mbedtls/library/constant_time.c
Dave Rodgman 7658b63390 Remove volatile from diff; add explanatory comment
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
2023-01-20 14:04:48 +00:00

1037 lines
35 KiB
C

/**
* Constant-time functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The following functions are implemented without using comparison operators, as those
* might be translated to branches by some compilers on some platforms.
*/
#include "common.h"
#include "constant_time_internal.h"
#include "mbedtls/constant_time.h"
#include "mbedtls/error.h"
#include "mbedtls/platform_util.h"
#if defined(MBEDTLS_BIGNUM_C)
#include "mbedtls/bignum.h"
#include "bignum_core.h"
#endif
#if defined(MBEDTLS_SSL_TLS_C)
#include "ssl_misc.h"
#endif
#if defined(MBEDTLS_RSA_C)
#include "mbedtls/rsa.h"
#endif
#if defined(MBEDTLS_BASE64_C)
#include "constant_time_invasive.h"
#endif
#include <string.h>
/*
* Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
* perform fast unaligned access to volatile data.
*
* This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
* memory accesses.
*
* Some of these definitions could be moved into alignment.h but for now they are
* only used here.
*/
#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && defined(MBEDTLS_HAVE_ASM)
#if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) || defined(__aarch64__)
#define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
#endif
#endif
#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
{
/* This is UB, even where it's safe:
* return *((volatile uint32_t*)p);
* so instead the same thing is expressed in assembly below.
*/
uint32_t r;
#if defined(__arm__) || defined(__thumb__) || defined(__thumb2__)
asm ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
#elif defined(__aarch64__)
asm ("ldr %w0, [%1]" : "=r" (r) : "r" (p) :);
#endif
return r;
}
#endif /* MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS */
int mbedtls_ct_memcmp(const void *a,
const void *b,
size_t n)
{
size_t i = 0;
/*
* `A` and `B` are cast to volatile to ensure that the compiler
* generates code that always fully reads both buffers.
* Otherwise it could generate a test to exit early if `diff` has all
* bits set early in the loop.
*/
volatile const unsigned char *A = (volatile const unsigned char *) a;
volatile const unsigned char *B = (volatile const unsigned char *) b;
uint32_t diff = 0;
#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
for (; (i + 4) <= n; i += 4) {
uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
diff |= x ^ y;
}
#endif
for (; i < n; i++) {
/* Read volatile data in order before computing diff.
* This avoids IAR compiler warning:
* 'the order of volatile accesses is undefined ..' */
unsigned char x = A[i], y = B[i];
diff |= x ^ y;
}
return (int) diff;
}
unsigned mbedtls_ct_uint_mask(unsigned value)
{
/* MSVC has a warning about unary minus on unsigned, but this is
* well-defined and precisely what we want to do here */
#if defined(_MSC_VER)
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
return -((value | -value) >> (sizeof(value) * 8 - 1));
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
}
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
size_t mbedtls_ct_size_mask(size_t value)
{
/* MSVC has a warning about unary minus on unsigned integer types,
* but this is well-defined and precisely what we want to do here. */
#if defined(_MSC_VER)
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
return -((value | -value) >> (sizeof(value) * 8 - 1));
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
}
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
#if defined(MBEDTLS_BIGNUM_C)
mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)
{
/* MSVC has a warning about unary minus on unsigned, but this is
* well-defined and precisely what we want to do here */
#if defined(_MSC_VER)
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
return -((value | -value) >> (sizeof(value) * 8 - 1));
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
}
#endif /* MBEDTLS_BIGNUM_C */
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
/** Constant-flow mask generation for "less than" comparison:
* - if \p x < \p y, return all-bits 1, that is (size_t) -1
* - otherwise, return all bits 0, that is 0
*
* This function can be used to write constant-time code by replacing branches
* with bit operations using masks.
*
* \param x The first value to analyze.
* \param y The second value to analyze.
*
* \return All-bits-one if \p x is less than \p y, otherwise zero.
