transcript->len == md_size &&
resumption_expected->len == md_size );
TEST_ASSERT( mbedtls_ssl_tls13_derive_resumption_master_secret(
md_type, secret->x, transcript->x, transcript->len,
&secrets ) == 0 );
ASSERT_COMPARE( secrets.resumption_master_secret, md_size,
resumption_expected->x, resumption_expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_create_psk_binder( int hash_alg,
data_t *psk,
int psk_type,
data_t *transcript,
data_t *binder_expected )
{
unsigned char binder[ MBEDTLS_MD_MAX_SIZE ];
/* Double-check that we've passed sane parameters. */
mbedtls_md_type_t md_type = (mbedtls_md_type_t) hash_alg;
mbedtls_md_info_t const * const md_info = mbedtls_md_info_from_type( md_type );
size_t const md_size = mbedtls_md_get_size( md_info );
TEST_ASSERT( md_info != 0 &&
transcript->len == md_size &&
binder_expected->len == md_size );
TEST_ASSERT( mbedtls_ssl_tls13_create_psk_binder(
NULL, /* SSL context for debugging only */
md_type,
psk->x, psk->len,
psk_type,
transcript->x,
binder ) == 0 );
ASSERT_COMPARE( binder, md_size,
binder_expected->x, binder_expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_record_protection( int ciphersuite,
int endpoint,
int ctr,
int padding_used,
data_t *server_write_key,
data_t *server_write_iv,
data_t *client_write_key,
data_t *client_write_iv,
data_t *plaintext,
data_t *ciphertext )
{
mbedtls_ssl_key_set keys;
mbedtls_ssl_transform transform_send;
mbedtls_ssl_transform transform_recv;
mbedtls_record rec;
unsigned char *buf = NULL;
size_t buf_len;
int other_endpoint;
USE_PSA_INIT( );
TEST_ASSERT( endpoint == MBEDTLS_SSL_IS_CLIENT ||
endpoint == MBEDTLS_SSL_IS_SERVER );
if( endpoint == MBEDTLS_SSL_IS_SERVER )
other_endpoint = MBEDTLS_SSL_IS_CLIENT;
if( endpoint == MBEDTLS_SSL_IS_CLIENT )
other_endpoint = MBEDTLS_SSL_IS_SERVER;
TEST_ASSERT( server_write_key->len == client_write_key->len );
TEST_ASSERT( server_write_iv->len == client_write_iv->len );
memcpy( keys.client_write_key,
client_write_key->x, client_write_key->len );
memcpy( keys.client_write_iv,
client_write_iv->x, client_write_iv->len );
memcpy( keys.server_write_key,
server_write_key->x, server_write_key->len );
memcpy( keys.server_write_iv,
server_write_iv->x, server_write_iv->len );
keys.key_len = server_write_key->len;
keys.iv_len = server_write_iv->len;
mbedtls_ssl_transform_init( &transform_recv );
mbedtls_ssl_transform_init( &transform_send );
TEST_ASSERT( mbedtls_ssl_tls13_populate_transform(
&transform_send, endpoint,
ciphersuite, &keys, NULL ) == 0 );
TEST_ASSERT( mbedtls_ssl_tls13_populate_transform(
&transform_recv, other_endpoint,
ciphersuite, &keys, NULL ) == 0 );
/* Make sure we have enough space in the buffer even if
* we use more padding than the KAT. */
buf_len = ciphertext->len + MBEDTLS_SSL_CID_TLS1_3_PADDING_GRANULARITY;
ASSERT_ALLOC( buf, buf_len );
rec.type = MBEDTLS_SSL_MSG_APPLICATION_DATA;
/* TLS 1.3 uses the version identifier from TLS 1.2 on the wire. */
mbedtls_ssl_write_version( MBEDTLS_SSL_MAJOR_VERSION_3,
MBEDTLS_SSL_MINOR_VERSION_3,
MBEDTLS_SSL_TRANSPORT_STREAM,
rec.ver );
/* Copy plaintext into record structure */
rec.buf = buf;
rec.buf_len = buf_len;
rec.data_offset = 0;
TEST_ASSERT( plaintext->len <= ciphertext->len );
memcpy( rec.buf + rec.data_offset, plaintext->x, plaintext->len );
rec.data_len = plaintext->len;
#if defined(MBEDTLS_SSL_DTLS_CONNECTION_ID)
rec.cid_len = 0;
#endif /* MBEDTLS_SSL_DTLS_CONNECTION_ID */
memset( &rec.ctr[0], 0, 8 );
rec.ctr[7] = ctr;
TEST_ASSERT( mbedtls_ssl_encrypt_buf( NULL, &transform_send, &rec,
NULL, NULL ) == 0 );
if( padding_used == MBEDTLS_SSL_CID_TLS1_3_PADDING_GRANULARITY )
{
ASSERT_COMPARE( rec.buf + rec.data_offset, rec.data_len,