*/
static size_t mbedtls_ct_size_mask_lt(size_t x,
size_t y)
{
/* This has the most significant bit set if and only if x < y */
const size_t sub = x - y;
/* sub1 = (x < y) ? 1 : 0 */
const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);
/* mask = (x < y) ? 0xff... : 0x00... */
const size_t mask = mbedtls_ct_size_mask(sub1);
return mask;
}
size_t mbedtls_ct_size_mask_ge(size_t x,
size_t y)
{
return ~mbedtls_ct_size_mask_lt(x, y);
}
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
#if defined(MBEDTLS_BASE64_C)
/* Return 0xff if low <= c <= high, 0 otherwise.
*
* Constant flow with respect to c.
*/
MBEDTLS_STATIC_TESTABLE
unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,
unsigned char high,
unsigned char c)
{
/* low_mask is: 0 if low <= c, 0x...ff if low > c */
unsigned low_mask = ((unsigned) c - low) >> 8;
/* high_mask is: 0 if c <= high, 0x...ff if c > high */
unsigned high_mask = ((unsigned) high - c) >> 8;
return ~(low_mask | high_mask) & 0xff;
}
#endif /* MBEDTLS_BASE64_C */
unsigned mbedtls_ct_size_bool_eq(size_t x,
size_t y)
{
/* diff = 0 if x == y, non-zero otherwise */
const size_t diff = x ^ y;
/* MSVC has a warning about unary minus on unsigned integer types,
* but this is well-defined and precisely what we want to do here. */
#if defined(_MSC_VER)
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
/* diff_msb's most significant bit is equal to x != y */
const size_t diff_msb = (diff | (size_t) -diff);
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
/* diff1 = (x != y) ? 1 : 0 */
const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);
return 1 ^ diff1;
}
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
/** Constant-flow "greater than" comparison:
* return x > y
*
* This is equivalent to \p x > \p y, but is likely to be compiled
* to code using bitwise operation rather than a branch.
*
* \param x The first value to analyze.
* \param y The second value to analyze.
*
* \return 1 if \p x greater than \p y, otherwise 0.
*/
static unsigned mbedtls_ct_size_gt(size_t x,
size_t y)
{
/* Return the sign bit (1 for negative) of (y - x). */
return (y - x) >> (sizeof(size_t) * 8 - 1);
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
#if defined(MBEDTLS_BIGNUM_C)
unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,
const mbedtls_mpi_uint y)
{
mbedtls_mpi_uint ret;
mbedtls_mpi_uint cond;
/*
* Check if the most significant bits (MSB) of the operands are different.
*/
cond = (x ^ y);
/*
* If the MSB are the same then the difference x-y will be negative (and
* have its MSB set to 1 during conversion to unsigned) if and only if x<y.
*/
ret = (x - y) & ~cond;
/*
* If the MSB are different, then the operand with the MSB of 1 is the
* bigger. (That is if y has MSB of 1, then x<y is true and it is false if
* the MSB of y is 0.)
*/
ret |= y & cond;
ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);
return (unsigned) ret;
}
#endif /* MBEDTLS_BIGNUM_C */
unsigned mbedtls_ct_uint_if(unsigned condition,
unsigned if1,
unsigned if0)
{
unsigned mask = mbedtls_ct_uint_mask(condition);
return (mask & if1) | (~mask & if0);
}
#if defined(MBEDTLS_BIGNUM_C)
/** Select between two sign values without branches.
*
* This is functionally equivalent to `condition ? if1 : if0` but uses only bit
* operations in order to avoid branches.
*
* \note if1 and if0 must be either 1 or -1, otherwise the result
* is undefined.
*
* \param condition Condition to test; must be either 0 or 1.
* \param if1 The first sign; must be either +1 or -1.
* \param if0 The second sign; must be either +1 or -1.
*
* \return \c if1 if \p condition is nonzero, otherwise \c if0.
* */
static int mbedtls_ct_cond_select_sign(unsigned char condition,
int if1,
int if0)
{
/* In order to avoid questions about what we can reasonably assume about
* the representations of signed integers, move everything to unsigned
* by taking advantage of the fact that if1 and if0 are either +1 or -1. */
unsigned uif1 = if1 + 1;
unsigned uif0 = if0 + 1;
/* condition was 0 or 1, mask is 0 or 2 as are uif1 and uif0 */
const unsigned mask = condition << 1;
/* select uif1 or uif0 */
unsigned ur = (uif0 & ~mask) | (uif1 & mask);
/* ur is now 0 or 2, convert back to -1 or +1 */
return (int) ur - 1;
}
void mbedtls_ct_mpi_uint_cond_assign(size_t n,
mbedtls_mpi_uint *dest,
const mbedtls_mpi_uint *src,
unsigned char condition)
{
size_t i;
/* MSVC has a warning about unary minus on unsigned integer types,
* but this is well-defined and precisely what we want to do here. */
#if defined(_MSC_VER)
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif
/* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
const mbedtls_mpi_uint mask = -condition;
#if defined(_MSC_VER)
#pragma warning( pop )
#endif
for (i = 0; i < n; i++) {
dest[i] = (src[i] & mask) | (dest[i] & ~mask);
}
}
#endif /* MBEDTLS_BIGNUM_C */
#if defined(MBEDTLS_BASE64_C)
unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
{
unsigned char digit = 0;
/* For each range of values, if value is in that range, mask digit with
* the corresponding value. Since value can only be in a single range,
* only at most one masking will change digit. */
digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value);
digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26);
digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52);
digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';
digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';
return digit;
}
signed char mbedtls_ct_base64_dec_value(unsigned char c)
{
unsigned char val = 0;
/* For each range of digits, if c is in that range, mask val with
* the corresponding value. Since c can only be in a single range,
* only at most one masking will change val. Set val to one plus
* the desired value so that it stays 0 if c is in none of the ranges. */
val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' + 0 + 1);
val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1);
val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1);
val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1);
val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1);
/* At this point, val is 0 if c is an invalid digit and v+1 if c is
* a digit with the value v. */
return val - 1;
}
#endif /* MBEDTLS_BASE64_C */
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
/** Shift some data towards the left inside a buffer.
*
* `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
* equivalent to
* ```
* memmove(start, start + offset, total - offset);
* memset(start + offset, 0, total - offset);
* ```
* but it strives to use a memory access pattern (and thus total timing)
* that does not depend on \p offset. This timing independence comes at
* the expense of performance.
*
* \param start Pointer to the start of the buffer.
* \param total Total size of the buffer.
* \param offset Offset from which to copy \p total - \p offset bytes.
*/
static void mbedtls_ct_mem_move_to_left(void *start,
size_t total,
size_t offset)
{
volatile unsigned char *buf = start;
size_t i, n;
if (total == 0) {
return;
}
for (i = 0; i < total; i++) {
unsigned no_op = mbedtls_ct_size_gt(total - offset, i);
/* The first `total - offset` passes are a no-op. The last
* `offset` passes shift the data one byte to the left and
* zero out the last byte. */
for (n = 0; n < total - 1; n++) {
unsigned char current = buf[n];
unsigned char next = buf[n+1];
buf[n] = mbedtls_ct_uint_if(no_op, current, next);
}
buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);
}
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
#if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC)
void mbedtls_ct_memcpy_if_eq(unsigned char *dest,
const unsigned char *src,
size_t len,