ciphertext->x, ciphertext->len );
}
TEST_ASSERT( mbedtls_ssl_decrypt_buf( NULL, &transform_recv, &rec ) == 0 );
ASSERT_COMPARE( rec.buf + rec.data_offset, rec.data_len,
plaintext->x, plaintext->len );
mbedtls_free( buf );
mbedtls_ssl_transform_free( &transform_send );
mbedtls_ssl_transform_free( &transform_recv );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_3 */
void ssl_tls13_key_evolution( int hash_alg,
data_t *secret,
data_t *input,
data_t *expected )
{
unsigned char secret_new[ MBEDTLS_MD_MAX_SIZE ];
TEST_ASSERT( mbedtls_ssl_tls13_evolve_secret(
(mbedtls_md_type_t) hash_alg,
secret->len ? secret->x : NULL,
input->len ? input->x : NULL, input->len,
secret_new ) == 0 );
ASSERT_COMPARE( secret_new, (size_t) expected->len,
expected->x, (size_t) expected->len );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_PROTO_TLS1_2 */
void ssl_tls_prf( int type, data_t * secret, data_t * random,
char *label, data_t *result_str, int exp_ret )
{
unsigned char *output;
output = mbedtls_calloc( 1, result_str->len );
if( output == NULL )
goto exit;
USE_PSA_INIT( );
TEST_ASSERT( mbedtls_ssl_tls_prf( type, secret->x, secret->len,
label, random->x, random->len,
output, result_str->len ) == exp_ret );
if( exp_ret == 0 )
{
TEST_ASSERT( mbedtls_test_hexcmp( output, result_str->x,
result_str->len, result_str->len ) == 0 );
}
exit:
mbedtls_free( output );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_save_load( int ticket_len, char *crt_file )
{
mbedtls_ssl_session original, restored;
unsigned char *buf = NULL;
size_t len;
/*
* Test that a save-load pair is the identity
*/
mbedtls_ssl_session_init( &original );
mbedtls_ssl_session_init( &restored );
/* Prepare a dummy session to work on */
TEST_ASSERT( ssl_populate_session_tls12( &original, ticket_len, crt_file ) == 0 );
/* Serialize it */
TEST_ASSERT( mbedtls_ssl_session_save( &original, NULL, 0, &len )
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
TEST_ASSERT( ( buf = mbedtls_calloc( 1, len ) ) != NULL );
TEST_ASSERT( mbedtls_ssl_session_save( &original, buf, len, &len )
== 0 );
/* Restore session from serialized data */
TEST_ASSERT( mbedtls_ssl_session_load( &restored, buf, len) == 0 );
/*
* Make sure both session structures are identical
*/
#if defined(MBEDTLS_HAVE_TIME)
TEST_ASSERT( original.start == restored.start );
#endif
TEST_ASSERT( original.minor_ver == restored.minor_ver );
TEST_ASSERT( original.ciphersuite == restored.ciphersuite );
TEST_ASSERT( original.compression == restored.compression );
TEST_ASSERT( original.id_len == restored.id_len );
TEST_ASSERT( memcmp( original.id,
restored.id, sizeof( original.id ) ) == 0 );
TEST_ASSERT( memcmp( original.master,
restored.master, sizeof( original.master ) ) == 0 );
#if defined(MBEDTLS_X509_CRT_PARSE_C)
#if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE)
TEST_ASSERT( ( original.peer_cert == NULL ) ==
( restored.peer_cert == NULL ) );
if( original.peer_cert != NULL )
{
TEST_ASSERT( original.peer_cert->raw.len ==
restored.peer_cert->raw.len );
TEST_ASSERT( memcmp( original.peer_cert->raw.p,
restored.peer_cert->raw.p,
original.peer_cert->raw.len ) == 0 );
}
#else /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
TEST_ASSERT( original.peer_cert_digest_type ==
restored.peer_cert_digest_type );
TEST_ASSERT( original.peer_cert_digest_len ==
restored.peer_cert_digest_len );
TEST_ASSERT( ( original.peer_cert_digest == NULL ) ==
( restored.peer_cert_digest == NULL ) );
if( original.peer_cert_digest != NULL )
{
TEST_ASSERT( memcmp( original.peer_cert_digest,
restored.peer_cert_digest,
original.peer_cert_digest_len ) == 0 );
}
#endif /* MBEDTLS_SSL_KEEP_PEER_CERTIFICATE */