size_t c1,
size_t c2)
{
/* mask = c1 == c2 ? 0xff : 0x00 */
const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);
/* dest[i] = c1 == c2 ? src[i] : dest[i] */
size_t i = 0;
#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
const uint32_t mask32 = (uint32_t) mbedtls_ct_size_mask(equal);
const unsigned char mask = (unsigned char) mask32 & 0xff;
for (; (i + 4) <= len; i += 4) {
uint32_t a = mbedtls_get_unaligned_uint32(src + i) & mask32;
uint32_t b = mbedtls_get_unaligned_uint32(dest + i) & ~mask32;
mbedtls_put_unaligned_uint32(dest + i, a | b);
}
#else
const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);
#endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
for (; i < len; i++) {
dest[i] = (src[i] & mask) | (dest[i] & ~mask);
}
}
void mbedtls_ct_memcpy_offset(unsigned char *dest,
const unsigned char *src,
size_t offset,
size_t offset_min,
size_t offset_max,
size_t len)
{
size_t offsetval;
for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,
offsetval, offset);
}
}
#if defined(MBEDTLS_USE_PSA_CRYPTO)
#if defined(PSA_WANT_ALG_SHA_384)
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_384)
#elif defined(PSA_WANT_ALG_SHA_256)
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_256)
#else /* See check_config.h */
#define MAX_HASH_BLOCK_LENGTH PSA_HASH_BLOCK_LENGTH(PSA_ALG_SHA_1)
#endif
int mbedtls_ct_hmac(mbedtls_svc_key_id_t key,
psa_algorithm_t mac_alg,
const unsigned char *add_data,
size_t add_data_len,
const unsigned char *data,
size_t data_len_secret,
size_t min_data_len,
size_t max_data_len,
unsigned char *output)
{
/*
* This function breaks the HMAC abstraction and uses psa_hash_clone()
* extension in order to get constant-flow behaviour.
*
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
* patterns (see RFC 2104, sec. 2).
*
* We'll first compute ikey/okey, then inner_hash = HASH(ikey + msg) by
* hashing up to minlen, then cloning the context, and for each byte up
* to maxlen finishing up the hash computation, keeping only the
* correct result.
*
* Then we only need to compute HASH(okey + inner_hash) and we're done.
*/
psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH(mac_alg);
const size_t block_size = PSA_HASH_BLOCK_LENGTH(hash_alg);
unsigned char key_buf[MAX_HASH_BLOCK_LENGTH];
const size_t hash_size = PSA_HASH_LENGTH(hash_alg);
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
size_t hash_length;
unsigned char aux_out[PSA_HASH_MAX_SIZE];
psa_hash_operation_t aux_operation = PSA_HASH_OPERATION_INIT;
size_t offset;
psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
size_t mac_key_length;
size_t i;
#define PSA_CHK(func_call) \
do { \
status = (func_call); \
if (status != PSA_SUCCESS) \
goto cleanup; \
} while (0)
/* Export MAC key
* We assume key length is always exactly the output size
* which is never more than the block size, thus we use block_size
* as the key buffer size.
*/
PSA_CHK(psa_export_key(key, key_buf, block_size, &mac_key_length));
/* Calculate ikey */
for (i = 0; i < mac_key_length; i++) {
key_buf[i] = (unsigned char) (key_buf[i] ^ 0x36);
}
for (; i < block_size; ++i) {
key_buf[i] = 0x36;
}
PSA_CHK(psa_hash_setup(&operation, hash_alg));
/* Now compute inner_hash = HASH(ikey + msg) */
PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
PSA_CHK(psa_hash_update(&operation, add_data, add_data_len));
PSA_CHK(psa_hash_update(&operation, data, min_data_len));
/* Fill the hash buffer in advance with something that is
* not a valid hash (barring an attack on the hash and
* deliberately-crafted input), in case the caller doesn't
* check the return status properly. */
memset(output, '!', hash_size);
/* For each possible length, compute the hash up to that point */
for (offset = min_data_len; offset <= max_data_len; offset++) {
PSA_CHK(psa_hash_clone(&operation, &aux_operation));
PSA_CHK(psa_hash_finish(&aux_operation, aux_out,
PSA_HASH_MAX_SIZE, &hash_length));
/* Keep only the correct inner_hash in the output buffer */
mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
offset, data_len_secret);
if (offset < max_data_len) {
PSA_CHK(psa_hash_update(&operation, data + offset, 1));
}
}
/* Abort current operation to prepare for final operation */
PSA_CHK(psa_hash_abort(&operation));
/* Calculate okey */
for (i = 0; i < mac_key_length; i++) {
key_buf[i] = (unsigned char) ((key_buf[i] ^ 0x36) ^ 0x5C);
}
for (; i < block_size; ++i) {
key_buf[i] = 0x5C;
}
/* Now compute HASH(okey + inner_hash) */
PSA_CHK(psa_hash_setup(&operation, hash_alg));
PSA_CHK(psa_hash_update(&operation, key_buf, block_size));
PSA_CHK(psa_hash_update(&operation, output, hash_size));
PSA_CHK(psa_hash_finish(&operation, output, hash_size, &hash_length));
#undef PSA_CHK
cleanup:
mbedtls_platform_zeroize(key_buf, MAX_HASH_BLOCK_LENGTH);
mbedtls_platform_zeroize(aux_out, PSA_HASH_MAX_SIZE);
psa_hash_abort(&operation);
psa_hash_abort(&aux_operation);
return psa_ssl_status_to_mbedtls(status);
}
#undef MAX_HASH_BLOCK_LENGTH
#else
int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
const unsigned char *add_data,
size_t add_data_len,
const unsigned char *data,
size_t data_len_secret,
size_t min_data_len,
size_t max_data_len,
unsigned char *output)
{
/*
* This function breaks the HMAC abstraction and uses the md_clone()
* extension to the MD API in order to get constant-flow behaviour.
*
* HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
* concatenation, and okey/ikey are the XOR of the key with some fixed bit
* patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
*
* We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
* minlen, then cloning the context, and for each byte up to maxlen
* finishing up the hash computation, keeping only the correct result.
*
* Then we only need to compute HASH(okey + inner_hash) and we're done.
*/
const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
/* TLS 1.2 only supports SHA-384, SHA-256, SHA-1, MD-5,
* all of which have the same block size except SHA-384. */
const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
const unsigned char * const ikey = ctx->hmac_ctx;
const unsigned char * const okey = ikey + block_size;
const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
mbedtls_md_context_t aux;
size_t offset;
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_md_init(&aux);
#define MD_CHK(func_call) \
do { \
ret = (func_call); \
if (ret != 0) \
goto cleanup; \
} while (0)
MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
/* After hmac_start() of hmac_reset(), ikey has already been hashed,
* so we can start directly with the message */
MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
/* Fill the hash buffer in advance with something that is
* not a valid hash (barring an attack on the hash and
* deliberately-crafted input), in case the caller doesn't
* check the return status properly. */
memset(output, '!', hash_size);
/* For each possible length, compute the hash up to that point */
for (offset = min_data_len; offset <= max_data_len; offset++) {
MD_CHK(mbedtls_md_clone(&aux, ctx));
MD_CHK(mbedtls_md_finish(&aux, aux_out));
/* Keep only the correct inner_hash in the output buffer */
mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
offset, data_len_secret);
if (offset < max_data_len) {
MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
}
}
/* The context needs to finish() before it starts() again */
MD_CHK(mbedtls_md_finish(ctx, aux_out));
/* Now compute HASH(okey + inner_hash) */
MD_CHK(mbedtls_md_starts(ctx));
MD_CHK(mbedtls_md_update(ctx, okey, block_size));
MD_CHK(mbedtls_md_update(ctx, output, hash_size));
MD_CHK(mbedtls_md_finish(ctx, output));
/* Done, get ready for next time */
MD_CHK(mbedtls_md_hmac_reset(ctx));
#undef MD_CHK
cleanup:
mbedtls_md_free(&aux);
return ret;
}
#endif /* MBEDTLS_USE_PSA_CRYPTO */
#endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */
#if defined(MBEDTLS_BIGNUM_C)
#define MPI_VALIDATE_RET(cond) \
MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
/*
* Conditionally assign X = Y, without leaking information
* about whether the assignment was made or not.
* (Leaking information about the respective sizes of X and Y is ok however.)