#endif /* MBEDTLS_X509_CRT_PARSE_C */
TEST_ASSERT( original.verify_result == restored.verify_result );
#if defined(MBEDTLS_SSL_SESSION_TICKETS) && defined(MBEDTLS_SSL_CLI_C)
TEST_ASSERT( original.ticket_len == restored.ticket_len );
if( original.ticket_len != 0 )
{
TEST_ASSERT( original.ticket != NULL );
TEST_ASSERT( restored.ticket != NULL );
TEST_ASSERT( memcmp( original.ticket,
restored.ticket, original.ticket_len ) == 0 );
}
TEST_ASSERT( original.ticket_lifetime == restored.ticket_lifetime );
#endif
#if defined(MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)
TEST_ASSERT( original.mfl_code == restored.mfl_code );
#endif
#if defined(MBEDTLS_SSL_ENCRYPT_THEN_MAC)
TEST_ASSERT( original.encrypt_then_mac == restored.encrypt_then_mac );
#endif
exit:
mbedtls_ssl_session_free( &original );
mbedtls_ssl_session_free( &restored );
mbedtls_free( buf );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_load_save( int ticket_len, char *crt_file )
{
mbedtls_ssl_session session;
unsigned char *buf1 = NULL, *buf2 = NULL;
size_t len0, len1, len2;
/*
* Test that a load-save pair is the identity
*/
mbedtls_ssl_session_init( &session );
/* Prepare a dummy session to work on */
TEST_ASSERT( ssl_populate_session_tls12( &session, ticket_len, crt_file ) == 0 );
/* Get desired buffer size for serializing */
TEST_ASSERT( mbedtls_ssl_session_save( &session, NULL, 0, &len0 )
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
/* Allocate first buffer */
buf1 = mbedtls_calloc( 1, len0 );
TEST_ASSERT( buf1 != NULL );
/* Serialize to buffer and free live session */
TEST_ASSERT( mbedtls_ssl_session_save( &session, buf1, len0, &len1 )
== 0 );
TEST_ASSERT( len0 == len1 );
mbedtls_ssl_session_free( &session );
/* Restore session from serialized data */
TEST_ASSERT( mbedtls_ssl_session_load( &session, buf1, len1 ) == 0 );
/* Allocate second buffer and serialize to it */
buf2 = mbedtls_calloc( 1, len0 );
TEST_ASSERT( buf2 != NULL );
TEST_ASSERT( mbedtls_ssl_session_save( &session, buf2, len0, &len2 )
== 0 );
/* Make sure both serialized versions are identical */
TEST_ASSERT( len1 == len2 );
TEST_ASSERT( memcmp( buf1, buf2, len1 ) == 0 );
exit:
mbedtls_ssl_session_free( &session );
mbedtls_free( buf1 );
mbedtls_free( buf2 );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_save_buf_size( int ticket_len, char *crt_file )
{
mbedtls_ssl_session session;
unsigned char *buf = NULL;
size_t good_len, bad_len, test_len;
/*
* Test that session_save() fails cleanly on small buffers
*/
mbedtls_ssl_session_init( &session );
/* Prepare dummy session and get serialized size */
TEST_ASSERT( ssl_populate_session_tls12( &session, ticket_len, crt_file ) == 0 );
TEST_ASSERT( mbedtls_ssl_session_save( &session, NULL, 0, &good_len )
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
/* Try all possible bad lengths */
for( bad_len = 1; bad_len < good_len; bad_len++ )
{
/* Allocate exact size so that asan/valgrind can detect any overwrite */
mbedtls_free( buf );
TEST_ASSERT( ( buf = mbedtls_calloc( 1, bad_len ) ) != NULL );
TEST_ASSERT( mbedtls_ssl_session_save( &session, buf, bad_len,
&test_len )
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
TEST_ASSERT( test_len == good_len );
}
exit:
mbedtls_ssl_session_free( &session );
mbedtls_free( buf );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_serialize_session_load_buf_size( int ticket_len, char *crt_file )
{
mbedtls_ssl_session session;
unsigned char *good_buf = NULL, *bad_buf = NULL;
size_t good_len, bad_len;
/*
* Test that session_load() fails cleanly on small buffers
*/
mbedtls_ssl_session_init( &session );
/* Prepare serialized session data */
TEST_ASSERT( ssl_populate_session_tls12( &session, ticket_len, crt_file ) == 0 );
TEST_ASSERT( mbedtls_ssl_session_save( &session, NULL, 0, &good_len )
== MBEDTLS_ERR_SSL_BUFFER_TOO_SMALL );
TEST_ASSERT( ( good_buf = mbedtls_calloc( 1, good_len ) ) != NULL );
TEST_ASSERT( mbedtls_ssl_session_save( &session, good_buf, good_len,
&good_len ) == 0 );
mbedtls_ssl_session_free( &session );
/* Try all possible bad lengths */
for( bad_len = 0; bad_len < good_len; bad_len++ )
{
/* Allocate exact size so that asan/valgrind can detect any overread */
mbedtls_free( bad_buf );
bad_buf = mbedtls_calloc( 1, bad_len ? bad_len : 1 );
TEST_ASSERT( bad_buf != NULL );
memcpy( bad_buf, good_buf, bad_len );
TEST_ASSERT( mbedtls_ssl_session_load( &session, bad_buf, bad_len )
== MBEDTLS_ERR_SSL_BAD_INPUT_DATA );
}
exit:
mbedtls_ssl_session_free( &session );
mbedtls_free( good_buf );
mbedtls_free( bad_buf );
}
/* END_CASE */
/* BEGIN_CASE */
void ssl_session_serialize_version_check( int corrupt_major,
int corrupt_minor,
int corrupt_patch,
int corrupt_config )
{
unsigned char serialized_session[ 2048 ];
size_t serialized_session_len;
unsigned cur_byte;
mbedtls_ssl_session session;
uint8_t should_corrupt_byte[] = { corrupt_major == 1,
corrupt_minor == 1,
corrupt_patch == 1,
corrupt_config == 1,
corrupt_config == 1 };
mbedtls_ssl_session_init( &session );
TEST_ASSERT( ssl_populate_session_tls12( &session, 0, NULL ) == 0 );
/* Infer length of serialized session. */
TEST_ASSERT( mbedtls_ssl_session_save( &session,
serialized_session,
sizeof( serialized_session ),
&serialized_session_len ) == 0 );
mbedtls_ssl_session_free( &session );
/* Without any modification, we should be able to successfully
* de-serialize the session - double-check that. */
TEST_ASSERT( mbedtls_ssl_session_load( &session,
serialized_session,
serialized_session_len ) == 0 );
mbedtls_ssl_session_free( &session );
/* Go through the bytes in the serialized session header and
* corrupt them bit-by-bit. */
for( cur_byte = 0; cur_byte < sizeof( should_corrupt_byte ); cur_byte++ )
{
int cur_bit;
unsigned char * const byte = &serialized_session[ cur_byte ];
if( should_corrupt_byte[ cur_byte ] == 0 )
continue;
for( cur_bit = 0; cur_bit < CHAR_BIT; cur_bit++ )
{
unsigned char const corrupted_bit = 0x1u << cur_bit;
/* Modify a single bit in the serialized session. */
*byte ^= corrupted_bit;
/* Attempt to deserialize */
TEST_ASSERT( mbedtls_ssl_session_load( &session,
serialized_session,
serialized_session_len ) ==
MBEDTLS_ERR_SSL_VERSION_MISMATCH );
/* Undo the change */
*byte ^= corrupted_bit;
}
}
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_ENTROPY_C:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void mbedtls_endpoint_sanity( int endpoint_type )
{
enum { BUFFSIZE = 1024 };
mbedtls_endpoint ep;
int ret = -1;
ret = mbedtls_endpoint_init( NULL, endpoint_type, MBEDTLS_PK_RSA,
NULL, NULL, NULL );
TEST_ASSERT( MBEDTLS_ERR_SSL_BAD_INPUT_DATA == ret );
ret = mbedtls_endpoint_certificate_init( NULL, MBEDTLS_PK_RSA );
TEST_ASSERT( MBEDTLS_ERR_SSL_BAD_INPUT_DATA == ret );
ret = mbedtls_endpoint_init( &ep, endpoint_type, MBEDTLS_PK_RSA,
NULL, NULL, NULL );
TEST_ASSERT( ret == 0 );
exit:
mbedtls_endpoint_free( &ep, NULL );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_ENTROPY_C:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void move_handshake_to_state(int endpoint_type, int state, int need_pass)
{
enum { BUFFSIZE = 1024 };
mbedtls_endpoint base_ep, second_ep;
int ret = -1;
ret = mbedtls_endpoint_init( &base_ep, endpoint_type, MBEDTLS_PK_RSA,
NULL, NULL, NULL );
TEST_ASSERT( ret == 0 );
ret = mbedtls_endpoint_init( &second_ep,
( endpoint_type == MBEDTLS_SSL_IS_SERVER ) ?
MBEDTLS_SSL_IS_CLIENT : MBEDTLS_SSL_IS_SERVER,
MBEDTLS_PK_RSA, NULL, NULL, NULL );
TEST_ASSERT( ret == 0 );
ret = mbedtls_mock_socket_connect( &(base_ep.socket),
&(second_ep.socket),
BUFFSIZE );
TEST_ASSERT( ret == 0 );
ret = mbedtls_move_handshake_to_state( &(base_ep.ssl),
&(second_ep.ssl),
state );
if( need_pass )
{
TEST_ASSERT( ret == 0 );
TEST_ASSERT( base_ep.ssl.state == state );
}
else
{
TEST_ASSERT( ret != 0 );
TEST_ASSERT( base_ep.ssl.state != state );
}
exit:
mbedtls_endpoint_free( &base_ep, NULL );
mbedtls_endpoint_free( &second_ep, NULL );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:MBEDTLS_PKCS1_V15:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void handshake_version( int dtls, int client_min_version, int client_max_version,
int server_min_version, int server_max_version,
int expected_negotiated_version )
{
handshake_test_options options;
init_handshake_options( &options );
options.client_min_version = client_min_version;
options.client_max_version = client_max_version;
options.server_min_version = server_min_version;
options.server_max_version = server_max_version;
options.expected_negotiated_version = expected_negotiated_version;
options.dtls = dtls;
perform_handshake( &options );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void handshake_psk_cipher( char* cipher, int pk_alg, data_t *psk_str, int dtls )
{
handshake_test_options options;
init_handshake_options( &options );
options.cipher = cipher;
options.dtls = dtls;
options.psk_str = psk_str;
options.pk_alg = pk_alg;
perform_handshake( &options );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void handshake_cipher( char* cipher, int pk_alg, int dtls )
{
test_handshake_psk_cipher( cipher, pk_alg, NULL, dtls );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void app_data( int mfl, int cli_msg_len, int srv_msg_len,
int expected_cli_fragments,
int expected_srv_fragments, int dtls )
{
handshake_test_options options;
init_handshake_options( &options );
options.mfl = mfl;
options.cli_msg_len = cli_msg_len;
options.srv_msg_len = srv_msg_len;
options.expected_cli_fragments = expected_cli_fragments;
options.expected_srv_fragments = expected_srv_fragments;
options.dtls = dtls;
perform_handshake( &options );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void app_data_tls( int mfl, int cli_msg_len, int srv_msg_len,
int expected_cli_fragments,
int expected_srv_fragments )
{
test_app_data( mfl, cli_msg_len, srv_msg_len, expected_cli_fragments,
expected_srv_fragments, 0 );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void app_data_dtls( int mfl, int cli_msg_len, int srv_msg_len,
int expected_cli_fragments,
int expected_srv_fragments )
{
test_app_data( mfl, cli_msg_len, srv_msg_len, expected_cli_fragments,
expected_srv_fragments, 1 );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_SSL_RENEGOTIATION:MBEDTLS_SSL_CONTEXT_SERIALIZATION:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void handshake_serialization( )
{
handshake_test_options options;
init_handshake_options( &options );
options.serialize = 1;
options.dtls = 1;
perform_handshake( &options );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_DEBUG_C:MBEDTLS_SSL_MAX_FRAGMENT_LENGTH:MBEDTLS_CIPHER_MODE_CBC:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void handshake_fragmentation( int mfl, int expected_srv_hs_fragmentation, int expected_cli_hs_fragmentation)
{
handshake_test_options options;
log_pattern srv_pattern, cli_pattern;
srv_pattern.pattern = cli_pattern.pattern = "found fragmented DTLS handshake";
srv_pattern.counter = 0;
cli_pattern.counter = 0;
init_handshake_options( &options );
options.dtls = 1;
options.mfl = mfl;
/* Set cipher to one using CBC so that record splitting can be tested */
options.cipher = "TLS-DHE-RSA-WITH-AES-256-CBC-SHA256";
options.srv_auth_mode = MBEDTLS_SSL_VERIFY_REQUIRED;
options.srv_log_obj = &srv_pattern;
options.cli_log_obj = &cli_pattern;
options.srv_log_fun = log_analyzer;
options.cli_log_fun = log_analyzer;
perform_handshake( &options );
/* Test if the server received a fragmented handshake */
if( expected_srv_hs_fragmentation )
{
TEST_ASSERT( srv_pattern.counter >= 1 );
}
/* Test if the client received a fragmented handshake */
if( expected_cli_hs_fragmentation )
{
TEST_ASSERT( cli_pattern.counter >= 1 );
}
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_SSL_RENEGOTIATION:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void renegotiation( int legacy_renegotiation )
{
handshake_test_options options;
init_handshake_options( &options );
options.renegotiate = 1;
options.legacy_renegotiation = legacy_renegotiation;
options.dtls = 1;
perform_handshake( &options );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void resize_buffers( int mfl, int renegotiation, int legacy_renegotiation,
int serialize, int dtls, char *cipher )
{
handshake_test_options options;
init_handshake_options( &options );
options.mfl = mfl;
options.cipher = cipher;
options.renegotiate = renegotiation;
options.legacy_renegotiation = legacy_renegotiation;
options.serialize = serialize;
options.dtls = dtls;
options.resize_buffers = 1;
perform_handshake( &options );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH:MBEDTLS_SSL_CONTEXT_SERIALIZATION:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_SSL_PROTO_DTLS:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void resize_buffers_serialize_mfl( int mfl )
{
test_resize_buffers( mfl, 0, MBEDTLS_SSL_LEGACY_NO_RENEGOTIATION, 1, 1,
(char *) "" );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_X509_CRT_PARSE_C:!MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_PKCS1_V15:MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH:MBEDTLS_SSL_RENEGOTIATION:MBEDTLS_SSL_PROTO_TLS1_2:MBEDTLS_RSA_C:MBEDTLS_ECP_DP_SECP384R1_ENABLED:MBEDTLS_ENTROPY_C:MBEDTLS_CTR_DRBG_C */
void resize_buffers_renegotiate_mfl( int mfl, int legacy_renegotiation,
char *cipher )
{
test_resize_buffers( mfl, 1, legacy_renegotiation, 0, 1, cipher );
/* The goto below is used to avoid an "unused label" warning.*/
goto exit;
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC:MBEDTLS_TEST_HOOKS */
void ssl_cf_hmac( int hash )
{
/*
* Test the function mbedtls_ct_hmac() against a reference
* implementation.
*/
#if defined(MBEDTLS_USE_PSA_CRYPTO)
mbedtls_svc_key_id_t key = MBEDTLS_SVC_KEY_ID_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_algorithm_t alg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
#else
mbedtls_md_context_t ctx, ref_ctx;
const mbedtls_md_info_t *md_info;
#endif /* MBEDTLS_USE_PSA_CRYPTO */
size_t out_len, block_size;
size_t min_in_len, in_len, max_in_len, i;
/* TLS additional data is 13 bytes (hence the "lucky 13" name) */
unsigned char add_data[13];
unsigned char ref_out[MBEDTLS_MD_MAX_SIZE];
unsigned char *data = NULL;
unsigned char *out = NULL;
unsigned char rec_num = 0;
USE_PSA_INIT( );
#if defined(MBEDTLS_USE_PSA_CRYPTO)
alg = PSA_ALG_HMAC( mbedtls_psa_translate_md( hash ) );
out_len = PSA_HASH_LENGTH( alg );
block_size = PSA_HASH_BLOCK_LENGTH( alg );
/* mbedtls_ct_hmac() requires the key to be exportable */
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_EXPORT |
PSA_KEY_USAGE_VERIFY_HASH );
psa_set_key_algorithm( &attributes, PSA_ALG_HMAC( alg ) );
psa_set_key_type( &attributes, PSA_KEY_TYPE_HMAC );
#else
mbedtls_md_init( &ctx );
mbedtls_md_init( &ref_ctx );
md_info = mbedtls_md_info_from_type( hash );
TEST_ASSERT( md_info != NULL );
out_len = mbedtls_md_get_size( md_info );
TEST_ASSERT( out_len != 0 );
block_size = hash == MBEDTLS_MD_SHA384 ? 128 : 64;
#endif /* MBEDTLS_USE_PSA_CRYPTO */
/* Use allocated out buffer to catch overwrites */
ASSERT_ALLOC( out, out_len );
#if defined(MBEDTLS_USE_PSA_CRYPTO)
/* Set up dummy key */
memset( ref_out, 42, sizeof( ref_out ) );
TEST_EQUAL( PSA_SUCCESS, psa_import_key( &attributes,
ref_out, out_len,
&key ) );
#else
/* Set up contexts with the given hash and a dummy key */
TEST_EQUAL( 0, mbedtls_md_setup( &ctx, md_info, 1 ) );
TEST_EQUAL( 0, mbedtls_md_setup( &ref_ctx, md_info, 1 ) );
memset( ref_out, 42, sizeof( ref_out ) );
TEST_EQUAL( 0, mbedtls_md_hmac_starts( &ctx, ref_out, out_len ) );
TEST_EQUAL( 0, mbedtls_md_hmac_starts( &ref_ctx, ref_out, out_len ) );
memset( ref_out, 0, sizeof( ref_out ) );
#endif
/*
* Test all possible lengths up to a point. The difference between
* max_in_len and min_in_len is at most 255, and make sure they both vary
* by at least one block size.
*/
for( max_in_len = 0; max_in_len <= 255 + block_size; max_in_len++ )
{
mbedtls_test_set_step( max_in_len * 10000 );
/* Use allocated in buffer to catch overreads */
ASSERT_ALLOC( data, max_in_len );
min_in_len = max_in_len > 255 ? max_in_len - 255 : 0;
for( in_len = min_in_len; in_len <= max_in_len; in_len++ )
{
mbedtls_test_set_step( max_in_len * 10000 + in_len );
/* Set up dummy data and add_data */
rec_num++;
memset( add_data, rec_num, sizeof( add_data ) );
for( i = 0; i < in_len; i++ )
data[i] = ( i & 0xff ) ^ rec_num;
/* Get the function's result */
TEST_CF_SECRET( &in_len, sizeof( in_len ) );
#if defined(MBEDTLS_USE_PSA_CRYPTO)
TEST_EQUAL( 0, mbedtls_ct_hmac( key, PSA_ALG_HMAC( alg ),
add_data, sizeof( add_data ),
data, in_len,
min_in_len, max_in_len,
out ) );
#else
TEST_EQUAL( 0, mbedtls_ct_hmac( &ctx, add_data, sizeof( add_data ),
data, in_len,
min_in_len, max_in_len,
out ) );
#endif /* MBEDTLS_USE_PSA_CRYPTO */
TEST_CF_PUBLIC( &in_len, sizeof( in_len ) );
TEST_CF_PUBLIC( out, out_len );
#if defined(MBEDTLS_USE_PSA_CRYPTO)
TEST_EQUAL( PSA_SUCCESS, psa_mac_verify_setup( &operation,
key, alg ) );
TEST_EQUAL( PSA_SUCCESS, psa_mac_update( &operation, add_data,
sizeof( add_data ) ) );
TEST_EQUAL( PSA_SUCCESS, psa_mac_update( &operation,
data, in_len ) );
TEST_EQUAL( PSA_SUCCESS, psa_mac_verify_finish( &operation,
out, out_len ) );
#else
/* Compute the reference result */
TEST_EQUAL( 0, mbedtls_md_hmac_update( &ref_ctx, add_data,
sizeof( add_data ) ) );
TEST_EQUAL( 0, mbedtls_md_hmac_update( &ref_ctx, data, in_len ) );
TEST_EQUAL( 0, mbedtls_md_hmac_finish( &ref_ctx, ref_out ) );
TEST_EQUAL( 0, mbedtls_md_hmac_reset( &ref_ctx ) );
/* Compare */
ASSERT_COMPARE( out, out_len, ref_out, out_len );
#endif /* MBEDTLS_USE_PSA_CRYPTO */
}
mbedtls_free( data );
data = NULL;
}
exit:
#if defined(MBEDTLS_USE_PSA_CRYPTO)
psa_mac_abort( &operation );
psa_destroy_key( key );
#else
mbedtls_md_free( &ref_ctx );
mbedtls_md_free( &ctx );
#endif /* MBEDTLS_USE_PSA_CRYPTO */
mbedtls_free( data );
mbedtls_free( out );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC:MBEDTLS_TEST_HOOKS */
void ssl_cf_memcpy_offset( int offset_min, int offset_max, int len )
{
unsigned char *dst = NULL;
unsigned char *src = NULL;
size_t src_len = offset_max + len;
size_t secret;
ASSERT_ALLOC( dst, len );
ASSERT_ALLOC( src, src_len );
/* Fill src in a way that we can detect if we copied the right bytes */
mbedtls_test_rnd_std_rand( NULL, src, src_len );
for( secret = offset_min; secret <= (size_t) offset_max; secret++ )
{
mbedtls_test_set_step( (int) secret );
TEST_CF_SECRET( &secret, sizeof( secret ) );
mbedtls_ct_memcpy_offset( dst, src, secret,
offset_min, offset_max, len );
TEST_CF_PUBLIC( &secret, sizeof( secret ) );
TEST_CF_PUBLIC( dst, len );
ASSERT_COMPARE( dst, len, src + secret, len );
}
exit:
mbedtls_free( dst );
mbedtls_free( src );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_KEY_EXCHANGE_SOME_PSK_ENABLED */
void test_multiple_psks()
{
unsigned char psk0[10] = { 0 };
unsigned char psk0_identity[] = { 'f', 'o', 'o' };
unsigned char psk1[10] = { 0 };
unsigned char psk1_identity[] = { 'b', 'a', 'r' };
mbedtls_ssl_config conf;
mbedtls_ssl_config_init( &conf );
TEST_ASSERT( mbedtls_ssl_conf_psk( &conf,
psk0, sizeof( psk0 ),
psk0_identity, sizeof( psk0_identity ) ) == 0 );
TEST_ASSERT( mbedtls_ssl_conf_psk( &conf,
psk1, sizeof( psk1 ),
psk1_identity, sizeof( psk1_identity ) ) ==
MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE );
exit:
mbedtls_ssl_config_free( &conf );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_KEY_EXCHANGE_SOME_PSK_ENABLED:MBEDTLS_USE_PSA_CRYPTO */
void test_multiple_psks_opaque( int mode )
{
/*
* Mode 0: Raw PSK, then opaque PSK
* Mode 1: Opaque PSK, then raw PSK
* Mode 2: 2x opaque PSK
*/
unsigned char psk0_raw[10] = { 0 };
unsigned char psk0_raw_identity[] = { 'f', 'o', 'o' };
mbedtls_svc_key_id_t psk0_opaque = mbedtls_svc_key_id_make( 0x1, (psa_key_id_t) 1 );
unsigned char psk0_opaque_identity[] = { 'f', 'o', 'o' };
unsigned char psk1_raw[10] = { 0 };
unsigned char psk1_raw_identity[] = { 'b', 'a', 'r' };
mbedtls_svc_key_id_t psk1_opaque = mbedtls_svc_key_id_make( 0x1, (psa_key_id_t) 2 );
unsigned char psk1_opaque_identity[] = { 'b', 'a', 'r' };
mbedtls_ssl_config conf;
USE_PSA_INIT( );
mbedtls_ssl_config_init( &conf );
switch( mode )
{
case 0:
TEST_ASSERT( mbedtls_ssl_conf_psk( &conf,
psk0_raw, sizeof( psk0_raw ),
psk0_raw_identity, sizeof( psk0_raw_identity ) )
== 0 );
TEST_ASSERT( mbedtls_ssl_conf_psk_opaque( &conf,
psk1_opaque,
psk1_opaque_identity, sizeof( psk1_opaque_identity ) )
== MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE );
break;
case 1:
TEST_ASSERT( mbedtls_ssl_conf_psk_opaque( &conf,
psk0_opaque,
psk0_opaque_identity, sizeof( psk0_opaque_identity ) )
== 0 );
TEST_ASSERT( mbedtls_ssl_conf_psk( &conf,
psk1_raw, sizeof( psk1_raw ),
psk1_raw_identity, sizeof( psk1_raw_identity ) )
== MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE );
break;
case 2:
TEST_ASSERT( mbedtls_ssl_conf_psk_opaque( &conf,
psk0_opaque,
psk0_opaque_identity, sizeof( psk0_opaque_identity ) )
== 0 );
TEST_ASSERT( mbedtls_ssl_conf_psk_opaque( &conf,
psk1_opaque,
psk1_opaque_identity, sizeof( psk1_opaque_identity ) )
== MBEDTLS_ERR_SSL_FEATURE_UNAVAILABLE );
break;
default:
TEST_ASSERT( 0 );
break;
}
exit:
mbedtls_ssl_config_free( &conf );
USE_PSA_DONE( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_ECP_C:!MBEDTLS_DEPRECATED_REMOVED:!MBEDTLS_DEPRECATED_WARNING:MBEDTLS_ECP_DP_SECP192R1_ENABLED:MBEDTLS_ECP_DP_SECP224R1_ENABLED:MBEDTLS_ECP_DP_SECP256R1_ENABLED */
void conf_curve()
{
mbedtls_ecp_group_id curve_list[] = { MBEDTLS_ECP_DP_SECP192R1,
MBEDTLS_ECP_DP_SECP224R1,
MBEDTLS_ECP_DP_SECP256R1,
MBEDTLS_ECP_DP_NONE };
mbedtls_ecp_group_id iana_tls_group_list[] = { MBEDTLS_SSL_IANA_TLS_GROUP_SECP192R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP224R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP256R1,
MBEDTLS_SSL_IANA_TLS_GROUP_NONE };
mbedtls_ssl_config conf;
mbedtls_ssl_config_init( &conf );
#if defined(MBEDTLS_SSL_PROTO_TLS1_2)
mbedtls_ssl_conf_max_version( &conf, 3, 3 );
mbedtls_ssl_conf_min_version( &conf, 3, 3 );
#else
mbedtls_ssl_conf_max_version( &conf, 3, 4 );
mbedtls_ssl_conf_min_version( &conf, 3, 4 );
#endif
mbedtls_ssl_conf_curves( &conf, curve_list );
mbedtls_ssl_context ssl;
mbedtls_ssl_init( &ssl );
TEST_ASSERT( mbedtls_ssl_setup( &ssl, &conf ) == 0 );
TEST_ASSERT( ssl.handshake != NULL && ssl.handshake->group_list != NULL );
TEST_ASSERT( ssl.conf != NULL && ssl.conf->group_list == NULL );
TEST_EQUAL( ssl.handshake->group_list[ARRAY_LENGTH( iana_tls_group_list ) - 1], MBEDTLS_SSL_IANA_TLS_GROUP_NONE );
for( size_t i = 0; i < ARRAY_LENGTH( iana_tls_group_list ); i++ )
TEST_EQUAL( iana_tls_group_list[i], ssl.handshake->group_list[i] );
mbedtls_ssl_free( &ssl );
mbedtls_ssl_config_free( &conf );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_DEPRECATED_REMOVED */
void conf_group()
{
uint16_t iana_tls_group_list[] = { MBEDTLS_SSL_IANA_TLS_GROUP_SECP192R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP224R1,
MBEDTLS_SSL_IANA_TLS_GROUP_SECP256R1,
MBEDTLS_SSL_IANA_TLS_GROUP_NONE };
mbedtls_ssl_config conf;
mbedtls_ssl_config_init( &conf );
mbedtls_ssl_conf_max_version( &conf, 3, 3 );
mbedtls_ssl_conf_min_version( &conf, 3, 3 );
mbedtls_ssl_conf_groups( &conf, iana_tls_group_list );
mbedtls_ssl_context ssl;
mbedtls_ssl_init( &ssl );
TEST_ASSERT( mbedtls_ssl_setup( &ssl, &conf ) == 0 );
TEST_ASSERT( ssl.conf != NULL && ssl.conf->group_list != NULL );
TEST_EQUAL( ssl.conf->group_list[ARRAY_LENGTH( iana_tls_group_list ) - 1], MBEDTLS_SSL_IANA_TLS_GROUP_NONE );
for( size_t i = 0; i < ARRAY_LENGTH( iana_tls_group_list ); i++ )
TEST_EQUAL( iana_tls_group_list[i], ssl.conf->group_list[i] );
mbedtls_ssl_free( &ssl );
mbedtls_ssl_config_free( &conf );
}
/* END_CASE */