*/
#if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)
/*
* MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
* https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
*/
__declspec(noinline)
#endif
int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
const mbedtls_mpi *Y,
unsigned char assign)
{
int ret = 0;
MPI_VALIDATE_RET(X != NULL);
MPI_VALIDATE_RET(Y != NULL);
/* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(assign);
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
X->s = mbedtls_ct_cond_select_sign(assign, Y->s, X->s);
mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, assign);
for (size_t i = Y->n; i < X->n; i++) {
X->p[i] &= ~limb_mask;
}
cleanup:
return ret;
}
/*
* Conditionally swap X and Y, without leaking information
* about whether the swap was made or not.
* Here it is not ok to simply swap the pointers, which would lead to
* different memory access patterns when X and Y are used afterwards.
*/
int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
mbedtls_mpi *Y,
unsigned char swap)
{
int ret = 0;
int s;
MPI_VALIDATE_RET(X != NULL);
MPI_VALIDATE_RET(Y != NULL);
if (X == Y) {
return 0;
}
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
s = X->s;
X->s = mbedtls_ct_cond_select_sign(swap, Y->s, X->s);
Y->s = mbedtls_ct_cond_select_sign(swap, s, Y->s);
mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, swap);
cleanup:
return ret;
}
/*
* Compare unsigned values in constant time
*/
unsigned mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
size_t limbs)
{
unsigned ret, cond, done;
/* The value of any of these variables is either 0 or 1 for the rest of
* their scope. */
ret = cond = done = 0;
for (size_t i = limbs; i > 0; i--) {
/*
* If B[i - 1] < A[i - 1] then A < B is false and the result must
* remain 0.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_mpi_uint_lt(B[i - 1], A[i - 1]);
done |= cond;
/*
* If A[i - 1] < B[i - 1] then A < B is true.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_mpi_uint_lt(A[i - 1], B[i - 1]);
ret |= cond & (1 - done);
done |= cond;
}
/*
* If all the limbs were equal, then the numbers are equal, A < B is false
* and leaving the result 0 is correct.
*/
return ret;
}
/*
* Compare signed values in constant time
*/
int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
const mbedtls_mpi *Y,
unsigned *ret)
{
size_t i;
/* The value of any of these variables is either 0 or 1 at all times. */
unsigned cond, done, X_is_negative, Y_is_negative;
MPI_VALIDATE_RET(X != NULL);
MPI_VALIDATE_RET(Y != NULL);
MPI_VALIDATE_RET(ret != NULL);
if (X->n != Y->n) {
return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
}
/*
* Set sign_N to 1 if N >= 0, 0 if N < 0.
* We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
*/
X_is_negative = (X->s & 2) >> 1;
Y_is_negative = (Y->s & 2) >> 1;
/*
* If the signs are different, then the positive operand is the bigger.
* That is if X is negative (X_is_negative == 1), then X < Y is true and it
* is false if X is positive (X_is_negative == 0).
*/
cond = (X_is_negative ^ Y_is_negative);
*ret = cond & X_is_negative;
/*
* This is a constant-time function. We might have the result, but we still
* need to go through the loop. Record if we have the result already.
*/
done = cond;
for (i = X->n; i > 0; i--) {
/*
* If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
* X and Y are negative.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);
*ret |= cond & (1 - done) & X_is_negative;
done |= cond;
/*
* If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
* X and Y are positive.
*
* Again even if we can make a decision, we just mark the result and
* the fact that we are done and continue looping.
*/
cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);
*ret |= cond & (1 - done) & (1 - X_is_negative);
done |= cond;
}
return 0;
}
#endif /* MBEDTLS_BIGNUM_C */
#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
size_t ilen,
unsigned char *output,
size_t output_max_len,
size_t *olen)
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t i, plaintext_max_size;
/* The following variables take sensitive values: their value must
* not leak into the observable behavior of the function other than
* the designated outputs (output, olen, return value). Otherwise
* this would open the execution of the function to
* side-channel-based variants of the Bleichenbacher padding oracle
* attack. Potential side channels include overall timing, memory
* access patterns (especially visible to an adversary who has access
* to a shared memory cache), and branches (especially visible to
* an adversary who has access to a shared code cache or to a shared
* branch predictor). */
size_t pad_count = 0;
unsigned bad = 0;
unsigned char pad_done = 0;
size_t plaintext_size = 0;
unsigned output_too_large;
plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
: output_max_len;
/* Check and get padding length in constant time and constant
* memory trace. The first byte must be 0. */
bad |= input[0];
/* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
* where PS must be at least 8 nonzero bytes. */
bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
/* Read the whole buffer. Set pad_done to nonzero if we find
* the 0x00 byte and remember the padding length in pad_count. */
for (i = 2; i < ilen; i++) {
pad_done |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;
pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
}
/* If pad_done is still zero, there's no data, only unfinished padding. */
bad |= mbedtls_ct_uint_if(pad_done, 0, 1);
/* There must be at least 8 bytes of padding. */
bad |= mbedtls_ct_size_gt(8, pad_count);
/* If the padding is valid, set plaintext_size to the number of
* remaining bytes after stripping the padding. If the padding
* is invalid, avoid leaking this fact through the size of the
* output: use the maximum message size that fits in the output
* buffer. Do it without branches to avoid leaking the padding
* validity through timing. RSA keys are small enough that all the
* size_t values involved fit in unsigned int. */
plaintext_size = mbedtls_ct_uint_if(
bad, (unsigned) plaintext_max_size,
(unsigned) (ilen - pad_count - 3));
/* Set output_too_large to 0 if the plaintext fits in the output
* buffer and to 1 otherwise. */
output_too_large = mbedtls_ct_size_gt(plaintext_size,
plaintext_max_size);
/* Set ret without branches to avoid timing attacks. Return:
* - INVALID_PADDING if the padding is bad (bad != 0).
* - OUTPUT_TOO_LARGE if the padding is good but the decrypted
* plaintext does not fit in the output buffer.
* - 0 if the padding is correct. */
ret = -(int) mbedtls_ct_uint_if(
bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,
mbedtls_ct_uint_if(output_too_large,
-MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
0));
/* If the padding is bad or the plaintext is too large, zero the
* data that we're about to copy to the output buffer.
* We need to copy the same amount of data
* from the same buffer whether the padding is good or not to
* avoid leaking the padding validity through overall timing or
* through memory or cache access patterns. */
bad = mbedtls_ct_uint_mask(bad | output_too_large);
for (i = 11; i < ilen; i++) {
input[i] &= ~bad;
}
/* If the plaintext is too large, truncate it to the buffer size.
* Copy anyway to avoid revealing the length through timing, because
* revealing the length is as bad as revealing the padding validity
* for a Bleichenbacher attack. */
plaintext_size = mbedtls_ct_uint_if(output_too_large,
(unsigned) plaintext_max_size,
(unsigned) plaintext_size);
/* Move the plaintext to the leftmost position where it can start in
* the working buffer, i.e. make it start plaintext_max_size from
* the end of the buffer. Do this with a memory access trace that
* does not depend on the plaintext size. After this move, the
* starting location of the plaintext is no longer sensitive
* information. */
mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,
plaintext_max_size,
plaintext_max_size - plaintext_size);
/* Finally copy the decrypted plaintext plus trailing zeros into the output
* buffer. If output_max_len is 0, then output may be an invalid pointer
* and the result of memcpy() would be undefined; prevent undefined
* behavior making sure to depend only on output_max_len (the size of the
* user-provided output buffer), which is independent from plaintext
* length, validity of padding, success of the decryption, and other
* secrets. */
if (output_max_len != 0) {
memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
}
/* Report the amount of data we copied to the output buffer. In case
* of errors (bad padding or output too large), the value of *olen
* when this function returns is not specified. Making it equivalent
* to the good case limits the risks of leaking the padding validity. */
*olen = plaintext_size;
return ret;
}
#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */