mbedtls/library/psa_crypto.c
Vikas Katariya 21599b6622 Return right error code.
Issue : 126
https://github.com/ARMmbed/mbed-crypto/issues/126

PSA_ERROR_BUFFER_TOO_SMALL error returned when we check for output_size.
2019-08-02 13:01:58 +01:00

4675 lines
155 KiB
C

/*
* PSA crypto layer on top of Mbed TLS crypto
*/
/* Copyright (C) 2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_PSA_CRYPTO_C)
#include "psa_crypto_service_integration.h"
#include "psa/crypto.h"
#include "psa_crypto_core.h"
#include "psa_crypto_invasive.h"
#include "psa_crypto_slot_management.h"
/* Include internal declarations that are useful for implementing persistently
* stored keys. */
#include "psa_crypto_storage.h"
#include <stdlib.h>
#include <string.h>
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif
#include "mbedtls/arc4.h"
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#include "mbedtls/bignum.h"
#include "mbedtls/blowfish.h"
#include "mbedtls/camellia.h"
#include "mbedtls/cipher.h"
#include "mbedtls/ccm.h"
#include "mbedtls/cmac.h"
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/des.h"
#include "mbedtls/ecdh.h"
#include "mbedtls/ecp.h"
#include "mbedtls/entropy.h"
#include "mbedtls/error.h"
#include "mbedtls/gcm.h"
#include "mbedtls/md2.h"
#include "mbedtls/md4.h"
#include "mbedtls/md5.h"
#include "mbedtls/md.h"
#include "mbedtls/md_internal.h"
#include "mbedtls/pk.h"
#include "mbedtls/pk_internal.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/ripemd160.h"
#include "mbedtls/rsa.h"
#include "mbedtls/sha1.h"
#include "mbedtls/sha256.h"
#include "mbedtls/sha512.h"
#include "mbedtls/xtea.h"
#define ARRAY_LENGTH( array ) ( sizeof( array ) / sizeof( *( array ) ) )
/* constant-time buffer comparison */
static inline int safer_memcmp( const uint8_t *a, const uint8_t *b, size_t n )
{
size_t i;
unsigned char diff = 0;
for( i = 0; i < n; i++ )
diff |= a[i] ^ b[i];
return( diff );
}
/****************************************************************/
/* Global data, support functions and library management */
/****************************************************************/
static int key_type_is_raw_bytes( psa_key_type_t type )
{
return( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) );
}
/* Values for psa_global_data_t::rng_state */
#define RNG_NOT_INITIALIZED 0
#define RNG_INITIALIZED 1
#define RNG_SEEDED 2
typedef struct
{
void (* entropy_init )( mbedtls_entropy_context *ctx );
void (* entropy_free )( mbedtls_entropy_context *ctx );
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
unsigned initialized : 1;
unsigned rng_state : 2;
} psa_global_data_t;
static psa_global_data_t global_data;
#define GUARD_MODULE_INITIALIZED \
if( global_data.initialized == 0 ) \
return( PSA_ERROR_BAD_STATE );
static psa_status_t mbedtls_to_psa_error( int ret )
{
/* If there's both a high-level code and low-level code, dispatch on
* the high-level code. */
switch( ret < -0x7f ? - ( -ret & 0x7f80 ) : ret )
{
case 0:
return( PSA_SUCCESS );
case MBEDTLS_ERR_AES_INVALID_KEY_LENGTH:
case MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH:
case MBEDTLS_ERR_AES_FEATURE_UNAVAILABLE:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_AES_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_ARC4_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_ASN1_OUT_OF_DATA:
case MBEDTLS_ERR_ASN1_UNEXPECTED_TAG:
case MBEDTLS_ERR_ASN1_INVALID_LENGTH:
case MBEDTLS_ERR_ASN1_LENGTH_MISMATCH:
case MBEDTLS_ERR_ASN1_INVALID_DATA:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_ASN1_ALLOC_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_ASN1_BUF_TOO_SMALL:
return( PSA_ERROR_BUFFER_TOO_SMALL );
#if defined(MBEDTLS_ERR_BLOWFISH_BAD_INPUT_DATA)
case MBEDTLS_ERR_BLOWFISH_BAD_INPUT_DATA:
#elif defined(MBEDTLS_ERR_BLOWFISH_INVALID_KEY_LENGTH)
case MBEDTLS_ERR_BLOWFISH_INVALID_KEY_LENGTH:
#endif
case MBEDTLS_ERR_BLOWFISH_INVALID_INPUT_LENGTH:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_BLOWFISH_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
#if defined(MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA)
case MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA:
#elif defined(MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH)
case MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH:
#endif
case MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_CAMELLIA_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_CCM_BAD_INPUT:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_CCM_AUTH_FAILED:
return( PSA_ERROR_INVALID_SIGNATURE );
case MBEDTLS_ERR_CCM_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_CIPHER_ALLOC_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_CIPHER_INVALID_PADDING:
return( PSA_ERROR_INVALID_PADDING );
case MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED:
return( PSA_ERROR_BAD_STATE );
case MBEDTLS_ERR_CIPHER_AUTH_FAILED:
return( PSA_ERROR_INVALID_SIGNATURE );
case MBEDTLS_ERR_CIPHER_INVALID_CONTEXT:
return( PSA_ERROR_TAMPERING_DETECTED );
case MBEDTLS_ERR_CIPHER_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_CMAC_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED:
return( PSA_ERROR_INSUFFICIENT_ENTROPY );
case MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG:
case MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR:
return( PSA_ERROR_INSUFFICIENT_ENTROPY );
case MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_DES_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED:
case MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE:
case MBEDTLS_ERR_ENTROPY_SOURCE_FAILED:
return( PSA_ERROR_INSUFFICIENT_ENTROPY );
case MBEDTLS_ERR_GCM_AUTH_FAILED:
return( PSA_ERROR_INVALID_SIGNATURE );
case MBEDTLS_ERR_GCM_BAD_INPUT:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_GCM_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_MD2_HW_ACCEL_FAILED:
case MBEDTLS_ERR_MD4_HW_ACCEL_FAILED:
case MBEDTLS_ERR_MD5_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_MD_BAD_INPUT_DATA:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_MD_ALLOC_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_MD_FILE_IO_ERROR:
return( PSA_ERROR_STORAGE_FAILURE );
case MBEDTLS_ERR_MD_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_MPI_FILE_IO_ERROR:
return( PSA_ERROR_STORAGE_FAILURE );
case MBEDTLS_ERR_MPI_BAD_INPUT_DATA:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_MPI_INVALID_CHARACTER:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL:
return( PSA_ERROR_BUFFER_TOO_SMALL );
case MBEDTLS_ERR_MPI_NEGATIVE_VALUE:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_MPI_DIVISION_BY_ZERO:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_MPI_ALLOC_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_PK_ALLOC_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_PK_TYPE_MISMATCH:
case MBEDTLS_ERR_PK_BAD_INPUT_DATA:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_PK_FILE_IO_ERROR:
return( PSA_ERROR_STORAGE_FAILURE );
case MBEDTLS_ERR_PK_KEY_INVALID_VERSION:
case MBEDTLS_ERR_PK_KEY_INVALID_FORMAT:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_PK_UNKNOWN_PK_ALG:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_PK_PASSWORD_REQUIRED:
case MBEDTLS_ERR_PK_PASSWORD_MISMATCH:
return( PSA_ERROR_NOT_PERMITTED );
case MBEDTLS_ERR_PK_INVALID_PUBKEY:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_PK_INVALID_ALG:
case MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE:
case MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_PK_SIG_LEN_MISMATCH:
return( PSA_ERROR_INVALID_SIGNATURE );
case MBEDTLS_ERR_PK_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_RIPEMD160_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_RSA_BAD_INPUT_DATA:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_RSA_INVALID_PADDING:
return( PSA_ERROR_INVALID_PADDING );
case MBEDTLS_ERR_RSA_KEY_GEN_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_RSA_KEY_CHECK_FAILED:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_RSA_PUBLIC_FAILED:
case MBEDTLS_ERR_RSA_PRIVATE_FAILED:
return( PSA_ERROR_TAMPERING_DETECTED );
case MBEDTLS_ERR_RSA_VERIFY_FAILED:
return( PSA_ERROR_INVALID_SIGNATURE );
case MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE:
return( PSA_ERROR_BUFFER_TOO_SMALL );
case MBEDTLS_ERR_RSA_RNG_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_RSA_UNSUPPORTED_OPERATION:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_RSA_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_SHA1_HW_ACCEL_FAILED:
case MBEDTLS_ERR_SHA256_HW_ACCEL_FAILED:
case MBEDTLS_ERR_SHA512_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_XTEA_INVALID_INPUT_LENGTH:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_XTEA_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
case MBEDTLS_ERR_ECP_BAD_INPUT_DATA:
case MBEDTLS_ERR_ECP_INVALID_KEY:
return( PSA_ERROR_INVALID_ARGUMENT );
case MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL:
return( PSA_ERROR_BUFFER_TOO_SMALL );
case MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE:
return( PSA_ERROR_NOT_SUPPORTED );
case MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH:
case MBEDTLS_ERR_ECP_VERIFY_FAILED:
return( PSA_ERROR_INVALID_SIGNATURE );
case MBEDTLS_ERR_ECP_ALLOC_FAILED:
return( PSA_ERROR_INSUFFICIENT_MEMORY );
case MBEDTLS_ERR_ECP_HW_ACCEL_FAILED:
return( PSA_ERROR_HARDWARE_FAILURE );
default:
return( PSA_ERROR_GENERIC_ERROR );
}
}
/****************************************************************/
/* Key management */
/****************************************************************/
#if defined(MBEDTLS_ECP_C)
static psa_ecc_curve_t mbedtls_ecc_group_to_psa( mbedtls_ecp_group_id grpid )
{
switch( grpid )
{
case MBEDTLS_ECP_DP_SECP192R1:
return( PSA_ECC_CURVE_SECP192R1 );
case MBEDTLS_ECP_DP_SECP224R1:
return( PSA_ECC_CURVE_SECP224R1 );
case MBEDTLS_ECP_DP_SECP256R1:
return( PSA_ECC_CURVE_SECP256R1 );
case MBEDTLS_ECP_DP_SECP384R1:
return( PSA_ECC_CURVE_SECP384R1 );
case MBEDTLS_ECP_DP_SECP521R1:
return( PSA_ECC_CURVE_SECP521R1 );
case MBEDTLS_ECP_DP_BP256R1:
return( PSA_ECC_CURVE_BRAINPOOL_P256R1 );
case MBEDTLS_ECP_DP_BP384R1:
return( PSA_ECC_CURVE_BRAINPOOL_P384R1 );
case MBEDTLS_ECP_DP_BP512R1:
return( PSA_ECC_CURVE_BRAINPOOL_P512R1 );
case MBEDTLS_ECP_DP_CURVE25519:
return( PSA_ECC_CURVE_CURVE25519 );
case MBEDTLS_ECP_DP_SECP192K1:
return( PSA_ECC_CURVE_SECP192K1 );
case MBEDTLS_ECP_DP_SECP224K1:
return( PSA_ECC_CURVE_SECP224K1 );
case MBEDTLS_ECP_DP_SECP256K1:
return( PSA_ECC_CURVE_SECP256K1 );
case MBEDTLS_ECP_DP_CURVE448:
return( PSA_ECC_CURVE_CURVE448 );
default:
return( 0 );
}
}
static mbedtls_ecp_group_id mbedtls_ecc_group_of_psa( psa_ecc_curve_t curve )
{
switch( curve )
{
case PSA_ECC_CURVE_SECP192R1:
return( MBEDTLS_ECP_DP_SECP192R1 );
case PSA_ECC_CURVE_SECP224R1:
return( MBEDTLS_ECP_DP_SECP224R1 );
case PSA_ECC_CURVE_SECP256R1:
return( MBEDTLS_ECP_DP_SECP256R1 );
case PSA_ECC_CURVE_SECP384R1:
return( MBEDTLS_ECP_DP_SECP384R1 );
case PSA_ECC_CURVE_SECP521R1:
return( MBEDTLS_ECP_DP_SECP521R1 );
case PSA_ECC_CURVE_BRAINPOOL_P256R1:
return( MBEDTLS_ECP_DP_BP256R1 );
case PSA_ECC_CURVE_BRAINPOOL_P384R1:
return( MBEDTLS_ECP_DP_BP384R1 );
case PSA_ECC_CURVE_BRAINPOOL_P512R1:
return( MBEDTLS_ECP_DP_BP512R1 );
case PSA_ECC_CURVE_CURVE25519:
return( MBEDTLS_ECP_DP_CURVE25519 );
case PSA_ECC_CURVE_SECP192K1:
return( MBEDTLS_ECP_DP_SECP192K1 );
case PSA_ECC_CURVE_SECP224K1:
return( MBEDTLS_ECP_DP_SECP224K1 );
case PSA_ECC_CURVE_SECP256K1:
return( MBEDTLS_ECP_DP_SECP256K1 );
case PSA_ECC_CURVE_CURVE448:
return( MBEDTLS_ECP_DP_CURVE448 );
default:
return( MBEDTLS_ECP_DP_NONE );
}
}
#endif /* defined(MBEDTLS_ECP_C) */
static psa_status_t prepare_raw_data_slot( psa_key_type_t type,
size_t bits,
struct raw_data *raw )
{
/* Check that the bit size is acceptable for the key type */
switch( type )
{
case PSA_KEY_TYPE_RAW_DATA:
if( bits == 0 )
{
raw->bytes = 0;
raw->data = NULL;
return( PSA_SUCCESS );
}
break;
#if defined(MBEDTLS_MD_C)
case PSA_KEY_TYPE_HMAC:
#endif
case PSA_KEY_TYPE_DERIVE:
break;
#if defined(MBEDTLS_AES_C)
case PSA_KEY_TYPE_AES:
if( bits != 128 && bits != 192 && bits != 256 )
return( PSA_ERROR_INVALID_ARGUMENT );
break;
#endif
#if defined(MBEDTLS_CAMELLIA_C)
case PSA_KEY_TYPE_CAMELLIA:
if( bits != 128 && bits != 192 && bits != 256 )
return( PSA_ERROR_INVALID_ARGUMENT );
break;
#endif
#if defined(MBEDTLS_DES_C)
case PSA_KEY_TYPE_DES:
if( bits != 64 && bits != 128 && bits != 192 )
return( PSA_ERROR_INVALID_ARGUMENT );
break;
#endif
#if defined(MBEDTLS_ARC4_C)
case PSA_KEY_TYPE_ARC4:
if( bits < 8 || bits > 2048 )
return( PSA_ERROR_INVALID_ARGUMENT );
break;
#endif
default:
return( PSA_ERROR_NOT_SUPPORTED );
}
if( bits % 8 != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
/* Allocate memory for the key */
raw->bytes = PSA_BITS_TO_BYTES( bits );
raw->data = mbedtls_calloc( 1, raw->bytes );
if( raw->data == NULL )
{
raw->bytes = 0;
return( PSA_ERROR_INSUFFICIENT_MEMORY );
}
return( PSA_SUCCESS );
}
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
/* Mbed TLS doesn't support non-byte-aligned key sizes (i.e. key sizes
* that are not a multiple of 8) well. For example, there is only
* mbedtls_rsa_get_len(), which returns a number of bytes, and no
* way to return the exact bit size of a key.
* To keep things simple, reject non-byte-aligned key sizes. */
static psa_status_t psa_check_rsa_key_byte_aligned(
const mbedtls_rsa_context *rsa )
{
mbedtls_mpi n;
psa_status_t status;
mbedtls_mpi_init( &n );
status = mbedtls_to_psa_error(
mbedtls_rsa_export( rsa, &n, NULL, NULL, NULL, NULL ) );
if( status == PSA_SUCCESS )
{
if( mbedtls_mpi_bitlen( &n ) % 8 != 0 )
status = PSA_ERROR_NOT_SUPPORTED;
}
mbedtls_mpi_free( &n );
return( status );
}
static psa_status_t psa_import_rsa_key( psa_key_type_t type,
const uint8_t *data,
size_t data_length,
mbedtls_rsa_context **p_rsa )
{
psa_status_t status;
mbedtls_pk_context pk;
mbedtls_rsa_context *rsa;
size_t bits;
mbedtls_pk_init( &pk );
/* Parse the data. */
if( PSA_KEY_TYPE_IS_KEYPAIR( type ) )
status = mbedtls_to_psa_error(
mbedtls_pk_parse_key( &pk, data, data_length, NULL, 0 ) );
else
status = mbedtls_to_psa_error(
mbedtls_pk_parse_public_key( &pk, data, data_length ) );
if( status != PSA_SUCCESS )
goto exit;
/* We have something that the pkparse module recognizes. If it is a
* valid RSA key, store it. */
if( mbedtls_pk_get_type( &pk ) != MBEDTLS_PK_RSA )
{
status = PSA_ERROR_INVALID_ARGUMENT;
goto exit;
}
rsa = mbedtls_pk_rsa( pk );
/* The size of an RSA key doesn't have to be a multiple of 8. Mbed TLS
* supports non-byte-aligned key sizes, but not well. For example,
* mbedtls_rsa_get_len() returns the key size in bytes, not in bits. */
bits = PSA_BYTES_TO_BITS( mbedtls_rsa_get_len( rsa ) );
if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS )
{
status = PSA_ERROR_NOT_SUPPORTED;
goto exit;
}
status = psa_check_rsa_key_byte_aligned( rsa );
exit:
/* Free the content of the pk object only on error. */
if( status != PSA_SUCCESS )
{
mbedtls_pk_free( &pk );
return( status );
}
/* On success, store the content of the object in the RSA context. */
*p_rsa = rsa;
return( PSA_SUCCESS );
}
#endif /* defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C) */
#if defined(MBEDTLS_ECP_C)
/* Import a public key given as the uncompressed representation defined by SEC1
* 2.3.3 as the content of an ECPoint. */
static psa_status_t psa_import_ec_public_key( psa_ecc_curve_t curve,
const uint8_t *data,
size_t data_length,
mbedtls_ecp_keypair **p_ecp )
{
psa_status_t status = PSA_ERROR_TAMPERING_DETECTED;
mbedtls_ecp_keypair *ecp = NULL;
mbedtls_ecp_group_id grp_id = mbedtls_ecc_group_of_psa( curve );
*p_ecp = NULL;
ecp = mbedtls_calloc( 1, sizeof( *ecp ) );
if( ecp == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
mbedtls_ecp_keypair_init( ecp );
/* Load the group. */
status = mbedtls_to_psa_error(
mbedtls_ecp_group_load( &ecp->grp, grp_id ) );
if( status != PSA_SUCCESS )
goto exit;
/* Load the public value. */
status = mbedtls_to_psa_error(
mbedtls_ecp_point_read_binary( &ecp->grp, &ecp->Q,
data, data_length ) );
if( status != PSA_SUCCESS )
goto exit;
/* Check that the point is on the curve. */
status = mbedtls_to_psa_error(
mbedtls_ecp_check_pubkey( &ecp->grp, &ecp->Q ) );
if( status != PSA_SUCCESS )
goto exit;
*p_ecp = ecp;
return( PSA_SUCCESS );
exit:
if( ecp != NULL )
{
mbedtls_ecp_keypair_free( ecp );
mbedtls_free( ecp );
}
return( status );
}
#endif /* defined(MBEDTLS_ECP_C) */
#if defined(MBEDTLS_ECP_C)
/* Import a private key given as a byte string which is the private value
* in big-endian order. */
static psa_status_t psa_import_ec_private_key( psa_ecc_curve_t curve,
const uint8_t *data,
size_t data_length,
mbedtls_ecp_keypair **p_ecp )
{
psa_status_t status = PSA_ERROR_TAMPERING_DETECTED;
mbedtls_ecp_keypair *ecp = NULL;
mbedtls_ecp_group_id grp_id = mbedtls_ecc_group_of_psa( curve );
if( PSA_BITS_TO_BYTES( PSA_ECC_CURVE_BITS( curve ) ) != data_length )
return( PSA_ERROR_INVALID_ARGUMENT );
*p_ecp = NULL;
ecp = mbedtls_calloc( 1, sizeof( mbedtls_ecp_keypair ) );
if( ecp == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
mbedtls_ecp_keypair_init( ecp );
/* Load the group. */
status = mbedtls_to_psa_error(
mbedtls_ecp_group_load( &ecp->grp, grp_id ) );
if( status != PSA_SUCCESS )
goto exit;
/* Load the secret value. */
status = mbedtls_to_psa_error(
mbedtls_mpi_read_binary( &ecp->d, data, data_length ) );
if( status != PSA_SUCCESS )
goto exit;
/* Validate the private key. */
status = mbedtls_to_psa_error(
mbedtls_ecp_check_privkey( &ecp->grp, &ecp->d ) );
if( status != PSA_SUCCESS )
goto exit;
/* Calculate the public key from the private key. */
status = mbedtls_to_psa_error(
mbedtls_ecp_mul( &ecp->grp, &ecp->Q, &ecp->d, &ecp->grp.G,
mbedtls_ctr_drbg_random, &global_data.ctr_drbg ) );
if( status != PSA_SUCCESS )
goto exit;
*p_ecp = ecp;
return( PSA_SUCCESS );
exit:
if( ecp != NULL )
{
mbedtls_ecp_keypair_free( ecp );
mbedtls_free( ecp );
}
return( status );
}
#endif /* defined(MBEDTLS_ECP_C) */
/** Import key data into a slot. `slot->type` must have been set
* previously. This function assumes that the slot does not contain
* any key material yet. On failure, the slot content is unchanged. */
psa_status_t psa_import_key_into_slot( psa_key_slot_t *slot,
const uint8_t *data,
size_t data_length )
{
psa_status_t status = PSA_SUCCESS;
if( key_type_is_raw_bytes( slot->type ) )
{
/* Ensure that a bytes-to-bit conversion won't overflow. */
if( data_length > SIZE_MAX / 8 )
return( PSA_ERROR_NOT_SUPPORTED );
status = prepare_raw_data_slot( slot->type,
PSA_BYTES_TO_BITS( data_length ),
&slot->data.raw );
if( status != PSA_SUCCESS )
return( status );
if( data_length != 0 )
memcpy( slot->data.raw.data, data, data_length );
}
else
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_KEYPAIR( slot->type ) )
{
status = psa_import_ec_private_key( PSA_KEY_TYPE_GET_CURVE( slot->type ),
data, data_length,
&slot->data.ecp );
}
else if( PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY( slot->type ) )
{
status = psa_import_ec_public_key(
PSA_KEY_TYPE_GET_CURVE( slot->type ),
data, data_length,
&slot->data.ecp );
}
else
#endif /* MBEDTLS_ECP_C */
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
if( PSA_KEY_TYPE_IS_RSA( slot->type ) )
{
status = psa_import_rsa_key( slot->type,
data, data_length,
&slot->data.rsa );
}
else
#endif /* defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C) */
{
return( PSA_ERROR_NOT_SUPPORTED );
}
return( status );
}
/* Retrieve an empty key slot (slot with no key data, but possibly
* with some metadata such as a policy). */
static psa_status_t psa_get_empty_key_slot( psa_key_handle_t handle,
psa_key_slot_t **p_slot )
{
psa_status_t status;
psa_key_slot_t *slot = NULL;
*p_slot = NULL;
status = psa_get_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
if( slot->type != PSA_KEY_TYPE_NONE )
return( PSA_ERROR_ALREADY_EXISTS );
*p_slot = slot;
return( status );
}
/** Calculate the intersection of two algorithm usage policies.
*
* Return 0 (which allows no operation) on incompatibility.
*/
static psa_algorithm_t psa_key_policy_algorithm_intersection(
psa_algorithm_t alg1,
psa_algorithm_t alg2 )
{
/* Common case: both sides actually specify the same policy. */
if( alg1 == alg2 )
return( alg1 );
/* If the policies are from the same hash-and-sign family, check
* if one is a wildcard. If so the other has the specific algorithm. */
if( PSA_ALG_IS_HASH_AND_SIGN( alg1 ) &&
PSA_ALG_IS_HASH_AND_SIGN( alg2 ) &&
( alg1 & ~PSA_ALG_HASH_MASK ) == ( alg2 & ~PSA_ALG_HASH_MASK ) )
{
if( PSA_ALG_SIGN_GET_HASH( alg1 ) == PSA_ALG_ANY_HASH )
return( alg2 );
if( PSA_ALG_SIGN_GET_HASH( alg2 ) == PSA_ALG_ANY_HASH )
return( alg1 );
}
/* If the policies are incompatible, allow nothing. */
return( 0 );
}
static int psa_key_algorithm_permits( psa_algorithm_t policy_alg,
psa_algorithm_t requested_alg )
{
/* Common case: the policy only allows requested_alg. */
if( requested_alg == policy_alg )
return( 1 );
/* If policy_alg is a hash-and-sign with a wildcard for the hash,
* and requested_alg is the same hash-and-sign family with any hash,
* then requested_alg is compliant with policy_alg. */
if( PSA_ALG_IS_HASH_AND_SIGN( requested_alg ) &&
PSA_ALG_SIGN_GET_HASH( policy_alg ) == PSA_ALG_ANY_HASH )
{
return( ( policy_alg & ~PSA_ALG_HASH_MASK ) ==
( requested_alg & ~PSA_ALG_HASH_MASK ) );
}
/* If it isn't permitted, it's forbidden. */
return( 0 );
}
/** Test whether a policy permits an algorithm.
*
* The caller must test usage flags separately.
*/
static int psa_key_policy_permits( const psa_key_policy_t *policy,
psa_algorithm_t alg )
{
return( psa_key_algorithm_permits( policy->alg, alg ) ||
psa_key_algorithm_permits( policy->alg2, alg ) );
}
/** Restrict a key policy based on a constraint.
*
* \param[in,out] policy The policy to restrict.
* \param[in] constraint The policy constraint to apply.
*
* \retval #PSA_SUCCESS
* \c *policy contains the intersection of the original value of
* \c *policy and \c *constraint.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \c *policy and \c *constraint are incompatible.
* \c *policy is unchanged.
*/
static psa_status_t psa_restrict_key_policy(
psa_key_policy_t *policy,
const psa_key_policy_t *constraint )
{
psa_algorithm_t intersection_alg =
psa_key_policy_algorithm_intersection( policy->alg, constraint->alg );
psa_algorithm_t intersection_alg2 =
psa_key_policy_algorithm_intersection( policy->alg2, constraint->alg2 );
if( intersection_alg == 0 && policy->alg != 0 && constraint->alg != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
if( intersection_alg2 == 0 && policy->alg2 != 0 && constraint->alg2 != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
policy->usage &= constraint->usage;
policy->alg = intersection_alg;
policy->alg2 = intersection_alg2;
return( PSA_SUCCESS );
}
/** Retrieve a slot which must contain a key. The key must have allow all the
* usage flags set in \p usage. If \p alg is nonzero, the key must allow
* operations with this algorithm. */
static psa_status_t psa_get_key_from_slot( psa_key_handle_t handle,
psa_key_slot_t **p_slot,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_status_t status;
psa_key_slot_t *slot = NULL;
*p_slot = NULL;
status = psa_get_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
if( slot->type == PSA_KEY_TYPE_NONE )
return( PSA_ERROR_DOES_NOT_EXIST );
/* Enforce that usage policy for the key slot contains all the flags
* required by the usage parameter. There is one exception: public
* keys can always be exported, so we treat public key objects as
* if they had the export flag. */
if( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->type ) )
usage &= ~PSA_KEY_USAGE_EXPORT;
if( ( slot->policy.usage & usage ) != usage )
return( PSA_ERROR_NOT_PERMITTED );
/* Enforce that the usage policy permits the requested algortihm. */
if( alg != 0 && ! psa_key_policy_permits( &slot->policy, alg ) )
return( PSA_ERROR_NOT_PERMITTED );
*p_slot = slot;
return( PSA_SUCCESS );
}
/** Wipe key data from a slot. Preserve metadata such as the policy. */
static psa_status_t psa_remove_key_data_from_memory( psa_key_slot_t *slot )
{
if( slot->type == PSA_KEY_TYPE_NONE )
{
/* No key material to clean. */
}
else if( key_type_is_raw_bytes( slot->type ) )
{
mbedtls_free( slot->data.raw.data );
}
else
#if defined(MBEDTLS_RSA_C)
if( PSA_KEY_TYPE_IS_RSA( slot->type ) )
{
mbedtls_rsa_free( slot->data.rsa );
mbedtls_free( slot->data.rsa );
}
else
#endif /* defined(MBEDTLS_RSA_C) */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( slot->type ) )
{
mbedtls_ecp_keypair_free( slot->data.ecp );
mbedtls_free( slot->data.ecp );
}
else
#endif /* defined(MBEDTLS_ECP_C) */
{
/* Shouldn't happen: the key type is not any type that we
* put in. */
return( PSA_ERROR_TAMPERING_DETECTED );
}
return( PSA_SUCCESS );
}
/** Completely wipe a slot in memory, including its policy.
* Persistent storage is not affected. */
psa_status_t psa_wipe_key_slot( psa_key_slot_t *slot )
{
psa_status_t status = psa_remove_key_data_from_memory( slot );
/* At this point, key material and other type-specific content has
* been wiped. Clear remaining metadata. We can call memset and not
* zeroize because the metadata is not particularly sensitive. */
memset( slot, 0, sizeof( *slot ) );
return( status );
}
psa_status_t psa_import_key( psa_key_handle_t handle,
psa_key_type_t type,
const uint8_t *data,
size_t data_length )
{
psa_key_slot_t *slot;
psa_status_t status;
status = psa_get_empty_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
slot->type = type;
status = psa_import_key_into_slot( slot, data, data_length );
if( status != PSA_SUCCESS )
{
slot->type = PSA_KEY_TYPE_NONE;
return( status );
}
#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
if( slot->lifetime == PSA_KEY_LIFETIME_PERSISTENT )
{
/* Store in file location */
status = psa_save_persistent_key( slot->persistent_storage_id,
slot->type, &slot->policy, data,
data_length );
if( status != PSA_SUCCESS )
{
(void) psa_remove_key_data_from_memory( slot );
slot->type = PSA_KEY_TYPE_NONE;
}
}
#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
return( status );
}
psa_status_t psa_destroy_key( psa_key_handle_t handle )
{
psa_key_slot_t *slot;
psa_status_t status = PSA_SUCCESS;
psa_status_t storage_status = PSA_SUCCESS;
status = psa_get_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
if( slot->lifetime == PSA_KEY_LIFETIME_PERSISTENT )
{
storage_status =
psa_destroy_persistent_key( slot->persistent_storage_id );
}
#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
status = psa_wipe_key_slot( slot );
if( status != PSA_SUCCESS )
return( status );
return( storage_status );
}
/* Return the size of the key in the given slot, in bits. */
static size_t psa_get_key_bits( const psa_key_slot_t *slot )
{
if( key_type_is_raw_bytes( slot->type ) )
return( slot->data.raw.bytes * 8 );
#if defined(MBEDTLS_RSA_C)
if( PSA_KEY_TYPE_IS_RSA( slot->type ) )
return( PSA_BYTES_TO_BITS( mbedtls_rsa_get_len( slot->data.rsa ) ) );
#endif /* defined(MBEDTLS_RSA_C) */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( slot->type ) )
return( slot->data.ecp->grp.pbits );
#endif /* defined(MBEDTLS_ECP_C) */
/* Shouldn't happen except on an empty slot. */
return( 0 );
}
psa_status_t psa_get_key_information( psa_key_handle_t handle,
psa_key_type_t *type,
size_t *bits )
{
psa_key_slot_t *slot;
psa_status_t status;
if( type != NULL )
*type = 0;
if( bits != NULL )
*bits = 0;
status = psa_get_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
if( slot->type == PSA_KEY_TYPE_NONE )
return( PSA_ERROR_DOES_NOT_EXIST );
if( type != NULL )
*type = slot->type;
if( bits != NULL )
*bits = psa_get_key_bits( slot );
return( PSA_SUCCESS );
}
#if defined(MBEDTLS_RSA_C) || defined(MBEDTLS_ECP_C)
static int pk_write_pubkey_simple( mbedtls_pk_context *key,
unsigned char *buf, size_t size )
{
int ret;
unsigned char *c;
size_t len = 0;
c = buf + size;
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_pk_write_pubkey( &c, buf, key ) );
return( (int) len );
}
#endif /* defined(MBEDTLS_RSA_C) || defined(MBEDTLS_ECP_C) */
static psa_status_t psa_internal_export_key( const psa_key_slot_t *slot,
uint8_t *data,
size_t data_size,
size_t *data_length,
int export_public_key )
{
*data_length = 0;
if( export_public_key && ! PSA_KEY_TYPE_IS_ASYMMETRIC( slot->type ) )
return( PSA_ERROR_INVALID_ARGUMENT );
if( key_type_is_raw_bytes( slot->type ) )
{
if( slot->data.raw.bytes > data_size )
return( PSA_ERROR_BUFFER_TOO_SMALL );
if( data_size != 0 )
{
memcpy( data, slot->data.raw.data, slot->data.raw.bytes );
memset( data + slot->data.raw.bytes, 0,
data_size - slot->data.raw.bytes );
}
*data_length = slot->data.raw.bytes;
return( PSA_SUCCESS );
}
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_KEYPAIR( slot->type ) && !export_public_key )
{
psa_status_t status;
size_t bytes = PSA_BITS_TO_BYTES( psa_get_key_bits( slot ) );
if( bytes > data_size )
return( PSA_ERROR_BUFFER_TOO_SMALL );
status = mbedtls_to_psa_error(
mbedtls_mpi_write_binary( &slot->data.ecp->d, data, bytes ) );
if( status != PSA_SUCCESS )
return( status );
memset( data + bytes, 0, data_size - bytes );
*data_length = bytes;
return( PSA_SUCCESS );
}
#endif
else
{
#if defined(MBEDTLS_PK_WRITE_C)
if( PSA_KEY_TYPE_IS_RSA( slot->type ) ||
PSA_KEY_TYPE_IS_ECC( slot->type ) )
{
mbedtls_pk_context pk;
int ret;
if( PSA_KEY_TYPE_IS_RSA( slot->type ) )
{
#if defined(MBEDTLS_RSA_C)
mbedtls_pk_init( &pk );
pk.pk_info = &mbedtls_rsa_info;
pk.pk_ctx = slot->data.rsa;
#else
return( PSA_ERROR_NOT_SUPPORTED );
#endif
}
else
{
#if defined(MBEDTLS_ECP_C)
mbedtls_pk_init( &pk );
pk.pk_info = &mbedtls_eckey_info;
pk.pk_ctx = slot->data.ecp;
#else
return( PSA_ERROR_NOT_SUPPORTED );
#endif
}
if( export_public_key || PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->type ) )
{
ret = pk_write_pubkey_simple( &pk, data, data_size );
}
else
{
ret = mbedtls_pk_write_key_der( &pk, data, data_size );
}
if( ret < 0 )
{
/* If data_size is 0 then data may be NULL and then the
* call to memset would have undefined behavior. */
if( data_size != 0 )
memset( data, 0, data_size );
return( mbedtls_to_psa_error( ret ) );
}
/* The mbedtls_pk_xxx functions write to the end of the buffer.
* Move the data to the beginning and erase remaining data
* at the original location. */
if( 2 * (size_t) ret <= data_size )
{
memcpy( data, data + data_size - ret, ret );
memset( data + data_size - ret, 0, ret );
}
else if( (size_t) ret < data_size )
{
memmove( data, data + data_size - ret, ret );
memset( data + ret, 0, data_size - ret );
}
*data_length = ret;
return( PSA_SUCCESS );
}
else
#endif /* defined(MBEDTLS_PK_WRITE_C) */
{
/* This shouldn't happen in the reference implementation, but
it is valid for a special-purpose implementation to omit
support for exporting certain key types. */
return( PSA_ERROR_NOT_SUPPORTED );
}
}
}
psa_status_t psa_export_key( psa_key_handle_t handle,
uint8_t *data,
size_t data_size,
size_t *data_length )
{
psa_key_slot_t *slot;
psa_status_t status;
/* Set the key to empty now, so that even when there are errors, we always
* set data_length to a value between 0 and data_size. On error, setting
* the key to empty is a good choice because an empty key representation is
* unlikely to be accepted anywhere. */
*data_length = 0;
/* Export requires the EXPORT flag. There is an exception for public keys,
* which don't require any flag, but psa_get_key_from_slot takes
* care of this. */
status = psa_get_key_from_slot( handle, &slot, PSA_KEY_USAGE_EXPORT, 0 );
if( status != PSA_SUCCESS )
return( status );
return( psa_internal_export_key( slot, data, data_size,
data_length, 0 ) );
}
psa_status_t psa_export_public_key( psa_key_handle_t handle,
uint8_t *data,
size_t data_size,
size_t *data_length )
{
psa_key_slot_t *slot;
psa_status_t status;
/* Set the key to empty now, so that even when there are errors, we always
* set data_length to a value between 0 and data_size. On error, setting
* the key to empty is a good choice because an empty key representation is
* unlikely to be accepted anywhere. */
*data_length = 0;
/* Exporting a public key doesn't require a usage flag. */
status = psa_get_key_from_slot( handle, &slot, 0, 0 );
if( status != PSA_SUCCESS )
return( status );
return( psa_internal_export_key( slot, data, data_size,
data_length, 1 ) );
}
#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
static psa_status_t psa_save_generated_persistent_key( psa_key_slot_t *slot,
size_t bits )
{
psa_status_t status;
uint8_t *data;
size_t key_length;
size_t data_size = PSA_KEY_EXPORT_MAX_SIZE( slot->type, bits );
data = mbedtls_calloc( 1, data_size );
if( data == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
/* Get key data in export format */
status = psa_internal_export_key( slot, data, data_size, &key_length, 0 );
if( status != PSA_SUCCESS )
{
slot->type = PSA_KEY_TYPE_NONE;
goto exit;
}
/* Store in file location */
status = psa_save_persistent_key( slot->persistent_storage_id,
slot->type, &slot->policy,
data, key_length );
if( status != PSA_SUCCESS )
{
slot->type = PSA_KEY_TYPE_NONE;
}
exit:
mbedtls_platform_zeroize( data, key_length );
mbedtls_free( data );
return( status );
}
#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
static psa_status_t psa_copy_key_material( const psa_key_slot_t *source,
psa_key_handle_t target )
{
psa_status_t status;
uint8_t *buffer = NULL;
size_t buffer_size = 0;
size_t length;
buffer_size = PSA_KEY_EXPORT_MAX_SIZE( source->type,
psa_get_key_bits( source ) );
buffer = mbedtls_calloc( 1, buffer_size );
if( buffer == NULL && buffer_size != 0 )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
status = psa_internal_export_key( source, buffer, buffer_size, &length, 0 );
if( status != PSA_SUCCESS )
goto exit;
status = psa_import_key( target, source->type, buffer, length );
exit:
if( buffer_size != 0 )
mbedtls_platform_zeroize( buffer, buffer_size );
mbedtls_free( buffer );
return( status );
}
psa_status_t psa_copy_key(psa_key_handle_t source_handle,
psa_key_handle_t target_handle,
const psa_key_policy_t *constraint)
{
psa_key_slot_t *source_slot = NULL;
psa_key_slot_t *target_slot = NULL;
psa_key_policy_t new_policy;
psa_status_t status;
status = psa_get_key_from_slot( source_handle, &source_slot, 0, 0 );
if( status != PSA_SUCCESS )
return( status );
status = psa_get_empty_key_slot( target_handle, &target_slot );
if( status != PSA_SUCCESS )
return( status );
new_policy = target_slot->policy;
status = psa_restrict_key_policy( &new_policy, &source_slot->policy );
if( status != PSA_SUCCESS )
return( status );
if( constraint != NULL )
{
status = psa_restrict_key_policy( &new_policy, constraint );
if( status != PSA_SUCCESS )
return( status );
}
status = psa_copy_key_material( source_slot, target_handle );
if( status != PSA_SUCCESS )
return( status );
target_slot->policy = new_policy;
return( PSA_SUCCESS );
}
/****************************************************************/
/* Message digests */
/****************************************************************/
static const mbedtls_md_info_t *mbedtls_md_info_from_psa( psa_algorithm_t alg )
{
switch( alg )
{
#if defined(MBEDTLS_MD2_C)
case PSA_ALG_MD2:
return( &mbedtls_md2_info );
#endif
#if defined(MBEDTLS_MD4_C)
case PSA_ALG_MD4:
return( &mbedtls_md4_info );
#endif
#if defined(MBEDTLS_MD5_C)
case PSA_ALG_MD5:
return( &mbedtls_md5_info );
#endif
#if defined(MBEDTLS_RIPEMD160_C)
case PSA_ALG_RIPEMD160:
return( &mbedtls_ripemd160_info );
#endif
#if defined(MBEDTLS_SHA1_C)
case PSA_ALG_SHA_1:
return( &mbedtls_sha1_info );
#endif
#if defined(MBEDTLS_SHA256_C)
case PSA_ALG_SHA_224:
return( &mbedtls_sha224_info );
case PSA_ALG_SHA_256:
return( &mbedtls_sha256_info );
#endif
#if defined(MBEDTLS_SHA512_C)
case PSA_ALG_SHA_384:
return( &mbedtls_sha384_info );
case PSA_ALG_SHA_512:
return( &mbedtls_sha512_info );
#endif
default:
return( NULL );
}
}
psa_status_t psa_hash_abort( psa_hash_operation_t *operation )
{
switch( operation->alg )
{
case 0:
/* The object has (apparently) been initialized but it is not
* in use. It's ok to call abort on such an object, and there's
* nothing to do. */
break;
#if defined(MBEDTLS_MD2_C)
case PSA_ALG_MD2:
mbedtls_md2_free( &operation->ctx.md2 );
break;
#endif
#if defined(MBEDTLS_MD4_C)
case PSA_ALG_MD4:
mbedtls_md4_free( &operation->ctx.md4 );
break;
#endif
#if defined(MBEDTLS_MD5_C)
case PSA_ALG_MD5:
mbedtls_md5_free( &operation->ctx.md5 );
break;
#endif
#if defined(MBEDTLS_RIPEMD160_C)
case PSA_ALG_RIPEMD160:
mbedtls_ripemd160_free( &operation->ctx.ripemd160 );
break;
#endif
#if defined(MBEDTLS_SHA1_C)
case PSA_ALG_SHA_1:
mbedtls_sha1_free( &operation->ctx.sha1 );
break;
#endif
#if defined(MBEDTLS_SHA256_C)
case PSA_ALG_SHA_224:
case PSA_ALG_SHA_256:
mbedtls_sha256_free( &operation->ctx.sha256 );
break;
#endif
#if defined(MBEDTLS_SHA512_C)
case PSA_ALG_SHA_384:
case PSA_ALG_SHA_512:
mbedtls_sha512_free( &operation->ctx.sha512 );
break;
#endif
default:
return( PSA_ERROR_BAD_STATE );
}
operation->alg = 0;
return( PSA_SUCCESS );
}
psa_status_t psa_hash_setup( psa_hash_operation_t *operation,
psa_algorithm_t alg )
{
int ret;
/* A context must be freshly initialized before it can be set up. */
if( operation->alg != 0 )
{
return( PSA_ERROR_BAD_STATE );
}
switch( alg )
{
#if defined(MBEDTLS_MD2_C)
case PSA_ALG_MD2:
mbedtls_md2_init( &operation->ctx.md2 );
ret = mbedtls_md2_starts_ret( &operation->ctx.md2 );
break;
#endif
#if defined(MBEDTLS_MD4_C)
case PSA_ALG_MD4:
mbedtls_md4_init( &operation->ctx.md4 );
ret = mbedtls_md4_starts_ret( &operation->ctx.md4 );
break;
#endif
#if defined(MBEDTLS_MD5_C)
case PSA_ALG_MD5:
mbedtls_md5_init( &operation->ctx.md5 );
ret = mbedtls_md5_starts_ret( &operation->ctx.md5 );
break;
#endif
#if defined(MBEDTLS_RIPEMD160_C)
case PSA_ALG_RIPEMD160:
mbedtls_ripemd160_init( &operation->ctx.ripemd160 );
ret = mbedtls_ripemd160_starts_ret( &operation->ctx.ripemd160 );
break;
#endif
#if defined(MBEDTLS_SHA1_C)
case PSA_ALG_SHA_1:
mbedtls_sha1_init( &operation->ctx.sha1 );
ret = mbedtls_sha1_starts_ret( &operation->ctx.sha1 );
break;
#endif
#if defined(MBEDTLS_SHA256_C)
case PSA_ALG_SHA_224:
mbedtls_sha256_init( &operation->ctx.sha256 );
ret = mbedtls_sha256_starts_ret( &operation->ctx.sha256, 1 );
break;
case PSA_ALG_SHA_256:
mbedtls_sha256_init( &operation->ctx.sha256 );
ret = mbedtls_sha256_starts_ret( &operation->ctx.sha256, 0 );
break;
#endif
#if defined(MBEDTLS_SHA512_C)
case PSA_ALG_SHA_384:
mbedtls_sha512_init( &operation->ctx.sha512 );
ret = mbedtls_sha512_starts_ret( &operation->ctx.sha512, 1 );
break;
case PSA_ALG_SHA_512:
mbedtls_sha512_init( &operation->ctx.sha512 );
ret = mbedtls_sha512_starts_ret( &operation->ctx.sha512, 0 );
break;
#endif
default:
return( PSA_ALG_IS_HASH( alg ) ?
PSA_ERROR_NOT_SUPPORTED :
PSA_ERROR_INVALID_ARGUMENT );
}
if( ret == 0 )
operation->alg = alg;
else
psa_hash_abort( operation );
return( mbedtls_to_psa_error( ret ) );
}
psa_status_t psa_hash_update( psa_hash_operation_t *operation,
const uint8_t *input,
size_t input_length )
{
int ret;
/* Don't require hash implementations to behave correctly on a
* zero-length input, which may have an invalid pointer. */
if( input_length == 0 )
return( PSA_SUCCESS );
switch( operation->alg )
{
#if defined(MBEDTLS_MD2_C)
case PSA_ALG_MD2:
ret = mbedtls_md2_update_ret( &operation->ctx.md2,
input, input_length );
break;
#endif
#if defined(MBEDTLS_MD4_C)
case PSA_ALG_MD4:
ret = mbedtls_md4_update_ret( &operation->ctx.md4,
input, input_length );
break;
#endif
#if defined(MBEDTLS_MD5_C)
case PSA_ALG_MD5:
ret = mbedtls_md5_update_ret( &operation->ctx.md5,
input, input_length );
break;
#endif
#if defined(MBEDTLS_RIPEMD160_C)
case PSA_ALG_RIPEMD160:
ret = mbedtls_ripemd160_update_ret( &operation->ctx.ripemd160,
input, input_length );
break;
#endif
#if defined(MBEDTLS_SHA1_C)
case PSA_ALG_SHA_1:
ret = mbedtls_sha1_update_ret( &operation->ctx.sha1,
input, input_length );
break;
#endif
#if defined(MBEDTLS_SHA256_C)
case PSA_ALG_SHA_224:
case PSA_ALG_SHA_256:
ret = mbedtls_sha256_update_ret( &operation->ctx.sha256,
input, input_length );
break;
#endif
#if defined(MBEDTLS_SHA512_C)
case PSA_ALG_SHA_384:
case PSA_ALG_SHA_512:
ret = mbedtls_sha512_update_ret( &operation->ctx.sha512,
input, input_length );
break;
#endif
default:
return( PSA_ERROR_BAD_STATE );
}
if( ret != 0 )
psa_hash_abort( operation );
return( mbedtls_to_psa_error( ret ) );
}
psa_status_t psa_hash_finish( psa_hash_operation_t *operation,
uint8_t *hash,
size_t hash_size,
size_t *hash_length )
{
psa_status_t status;
int ret;
size_t actual_hash_length = PSA_HASH_SIZE( operation->alg );
/* Fill the output buffer with something that isn't a valid hash
* (barring an attack on the hash and deliberately-crafted input),
* in case the caller doesn't check the return status properly. */
*hash_length = hash_size;
/* If hash_size is 0 then hash may be NULL and then the
* call to memset would have undefined behavior. */
if( hash_size != 0 )
memset( hash, '!', hash_size );
if( hash_size < actual_hash_length )
{
status = PSA_ERROR_BUFFER_TOO_SMALL;
goto exit;
}
switch( operation->alg )
{
#if defined(MBEDTLS_MD2_C)
case PSA_ALG_MD2:
ret = mbedtls_md2_finish_ret( &operation->ctx.md2, hash );
break;
#endif
#if defined(MBEDTLS_MD4_C)
case PSA_ALG_MD4:
ret = mbedtls_md4_finish_ret( &operation->ctx.md4, hash );
break;
#endif
#if defined(MBEDTLS_MD5_C)
case PSA_ALG_MD5:
ret = mbedtls_md5_finish_ret( &operation->ctx.md5, hash );
break;
#endif
#if defined(MBEDTLS_RIPEMD160_C)
case PSA_ALG_RIPEMD160:
ret = mbedtls_ripemd160_finish_ret( &operation->ctx.ripemd160, hash );
break;
#endif
#if defined(MBEDTLS_SHA1_C)
case PSA_ALG_SHA_1:
ret = mbedtls_sha1_finish_ret( &operation->ctx.sha1, hash );
break;
#endif
#if defined(MBEDTLS_SHA256_C)
case PSA_ALG_SHA_224:
case PSA_ALG_SHA_256:
ret = mbedtls_sha256_finish_ret( &operation->ctx.sha256, hash );
break;
#endif
#if defined(MBEDTLS_SHA512_C)
case PSA_ALG_SHA_384:
case PSA_ALG_SHA_512:
ret = mbedtls_sha512_finish_ret( &operation->ctx.sha512, hash );
break;
#endif
default:
return( PSA_ERROR_BAD_STATE );
}
status = mbedtls_to_psa_error( ret );
exit:
if( status == PSA_SUCCESS )
{
*hash_length = actual_hash_length;
return( psa_hash_abort( operation ) );
}
else
{
psa_hash_abort( operation );
return( status );
}
}
psa_status_t psa_hash_verify( psa_hash_operation_t *operation,
const uint8_t *hash,
size_t hash_length )
{
uint8_t actual_hash[MBEDTLS_MD_MAX_SIZE];
size_t actual_hash_length;
psa_status_t status = psa_hash_finish( operation,
actual_hash, sizeof( actual_hash ),
&actual_hash_length );
if( status != PSA_SUCCESS )
return( status );
if( actual_hash_length != hash_length )
return( PSA_ERROR_INVALID_SIGNATURE );
if( safer_memcmp( hash, actual_hash, actual_hash_length ) != 0 )
return( PSA_ERROR_INVALID_SIGNATURE );
return( PSA_SUCCESS );
}
psa_status_t psa_hash_clone( const psa_hash_operation_t *source_operation,
psa_hash_operation_t *target_operation )
{
if( target_operation->alg != 0 )
return( PSA_ERROR_BAD_STATE );
switch( source_operation->alg )
{
case 0:
return( PSA_ERROR_BAD_STATE );
#if defined(MBEDTLS_MD2_C)
case PSA_ALG_MD2:
mbedtls_md2_clone( &target_operation->ctx.md2,
&source_operation->ctx.md2 );
break;
#endif
#if defined(MBEDTLS_MD4_C)
case PSA_ALG_MD4:
mbedtls_md4_clone( &target_operation->ctx.md4,
&source_operation->ctx.md4 );
break;
#endif
#if defined(MBEDTLS_MD5_C)
case PSA_ALG_MD5:
mbedtls_md5_clone( &target_operation->ctx.md5,
&source_operation->ctx.md5 );
break;
#endif
#if defined(MBEDTLS_RIPEMD160_C)
case PSA_ALG_RIPEMD160:
mbedtls_ripemd160_clone( &target_operation->ctx.ripemd160,
&source_operation->ctx.ripemd160 );
break;
#endif
#if defined(MBEDTLS_SHA1_C)
case PSA_ALG_SHA_1:
mbedtls_sha1_clone( &target_operation->ctx.sha1,
&source_operation->ctx.sha1 );
break;
#endif
#if defined(MBEDTLS_SHA256_C)
case PSA_ALG_SHA_224:
case PSA_ALG_SHA_256:
mbedtls_sha256_clone( &target_operation->ctx.sha256,
&source_operation->ctx.sha256 );
break;
#endif
#if defined(MBEDTLS_SHA512_C)
case PSA_ALG_SHA_384:
case PSA_ALG_SHA_512:
mbedtls_sha512_clone( &target_operation->ctx.sha512,
&source_operation->ctx.sha512 );
break;
#endif
default:
return( PSA_ERROR_NOT_SUPPORTED );
}
target_operation->alg = source_operation->alg;
return( PSA_SUCCESS );
}
/****************************************************************/
/* MAC */
/****************************************************************/
static const mbedtls_cipher_info_t *mbedtls_cipher_info_from_psa(
psa_algorithm_t alg,
psa_key_type_t key_type,
size_t key_bits,
mbedtls_cipher_id_t* cipher_id )
{
mbedtls_cipher_mode_t mode;
mbedtls_cipher_id_t cipher_id_tmp;
if( PSA_ALG_IS_AEAD( alg ) )
alg = PSA_ALG_AEAD_WITH_TAG_LENGTH( alg, 0 );
if( PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) )
{
switch( alg )
{
case PSA_ALG_ARC4:
mode = MBEDTLS_MODE_STREAM;
break;
case PSA_ALG_CTR:
mode = MBEDTLS_MODE_CTR;
break;
case PSA_ALG_CFB:
mode = MBEDTLS_MODE_CFB;
break;
case PSA_ALG_OFB:
mode = MBEDTLS_MODE_OFB;
break;
case PSA_ALG_CBC_NO_PADDING:
mode = MBEDTLS_MODE_CBC;
break;
case PSA_ALG_CBC_PKCS7:
mode = MBEDTLS_MODE_CBC;
break;
case PSA_ALG_AEAD_WITH_TAG_LENGTH( PSA_ALG_CCM, 0 ):
mode = MBEDTLS_MODE_CCM;
break;
case PSA_ALG_AEAD_WITH_TAG_LENGTH( PSA_ALG_GCM, 0 ):
mode = MBEDTLS_MODE_GCM;
break;
default:
return( NULL );
}
}
else if( alg == PSA_ALG_CMAC )
mode = MBEDTLS_MODE_ECB;
else if( alg == PSA_ALG_GMAC )
mode = MBEDTLS_MODE_GCM;
else
return( NULL );
switch( key_type )
{
case PSA_KEY_TYPE_AES:
cipher_id_tmp = MBEDTLS_CIPHER_ID_AES;
break;
case PSA_KEY_TYPE_DES:
/* key_bits is 64 for Single-DES, 128 for two-key Triple-DES,
* and 192 for three-key Triple-DES. */
if( key_bits == 64 )
cipher_id_tmp = MBEDTLS_CIPHER_ID_DES;
else
cipher_id_tmp = MBEDTLS_CIPHER_ID_3DES;
/* mbedtls doesn't recognize two-key Triple-DES as an algorithm,
* but two-key Triple-DES is functionally three-key Triple-DES
* with K1=K3, so that's how we present it to mbedtls. */
if( key_bits == 128 )
key_bits = 192;
break;
case PSA_KEY_TYPE_CAMELLIA:
cipher_id_tmp = MBEDTLS_CIPHER_ID_CAMELLIA;
break;
case PSA_KEY_TYPE_ARC4:
cipher_id_tmp = MBEDTLS_CIPHER_ID_ARC4;
break;
default:
return( NULL );
}
if( cipher_id != NULL )
*cipher_id = cipher_id_tmp;
return( mbedtls_cipher_info_from_values( cipher_id_tmp,
(int) key_bits, mode ) );
}
#if defined(MBEDTLS_MD_C)
static size_t psa_get_hash_block_size( psa_algorithm_t alg )
{
switch( alg )
{
case PSA_ALG_MD2:
return( 16 );
case PSA_ALG_MD4:
return( 64 );
case PSA_ALG_MD5:
return( 64 );
case PSA_ALG_RIPEMD160:
return( 64 );
case PSA_ALG_SHA_1:
return( 64 );
case PSA_ALG_SHA_224:
return( 64 );
case PSA_ALG_SHA_256:
return( 64 );
case PSA_ALG_SHA_384:
return( 128 );
case PSA_ALG_SHA_512:
return( 128 );
default:
return( 0 );
}
}
#endif /* MBEDTLS_MD_C */
/* Initialize the MAC operation structure. Once this function has been
* called, psa_mac_abort can run and will do the right thing. */
static psa_status_t psa_mac_init( psa_mac_operation_t *operation,
psa_algorithm_t alg )
{
psa_status_t status = PSA_ERROR_NOT_SUPPORTED;
operation->alg = alg;
operation->key_set = 0;
operation->iv_set = 0;
operation->iv_required = 0;
operation->has_input = 0;
operation->is_sign = 0;
#if defined(MBEDTLS_CMAC_C)
if( alg == PSA_ALG_CMAC )
{
operation->iv_required = 0;
mbedtls_cipher_init( &operation->ctx.cmac );
status = PSA_SUCCESS;
}
else
#endif /* MBEDTLS_CMAC_C */
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HMAC( operation->alg ) )
{
/* We'll set up the hash operation later in psa_hmac_setup_internal. */
operation->ctx.hmac.hash_ctx.alg = 0;
status = PSA_SUCCESS;
}
else
#endif /* MBEDTLS_MD_C */
{
if( ! PSA_ALG_IS_MAC( alg ) )
status = PSA_ERROR_INVALID_ARGUMENT;
}
if( status != PSA_SUCCESS )
memset( operation, 0, sizeof( *operation ) );
return( status );
}
#if defined(MBEDTLS_MD_C)
static psa_status_t psa_hmac_abort_internal( psa_hmac_internal_data *hmac )
{
mbedtls_platform_zeroize( hmac->opad, sizeof( hmac->opad ) );
return( psa_hash_abort( &hmac->hash_ctx ) );
}
static void psa_hmac_init_internal( psa_hmac_internal_data *hmac )
{
/* Instances of psa_hash_operation_s can be initialized by zeroization. */
memset( hmac, 0, sizeof( *hmac ) );
}
#endif /* MBEDTLS_MD_C */
psa_status_t psa_mac_abort( psa_mac_operation_t *operation )
{
if( operation->alg == 0 )
{
/* The object has (apparently) been initialized but it is not
* in use. It's ok to call abort on such an object, and there's
* nothing to do. */
return( PSA_SUCCESS );
}
else
#if defined(MBEDTLS_CMAC_C)
if( operation->alg == PSA_ALG_CMAC )
{
mbedtls_cipher_free( &operation->ctx.cmac );
}
else
#endif /* MBEDTLS_CMAC_C */
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HMAC( operation->alg ) )
{
psa_hmac_abort_internal( &operation->ctx.hmac );
}
else
#endif /* MBEDTLS_MD_C */
{
/* Sanity check (shouldn't happen: operation->alg should
* always have been initialized to a valid value). */
goto bad_state;
}
operation->alg = 0;
operation->key_set = 0;
operation->iv_set = 0;
operation->iv_required = 0;
operation->has_input = 0;
operation->is_sign = 0;
return( PSA_SUCCESS );
bad_state:
/* If abort is called on an uninitialized object, we can't trust
* anything. Wipe the object in case it contains confidential data.
* This may result in a memory leak if a pointer gets overwritten,
* but it's too late to do anything about this. */
memset( operation, 0, sizeof( *operation ) );
return( PSA_ERROR_BAD_STATE );
}
#if defined(MBEDTLS_CMAC_C)
static int psa_cmac_setup( psa_mac_operation_t *operation,
size_t key_bits,
psa_key_slot_t *slot,
const mbedtls_cipher_info_t *cipher_info )
{
int ret;
operation->mac_size = cipher_info->block_size;
ret = mbedtls_cipher_setup( &operation->ctx.cmac, cipher_info );
if( ret != 0 )
return( ret );
ret = mbedtls_cipher_cmac_starts( &operation->ctx.cmac,
slot->data.raw.data,
key_bits );
return( ret );
}
#endif /* MBEDTLS_CMAC_C */
#if defined(MBEDTLS_MD_C)
static psa_status_t psa_hmac_setup_internal( psa_hmac_internal_data *hmac,
const uint8_t *key,
size_t key_length,
psa_algorithm_t hash_alg )
{
unsigned char ipad[PSA_HMAC_MAX_HASH_BLOCK_SIZE];
size_t i;
size_t hash_size = PSA_HASH_SIZE( hash_alg );
size_t block_size = psa_get_hash_block_size( hash_alg );
psa_status_t status;
/* Sanity checks on block_size, to guarantee that there won't be a buffer
* overflow below. This should never trigger if the hash algorithm
* is implemented correctly. */
/* The size checks against the ipad and opad buffers cannot be written
* `block_size > sizeof( ipad ) || block_size > sizeof( hmac->opad )`
* because that triggers -Wlogical-op on GCC 7.3. */
if( block_size > sizeof( ipad ) )
return( PSA_ERROR_NOT_SUPPORTED );
if( block_size > sizeof( hmac->opad ) )
return( PSA_ERROR_NOT_SUPPORTED );
if( block_size < hash_size )
return( PSA_ERROR_NOT_SUPPORTED );
if( key_length > block_size )
{
status = psa_hash_setup( &hmac->hash_ctx, hash_alg );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hash_update( &hmac->hash_ctx, key, key_length );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hash_finish( &hmac->hash_ctx,
ipad, sizeof( ipad ), &key_length );
if( status != PSA_SUCCESS )
goto cleanup;
}
/* A 0-length key is not commonly used in HMAC when used as a MAC,
* but it is permitted. It is common when HMAC is used in HKDF, for
* example. Don't call `memcpy` in the 0-length because `key` could be
* an invalid pointer which would make the behavior undefined. */
else if( key_length != 0 )
memcpy( ipad, key, key_length );
/* ipad contains the key followed by garbage. Xor and fill with 0x36
* to create the ipad value. */
for( i = 0; i < key_length; i++ )
ipad[i] ^= 0x36;
memset( ipad + key_length, 0x36, block_size - key_length );
/* Copy the key material from ipad to opad, flipping the requisite bits,
* and filling the rest of opad with the requisite constant. */
for( i = 0; i < key_length; i++ )
hmac->opad[i] = ipad[i] ^ 0x36 ^ 0x5C;
memset( hmac->opad + key_length, 0x5C, block_size - key_length );
status = psa_hash_setup( &hmac->hash_ctx, hash_alg );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hash_update( &hmac->hash_ctx, ipad, block_size );
cleanup:
mbedtls_platform_zeroize( ipad, key_length );
return( status );
}
#endif /* MBEDTLS_MD_C */
static psa_status_t psa_mac_setup( psa_mac_operation_t *operation,
psa_key_handle_t handle,
psa_algorithm_t alg,
int is_sign )
{
psa_status_t status;
psa_key_slot_t *slot;
size_t key_bits;
psa_key_usage_t usage =
is_sign ? PSA_KEY_USAGE_SIGN : PSA_KEY_USAGE_VERIFY;
unsigned char truncated = PSA_MAC_TRUNCATED_LENGTH( alg );
psa_algorithm_t full_length_alg = PSA_ALG_FULL_LENGTH_MAC( alg );
/* A context must be freshly initialized before it can be set up. */
if( operation->alg != 0 )
{
return( PSA_ERROR_BAD_STATE );
}
status = psa_mac_init( operation, full_length_alg );
if( status != PSA_SUCCESS )
return( status );
if( is_sign )
operation->is_sign = 1;
status = psa_get_key_from_slot( handle, &slot, usage, alg );
if( status != PSA_SUCCESS )
goto exit;
key_bits = psa_get_key_bits( slot );
#if defined(MBEDTLS_CMAC_C)
if( full_length_alg == PSA_ALG_CMAC )
{
const mbedtls_cipher_info_t *cipher_info =
mbedtls_cipher_info_from_psa( full_length_alg,
slot->type, key_bits, NULL );
int ret;
if( cipher_info == NULL )
{
status = PSA_ERROR_NOT_SUPPORTED;
goto exit;
}
operation->mac_size = cipher_info->block_size;
ret = psa_cmac_setup( operation, key_bits, slot, cipher_info );
status = mbedtls_to_psa_error( ret );
}
else
#endif /* MBEDTLS_CMAC_C */
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HMAC( full_length_alg ) )
{
psa_algorithm_t hash_alg = PSA_ALG_HMAC_GET_HASH( alg );
if( hash_alg == 0 )
{
status = PSA_ERROR_NOT_SUPPORTED;
goto exit;
}
operation->mac_size = PSA_HASH_SIZE( hash_alg );
/* Sanity check. This shouldn't fail on a valid configuration. */
if( operation->mac_size == 0 ||
operation->mac_size > sizeof( operation->ctx.hmac.opad ) )
{
status = PSA_ERROR_NOT_SUPPORTED;
goto exit;
}
if( slot->type != PSA_KEY_TYPE_HMAC )
{
status = PSA_ERROR_INVALID_ARGUMENT;
goto exit;
}
status = psa_hmac_setup_internal( &operation->ctx.hmac,
slot->data.raw.data,
slot->data.raw.bytes,
hash_alg );
}
else
#endif /* MBEDTLS_MD_C */
{
(void) key_bits;
status = PSA_ERROR_NOT_SUPPORTED;
}
if( truncated == 0 )
{
/* The "normal" case: untruncated algorithm. Nothing to do. */
}
else if( truncated < 4 )
{
/* A very short MAC is too short for security since it can be
* brute-forced. Ancient protocols with 32-bit MACs do exist,
* so we make this our minimum, even though 32 bits is still
* too small for security. */
status = PSA_ERROR_NOT_SUPPORTED;
}
else if( truncated > operation->mac_size )
{
/* It's impossible to "truncate" to a larger length. */
status = PSA_ERROR_INVALID_ARGUMENT;
}
else
operation->mac_size = truncated;
exit:
if( status != PSA_SUCCESS )
{
psa_mac_abort( operation );
}
else
{
operation->key_set = 1;
}
return( status );
}
psa_status_t psa_mac_sign_setup( psa_mac_operation_t *operation,
psa_key_handle_t handle,
psa_algorithm_t alg )
{
return( psa_mac_setup( operation, handle, alg, 1 ) );
}
psa_status_t psa_mac_verify_setup( psa_mac_operation_t *operation,
psa_key_handle_t handle,
psa_algorithm_t alg )
{
return( psa_mac_setup( operation, handle, alg, 0 ) );
}
psa_status_t psa_mac_update( psa_mac_operation_t *operation,
const uint8_t *input,
size_t input_length )
{
psa_status_t status = PSA_ERROR_BAD_STATE;
if( ! operation->key_set )
return( PSA_ERROR_BAD_STATE );
if( operation->iv_required && ! operation->iv_set )
return( PSA_ERROR_BAD_STATE );
operation->has_input = 1;
#if defined(MBEDTLS_CMAC_C)
if( operation->alg == PSA_ALG_CMAC )
{
int ret = mbedtls_cipher_cmac_update( &operation->ctx.cmac,
input, input_length );
status = mbedtls_to_psa_error( ret );
}
else
#endif /* MBEDTLS_CMAC_C */
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HMAC( operation->alg ) )
{
status = psa_hash_update( &operation->ctx.hmac.hash_ctx, input,
input_length );
}
else
#endif /* MBEDTLS_MD_C */
{
/* This shouldn't happen if `operation` was initialized by
* a setup function. */
return( PSA_ERROR_BAD_STATE );
}
if( status != PSA_SUCCESS )
psa_mac_abort( operation );
return( status );
}
#if defined(MBEDTLS_MD_C)
static psa_status_t psa_hmac_finish_internal( psa_hmac_internal_data *hmac,
uint8_t *mac,
size_t mac_size )
{
unsigned char tmp[MBEDTLS_MD_MAX_SIZE];
psa_algorithm_t hash_alg = hmac->hash_ctx.alg;
size_t hash_size = 0;
size_t block_size = psa_get_hash_block_size( hash_alg );
psa_status_t status;
status = psa_hash_finish( &hmac->hash_ctx, tmp, sizeof( tmp ), &hash_size );
if( status != PSA_SUCCESS )
return( status );
/* From here on, tmp needs to be wiped. */
status = psa_hash_setup( &hmac->hash_ctx, hash_alg );
if( status != PSA_SUCCESS )
goto exit;
status = psa_hash_update( &hmac->hash_ctx, hmac->opad, block_size );
if( status != PSA_SUCCESS )
goto exit;
status = psa_hash_update( &hmac->hash_ctx, tmp, hash_size );
if( status != PSA_SUCCESS )
goto exit;
status = psa_hash_finish( &hmac->hash_ctx, tmp, sizeof( tmp ), &hash_size );
if( status != PSA_SUCCESS )
goto exit;
memcpy( mac, tmp, mac_size );
exit:
mbedtls_platform_zeroize( tmp, hash_size );
return( status );
}
#endif /* MBEDTLS_MD_C */
static psa_status_t psa_mac_finish_internal( psa_mac_operation_t *operation,
uint8_t *mac,
size_t mac_size )
{
if( ! operation->key_set )
return( PSA_ERROR_BAD_STATE );
if( operation->iv_required && ! operation->iv_set )
return( PSA_ERROR_BAD_STATE );
if( mac_size < operation->mac_size )
return( PSA_ERROR_BUFFER_TOO_SMALL );
#if defined(MBEDTLS_CMAC_C)
if( operation->alg == PSA_ALG_CMAC )
{
uint8_t tmp[PSA_MAX_BLOCK_CIPHER_BLOCK_SIZE];
int ret = mbedtls_cipher_cmac_finish( &operation->ctx.cmac, tmp );
if( ret == 0 )
memcpy( mac, tmp, operation->mac_size );
mbedtls_platform_zeroize( tmp, sizeof( tmp ) );
return( mbedtls_to_psa_error( ret ) );
}
else
#endif /* MBEDTLS_CMAC_C */
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HMAC( operation->alg ) )
{
return( psa_hmac_finish_internal( &operation->ctx.hmac,
mac, operation->mac_size ) );
}
else
#endif /* MBEDTLS_MD_C */
{
/* This shouldn't happen if `operation` was initialized by
* a setup function. */
return( PSA_ERROR_BAD_STATE );
}
}
psa_status_t psa_mac_sign_finish( psa_mac_operation_t *operation,
uint8_t *mac,
size_t mac_size,
size_t *mac_length )
{
psa_status_t status;
if( operation->alg == 0 )
{
return( PSA_ERROR_BAD_STATE );
}
/* Fill the output buffer with something that isn't a valid mac
* (barring an attack on the mac and deliberately-crafted input),
* in case the caller doesn't check the return status properly. */
*mac_length = mac_size;
/* If mac_size is 0 then mac may be NULL and then the
* call to memset would have undefined behavior. */
if( mac_size != 0 )
memset( mac, '!', mac_size );
if( ! operation->is_sign )
{
return( PSA_ERROR_BAD_STATE );
}
status = psa_mac_finish_internal( operation, mac, mac_size );
if( status == PSA_SUCCESS )
{
status = psa_mac_abort( operation );
if( status == PSA_SUCCESS )
*mac_length = operation->mac_size;
else
memset( mac, '!', mac_size );
}
else
psa_mac_abort( operation );
return( status );
}
psa_status_t psa_mac_verify_finish( psa_mac_operation_t *operation,
const uint8_t *mac,
size_t mac_length )
{
uint8_t actual_mac[PSA_MAC_MAX_SIZE];
psa_status_t status;
if( operation->alg == 0 )
{
return( PSA_ERROR_BAD_STATE );
}
if( operation->is_sign )
{
return( PSA_ERROR_BAD_STATE );
}
if( operation->mac_size != mac_length )
{
status = PSA_ERROR_INVALID_SIGNATURE;
goto cleanup;
}
status = psa_mac_finish_internal( operation,
actual_mac, sizeof( actual_mac ) );
if( safer_memcmp( mac, actual_mac, mac_length ) != 0 )
status = PSA_ERROR_INVALID_SIGNATURE;
cleanup:
if( status == PSA_SUCCESS )
status = psa_mac_abort( operation );
else
psa_mac_abort( operation );
mbedtls_platform_zeroize( actual_mac, sizeof( actual_mac ) );
return( status );
}
/****************************************************************/
/* Asymmetric cryptography */
/****************************************************************/
#if defined(MBEDTLS_RSA_C)
/* Decode the hash algorithm from alg and store the mbedtls encoding in
* md_alg. Verify that the hash length is acceptable. */
static psa_status_t psa_rsa_decode_md_type( psa_algorithm_t alg,
size_t hash_length,
mbedtls_md_type_t *md_alg )
{
psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg );
const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg );
*md_alg = mbedtls_md_get_type( md_info );
/* The Mbed TLS RSA module uses an unsigned int for hash length
* parameters. Validate that it fits so that we don't risk an
* overflow later. */
#if SIZE_MAX > UINT_MAX
if( hash_length > UINT_MAX )
return( PSA_ERROR_INVALID_ARGUMENT );
#endif
#if defined(MBEDTLS_PKCS1_V15)
/* For PKCS#1 v1.5 signature, if using a hash, the hash length
* must be correct. */
if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) &&
alg != PSA_ALG_RSA_PKCS1V15_SIGN_RAW )
{
if( md_info == NULL )
return( PSA_ERROR_NOT_SUPPORTED );
if( mbedtls_md_get_size( md_info ) != hash_length )
return( PSA_ERROR_INVALID_ARGUMENT );
}
#endif /* MBEDTLS_PKCS1_V15 */
#if defined(MBEDTLS_PKCS1_V21)
/* PSS requires a hash internally. */
if( PSA_ALG_IS_RSA_PSS( alg ) )
{
if( md_info == NULL )
return( PSA_ERROR_NOT_SUPPORTED );
}
#endif /* MBEDTLS_PKCS1_V21 */
return( PSA_SUCCESS );
}
static psa_status_t psa_rsa_sign( mbedtls_rsa_context *rsa,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length )
{
psa_status_t status;
int ret;
mbedtls_md_type_t md_alg;
status = psa_rsa_decode_md_type( alg, hash_length, &md_alg );
if( status != PSA_SUCCESS )
return( status );
if( signature_size < mbedtls_rsa_get_len( rsa ) )
return( PSA_ERROR_BUFFER_TOO_SMALL );
#if defined(MBEDTLS_PKCS1_V15)
if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) )
{
mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V15,
MBEDTLS_MD_NONE );
ret = mbedtls_rsa_pkcs1_sign( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PRIVATE,
md_alg,
(unsigned int) hash_length,
hash,
signature );
}
else
#endif /* MBEDTLS_PKCS1_V15 */
#if defined(MBEDTLS_PKCS1_V21)
if( PSA_ALG_IS_RSA_PSS( alg ) )
{
mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg );
ret = mbedtls_rsa_rsassa_pss_sign( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PRIVATE,
MBEDTLS_MD_NONE,
(unsigned int) hash_length,
hash,
signature );
}
else
#endif /* MBEDTLS_PKCS1_V21 */
{
return( PSA_ERROR_INVALID_ARGUMENT );
}
if( ret == 0 )
*signature_length = mbedtls_rsa_get_len( rsa );
return( mbedtls_to_psa_error( ret ) );
}
static psa_status_t psa_rsa_verify( mbedtls_rsa_context *rsa,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length )
{
psa_status_t status;
int ret;
mbedtls_md_type_t md_alg;
status = psa_rsa_decode_md_type( alg, hash_length, &md_alg );
if( status != PSA_SUCCESS )
return( status );
if( signature_length < mbedtls_rsa_get_len( rsa ) )
return( PSA_ERROR_BUFFER_TOO_SMALL );
#if defined(MBEDTLS_PKCS1_V15)
if( PSA_ALG_IS_RSA_PKCS1V15_SIGN( alg ) )
{
mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V15,
MBEDTLS_MD_NONE );
ret = mbedtls_rsa_pkcs1_verify( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PUBLIC,
md_alg,
(unsigned int) hash_length,
hash,
signature );
}
else
#endif /* MBEDTLS_PKCS1_V15 */
#if defined(MBEDTLS_PKCS1_V21)
if( PSA_ALG_IS_RSA_PSS( alg ) )
{
mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg );
ret = mbedtls_rsa_rsassa_pss_verify( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PUBLIC,
MBEDTLS_MD_NONE,
(unsigned int) hash_length,
hash,
signature );
}
else
#endif /* MBEDTLS_PKCS1_V21 */
{
return( PSA_ERROR_INVALID_ARGUMENT );
}
/* Mbed TLS distinguishes "invalid padding" from "valid padding but
* the rest of the signature is invalid". This has little use in
* practice and PSA doesn't report this distinction. */
if( ret == MBEDTLS_ERR_RSA_INVALID_PADDING )
return( PSA_ERROR_INVALID_SIGNATURE );
return( mbedtls_to_psa_error( ret ) );
}
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECDSA_C)
/* `ecp` cannot be const because `ecp->grp` needs to be non-const
* for mbedtls_ecdsa_sign() and mbedtls_ecdsa_sign_det()
* (even though these functions don't modify it). */
static psa_status_t psa_ecdsa_sign( mbedtls_ecp_keypair *ecp,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length )
{
int ret;
mbedtls_mpi r, s;
size_t curve_bytes = PSA_BITS_TO_BYTES( ecp->grp.pbits );
mbedtls_mpi_init( &r );
mbedtls_mpi_init( &s );
if( signature_size < 2 * curve_bytes )
{
ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
goto cleanup;
}
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
if( PSA_ALG_DSA_IS_DETERMINISTIC( alg ) )
{
psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg );
const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg );
mbedtls_md_type_t md_alg = mbedtls_md_get_type( md_info );
MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign_det( &ecp->grp, &r, &s, &ecp->d,
hash, hash_length,
md_alg ) );
}
else
#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
{
(void) alg;
MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ecp->grp, &r, &s, &ecp->d,
hash, hash_length,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg ) );
}
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &r,
signature,
curve_bytes ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &s,
signature + curve_bytes,
curve_bytes ) );
cleanup:
mbedtls_mpi_free( &r );
mbedtls_mpi_free( &s );
if( ret == 0 )
*signature_length = 2 * curve_bytes;
return( mbedtls_to_psa_error( ret ) );
}
static psa_status_t psa_ecdsa_verify( mbedtls_ecp_keypair *ecp,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length )
{
int ret;
mbedtls_mpi r, s;
size_t curve_bytes = PSA_BITS_TO_BYTES( ecp->grp.pbits );
mbedtls_mpi_init( &r );
mbedtls_mpi_init( &s );
if( signature_length != 2 * curve_bytes )
return( PSA_ERROR_INVALID_SIGNATURE );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &r,
signature,
curve_bytes ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &s,
signature + curve_bytes,
curve_bytes ) );
ret = mbedtls_ecdsa_verify( &ecp->grp, hash, hash_length,
&ecp->Q, &r, &s );
cleanup:
mbedtls_mpi_free( &r );
mbedtls_mpi_free( &s );
return( mbedtls_to_psa_error( ret ) );
}
#endif /* MBEDTLS_ECDSA_C */
psa_status_t psa_asymmetric_sign( psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length )
{
psa_key_slot_t *slot;
psa_status_t status;
*signature_length = signature_size;
status = psa_get_key_from_slot( handle, &slot, PSA_KEY_USAGE_SIGN, alg );
if( status != PSA_SUCCESS )
goto exit;
if( ! PSA_KEY_TYPE_IS_KEYPAIR( slot->type ) )
{
status = PSA_ERROR_INVALID_ARGUMENT;
goto exit;
}
#if defined(MBEDTLS_RSA_C)
if( slot->type == PSA_KEY_TYPE_RSA_KEYPAIR )
{
status = psa_rsa_sign( slot->data.rsa,
alg,
hash, hash_length,
signature, signature_size,
signature_length );
}
else
#endif /* defined(MBEDTLS_RSA_C) */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( slot->type ) )
{
#if defined(MBEDTLS_ECDSA_C)
if(
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
PSA_ALG_IS_ECDSA( alg )
#else
PSA_ALG_IS_RANDOMIZED_ECDSA( alg )
#endif
)
status = psa_ecdsa_sign( slot->data.ecp,
alg,
hash, hash_length,
signature, signature_size,
signature_length );
else
#endif /* defined(MBEDTLS_ECDSA_C) */
{
status = PSA_ERROR_INVALID_ARGUMENT;
}
}
else
#endif /* defined(MBEDTLS_ECP_C) */
{
status = PSA_ERROR_NOT_SUPPORTED;
}
exit:
/* Fill the unused part of the output buffer (the whole buffer on error,
* the trailing part on success) with something that isn't a valid mac
* (barring an attack on the mac and deliberately-crafted input),
* in case the caller doesn't check the return status properly. */
if( status == PSA_SUCCESS )
memset( signature + *signature_length, '!',
signature_size - *signature_length );
else if( signature_size != 0 )
memset( signature, '!', signature_size );
/* If signature_size is 0 then we have nothing to do. We must not call
* memset because signature may be NULL in this case. */
return( status );
}
psa_status_t psa_asymmetric_verify( psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *signature,
size_t signature_length )
{
psa_key_slot_t *slot;
psa_status_t status;
status = psa_get_key_from_slot( handle, &slot, PSA_KEY_USAGE_VERIFY, alg );
if( status != PSA_SUCCESS )
return( status );
#if defined(MBEDTLS_RSA_C)
if( PSA_KEY_TYPE_IS_RSA( slot->type ) )
{
return( psa_rsa_verify( slot->data.rsa,
alg,
hash, hash_length,
signature, signature_length ) );
}
else
#endif /* defined(MBEDTLS_RSA_C) */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( slot->type ) )
{
#if defined(MBEDTLS_ECDSA_C)
if( PSA_ALG_IS_ECDSA( alg ) )
return( psa_ecdsa_verify( slot->data.ecp,
hash, hash_length,
signature, signature_length ) );
else
#endif /* defined(MBEDTLS_ECDSA_C) */
{
return( PSA_ERROR_INVALID_ARGUMENT );
}
}
else
#endif /* defined(MBEDTLS_ECP_C) */
{
return( PSA_ERROR_NOT_SUPPORTED );
}
}
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21)
static void psa_rsa_oaep_set_padding_mode( psa_algorithm_t alg,
mbedtls_rsa_context *rsa )
{
psa_algorithm_t hash_alg = PSA_ALG_RSA_OAEP_GET_HASH( alg );
const mbedtls_md_info_t *md_info = mbedtls_md_info_from_psa( hash_alg );
mbedtls_md_type_t md_alg = mbedtls_md_get_type( md_info );
mbedtls_rsa_set_padding( rsa, MBEDTLS_RSA_PKCS_V21, md_alg );
}
#endif /* defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21) */
psa_status_t psa_asymmetric_encrypt( psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *output,
size_t output_size,
size_t *output_length )
{
psa_key_slot_t *slot;
psa_status_t status;
(void) input;
(void) input_length;
(void) salt;
(void) output;
(void) output_size;
*output_length = 0;
if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_key_from_slot( handle, &slot, PSA_KEY_USAGE_ENCRYPT, alg );
if( status != PSA_SUCCESS )
return( status );
if( ! ( PSA_KEY_TYPE_IS_PUBLIC_KEY( slot->type ) ||
PSA_KEY_TYPE_IS_KEYPAIR( slot->type ) ) )
return( PSA_ERROR_INVALID_ARGUMENT );
#if defined(MBEDTLS_RSA_C)
if( PSA_KEY_TYPE_IS_RSA( slot->type ) )
{
mbedtls_rsa_context *rsa = slot->data.rsa;
int ret;
if( output_size < mbedtls_rsa_get_len( rsa ) )
return( PSA_ERROR_BUFFER_TOO_SMALL );
#if defined(MBEDTLS_PKCS1_V15)
if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT )
{
ret = mbedtls_rsa_pkcs1_encrypt( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PUBLIC,
input_length,
input,
output );
}
else
#endif /* MBEDTLS_PKCS1_V15 */
#if defined(MBEDTLS_PKCS1_V21)
if( PSA_ALG_IS_RSA_OAEP( alg ) )
{
psa_rsa_oaep_set_padding_mode( alg, rsa );
ret = mbedtls_rsa_rsaes_oaep_encrypt( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PUBLIC,
salt, salt_length,
input_length,
input,
output );
}
else
#endif /* MBEDTLS_PKCS1_V21 */
{
return( PSA_ERROR_INVALID_ARGUMENT );
}
if( ret == 0 )
*output_length = mbedtls_rsa_get_len( rsa );
return( mbedtls_to_psa_error( ret ) );
}
else
#endif /* defined(MBEDTLS_RSA_C) */
{
return( PSA_ERROR_NOT_SUPPORTED );
}
}
psa_status_t psa_asymmetric_decrypt( psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *output,
size_t output_size,
size_t *output_length )
{
psa_key_slot_t *slot;
psa_status_t status;
(void) input;
(void) input_length;
(void) salt;
(void) output;
(void) output_size;
*output_length = 0;
if( ! PSA_ALG_IS_RSA_OAEP( alg ) && salt_length != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_key_from_slot( handle, &slot, PSA_KEY_USAGE_DECRYPT, alg );
if( status != PSA_SUCCESS )
return( status );
if( ! PSA_KEY_TYPE_IS_KEYPAIR( slot->type ) )
return( PSA_ERROR_INVALID_ARGUMENT );
#if defined(MBEDTLS_RSA_C)
if( slot->type == PSA_KEY_TYPE_RSA_KEYPAIR )
{
mbedtls_rsa_context *rsa = slot->data.rsa;
int ret;
if( input_length != mbedtls_rsa_get_len( rsa ) )
return( PSA_ERROR_INVALID_ARGUMENT );
#if defined(MBEDTLS_PKCS1_V15)
if( alg == PSA_ALG_RSA_PKCS1V15_CRYPT )
{
ret = mbedtls_rsa_pkcs1_decrypt( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PRIVATE,
output_length,
input,
output,
output_size );
}
else
#endif /* MBEDTLS_PKCS1_V15 */
#if defined(MBEDTLS_PKCS1_V21)
if( PSA_ALG_IS_RSA_OAEP( alg ) )
{
psa_rsa_oaep_set_padding_mode( alg, rsa );
ret = mbedtls_rsa_rsaes_oaep_decrypt( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
MBEDTLS_RSA_PRIVATE,
salt, salt_length,
output_length,
input,
output,
output_size );
}
else
#endif /* MBEDTLS_PKCS1_V21 */
{
return( PSA_ERROR_INVALID_ARGUMENT );
}
return( mbedtls_to_psa_error( ret ) );
}
else
#endif /* defined(MBEDTLS_RSA_C) */
{
return( PSA_ERROR_NOT_SUPPORTED );
}
}
/****************************************************************/
/* Symmetric cryptography */
/****************************************************************/
/* Initialize the cipher operation structure. Once this function has been
* called, psa_cipher_abort can run and will do the right thing. */
static psa_status_t psa_cipher_init( psa_cipher_operation_t *operation,
psa_algorithm_t alg )
{
if( ! PSA_ALG_IS_CIPHER( alg ) )
{
memset( operation, 0, sizeof( *operation ) );
return( PSA_ERROR_INVALID_ARGUMENT );
}
operation->alg = alg;
operation->key_set = 0;
operation->iv_set = 0;
operation->iv_required = 1;
operation->iv_size = 0;
operation->block_size = 0;
mbedtls_cipher_init( &operation->ctx.cipher );
return( PSA_SUCCESS );
}
static psa_status_t psa_cipher_setup( psa_cipher_operation_t *operation,
psa_key_handle_t handle,
psa_algorithm_t alg,
mbedtls_operation_t cipher_operation )
{
int ret = 0;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_slot_t *slot;
size_t key_bits;
const mbedtls_cipher_info_t *cipher_info = NULL;
psa_key_usage_t usage = ( cipher_operation == MBEDTLS_ENCRYPT ?
PSA_KEY_USAGE_ENCRYPT :
PSA_KEY_USAGE_DECRYPT );
/* A context must be freshly initialized before it can be set up. */
if( operation->alg != 0 )
{
return( PSA_ERROR_BAD_STATE );
}
status = psa_cipher_init( operation, alg );
if( status != PSA_SUCCESS )
return( status );
status = psa_get_key_from_slot( handle, &slot, usage, alg);
if( status != PSA_SUCCESS )
goto exit;
key_bits = psa_get_key_bits( slot );
cipher_info = mbedtls_cipher_info_from_psa( alg, slot->type, key_bits, NULL );
if( cipher_info == NULL )
{
status = PSA_ERROR_NOT_SUPPORTED;
goto exit;
}
ret = mbedtls_cipher_setup( &operation->ctx.cipher, cipher_info );
if( ret != 0 )
goto exit;
#if defined(MBEDTLS_DES_C)
if( slot->type == PSA_KEY_TYPE_DES && key_bits == 128 )
{
/* Two-key Triple-DES is 3-key Triple-DES with K1=K3 */
unsigned char keys[24];
memcpy( keys, slot->data.raw.data, 16 );
memcpy( keys + 16, slot->data.raw.data, 8 );
ret = mbedtls_cipher_setkey( &operation->ctx.cipher,
keys,
192, cipher_operation );
}
else
#endif
{
ret = mbedtls_cipher_setkey( &operation->ctx.cipher,
slot->data.raw.data,
(int) key_bits, cipher_operation );
}
if( ret != 0 )
goto exit;
#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
switch( alg )
{
case PSA_ALG_CBC_NO_PADDING:
ret = mbedtls_cipher_set_padding_mode( &operation->ctx.cipher,
MBEDTLS_PADDING_NONE );
break;
case PSA_ALG_CBC_PKCS7:
ret = mbedtls_cipher_set_padding_mode( &operation->ctx.cipher,
MBEDTLS_PADDING_PKCS7 );
break;
default:
/* The algorithm doesn't involve padding. */
ret = 0;
break;
}
if( ret != 0 )
goto exit;
#endif //MBEDTLS_CIPHER_MODE_WITH_PADDING
operation->key_set = 1;
operation->block_size = ( PSA_ALG_IS_STREAM_CIPHER( alg ) ? 1 :
PSA_BLOCK_CIPHER_BLOCK_SIZE( slot->type ) );
if( alg & PSA_ALG_CIPHER_FROM_BLOCK_FLAG )
{
operation->iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( slot->type );
}
exit:
if( status == 0 )
status = mbedtls_to_psa_error( ret );
if( status != 0 )
psa_cipher_abort( operation );
return( status );
}
psa_status_t psa_cipher_encrypt_setup( psa_cipher_operation_t *operation,
psa_key_handle_t handle,
psa_algorithm_t alg )
{
return( psa_cipher_setup( operation, handle, alg, MBEDTLS_ENCRYPT ) );
}
psa_status_t psa_cipher_decrypt_setup( psa_cipher_operation_t *operation,
psa_key_handle_t handle,
psa_algorithm_t alg )
{
return( psa_cipher_setup( operation, handle, alg, MBEDTLS_DECRYPT ) );
}
psa_status_t psa_cipher_generate_iv( psa_cipher_operation_t *operation,
unsigned char *iv,
size_t iv_size,
size_t *iv_length )
{
psa_status_t status;
int ret;
if( operation->iv_set || ! operation->iv_required )
{
return( PSA_ERROR_BAD_STATE );
}
if( iv_size < operation->iv_size )
{
status = PSA_ERROR_BUFFER_TOO_SMALL;
goto exit;
}
ret = mbedtls_ctr_drbg_random( &global_data.ctr_drbg,
iv, operation->iv_size );
if( ret != 0 )
{
status = mbedtls_to_psa_error( ret );
goto exit;
}
*iv_length = operation->iv_size;
status = psa_cipher_set_iv( operation, iv, *iv_length );
exit:
if( status != PSA_SUCCESS )
psa_cipher_abort( operation );
return( status );
}
psa_status_t psa_cipher_set_iv( psa_cipher_operation_t *operation,
const unsigned char *iv,
size_t iv_length )
{
psa_status_t status;
int ret;
if( operation->iv_set || ! operation->iv_required )
{
return( PSA_ERROR_BAD_STATE );
}
if( iv_length != operation->iv_size )
{
status = PSA_ERROR_INVALID_ARGUMENT;
goto exit;
}
ret = mbedtls_cipher_set_iv( &operation->ctx.cipher, iv, iv_length );
status = mbedtls_to_psa_error( ret );
exit:
if( status == PSA_SUCCESS )
operation->iv_set = 1;
else
psa_cipher_abort( operation );
return( status );
}
psa_status_t psa_cipher_update( psa_cipher_operation_t *operation,
const uint8_t *input,
size_t input_length,
unsigned char *output,
size_t output_size,
size_t *output_length )
{
psa_status_t status;
int ret;
size_t expected_output_size;
if( operation->alg == 0 )
{
return( PSA_ERROR_BAD_STATE );
}
if( ! PSA_ALG_IS_STREAM_CIPHER( operation->alg ) )
{
/* Take the unprocessed partial block left over from previous
* update calls, if any, plus the input to this call. Remove
* the last partial block, if any. You get the data that will be
* output in this call. */
expected_output_size =
( operation->ctx.cipher.unprocessed_len + input_length )
/ operation->block_size * operation->block_size;
}
else
{
expected_output_size = input_length;
}
if( output_size < expected_output_size )
{
status = PSA_ERROR_BUFFER_TOO_SMALL;
goto exit;
}
ret = mbedtls_cipher_update( &operation->ctx.cipher, input,
input_length, output, output_length );
status = mbedtls_to_psa_error( ret );
exit:
if( status != PSA_SUCCESS )
psa_cipher_abort( operation );
return( status );
}
psa_status_t psa_cipher_finish( psa_cipher_operation_t *operation,
uint8_t *output,
size_t output_size,
size_t *output_length )
{
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
int cipher_ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
uint8_t temp_output_buffer[MBEDTLS_MAX_BLOCK_LENGTH];
if( ! operation->key_set )
{
return( PSA_ERROR_BAD_STATE );
}
if( operation->iv_required && ! operation->iv_set )
{
return( PSA_ERROR_BAD_STATE );
}
if( operation->ctx.cipher.operation == MBEDTLS_ENCRYPT &&
operation->alg == PSA_ALG_CBC_NO_PADDING &&
operation->ctx.cipher.unprocessed_len != 0 )
{
status = PSA_ERROR_INVALID_ARGUMENT;
goto error;
}
cipher_ret = mbedtls_cipher_finish( &operation->ctx.cipher,
temp_output_buffer,
output_length );
if( cipher_ret != 0 )
{
status = mbedtls_to_psa_error( cipher_ret );
goto error;
}
if( *output_length == 0 )
; /* Nothing to copy. Note that output may be NULL in this case. */
else if( output_size >= *output_length )
memcpy( output, temp_output_buffer, *output_length );
else
{
status = PSA_ERROR_BUFFER_TOO_SMALL;
goto error;
}
mbedtls_platform_zeroize( temp_output_buffer, sizeof( temp_output_buffer ) );
status = psa_cipher_abort( operation );
return( status );
error:
*output_length = 0;
mbedtls_platform_zeroize( temp_output_buffer, sizeof( temp_output_buffer ) );
(void) psa_cipher_abort( operation );
return( status );
}
psa_status_t psa_cipher_abort( psa_cipher_operation_t *operation )
{
if( operation->alg == 0 )
{
/* The object has (apparently) been initialized but it is not
* in use. It's ok to call abort on such an object, and there's
* nothing to do. */
return( PSA_SUCCESS );
}
/* Sanity check (shouldn't happen: operation->alg should
* always have been initialized to a valid value). */
if( ! PSA_ALG_IS_CIPHER( operation->alg ) )
return( PSA_ERROR_BAD_STATE );
mbedtls_cipher_free( &operation->ctx.cipher );
operation->alg = 0;
operation->key_set = 0;
operation->iv_set = 0;
operation->iv_size = 0;
operation->block_size = 0;
operation->iv_required = 0;
return( PSA_SUCCESS );
}
/****************************************************************/
/* Key Policy */
/****************************************************************/
#if !defined(MBEDTLS_PSA_CRYPTO_SPM)
void psa_key_policy_set_usage( psa_key_policy_t *policy,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
policy->usage = usage;
policy->alg = alg;
}
psa_key_usage_t psa_key_policy_get_usage( const psa_key_policy_t *policy )
{
return( policy->usage );
}
psa_algorithm_t psa_key_policy_get_algorithm( const psa_key_policy_t *policy )
{
return( policy->alg );
}
void psa_key_policy_set_enrollment_algorithm( psa_key_policy_t *policy,
psa_algorithm_t alg2 )
{
policy->alg2 = alg2;
}
psa_algorithm_t psa_key_policy_get_enrollment_algorithm(
const psa_key_policy_t *policy )
{
return( policy->alg2 );
}
#endif /* !defined(MBEDTLS_PSA_CRYPTO_SPM) */
psa_status_t psa_set_key_policy( psa_key_handle_t handle,
const psa_key_policy_t *policy )
{
psa_key_slot_t *slot;
psa_status_t status;
if( policy == NULL )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_empty_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
if( ( policy->usage & ~( PSA_KEY_USAGE_EXPORT |
PSA_KEY_USAGE_ENCRYPT |
PSA_KEY_USAGE_DECRYPT |
PSA_KEY_USAGE_SIGN |
PSA_KEY_USAGE_VERIFY |
PSA_KEY_USAGE_DERIVE ) ) != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
slot->policy = *policy;
return( PSA_SUCCESS );
}
psa_status_t psa_get_key_policy( psa_key_handle_t handle,
psa_key_policy_t *policy )
{
psa_key_slot_t *slot;
psa_status_t status;
if( policy == NULL )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
*policy = slot->policy;
return( PSA_SUCCESS );
}
/****************************************************************/
/* Key Lifetime */
/****************************************************************/
psa_status_t psa_get_key_lifetime( psa_key_handle_t handle,
psa_key_lifetime_t *lifetime )
{
psa_key_slot_t *slot;
psa_status_t status;
status = psa_get_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
*lifetime = slot->lifetime;
return( PSA_SUCCESS );
}
/****************************************************************/
/* AEAD */
/****************************************************************/
typedef struct
{
psa_key_slot_t *slot;
const mbedtls_cipher_info_t *cipher_info;
union
{
#if defined(MBEDTLS_CCM_C)
mbedtls_ccm_context ccm;
#endif /* MBEDTLS_CCM_C */
#if defined(MBEDTLS_GCM_C)
mbedtls_gcm_context gcm;
#endif /* MBEDTLS_GCM_C */
} ctx;
psa_algorithm_t core_alg;
uint8_t full_tag_length;
uint8_t tag_length;
} aead_operation_t;
static void psa_aead_abort( aead_operation_t *operation )
{
switch( operation->core_alg )
{
#if defined(MBEDTLS_CCM_C)
case PSA_ALG_CCM:
mbedtls_ccm_free( &operation->ctx.ccm );
break;
#endif /* MBEDTLS_CCM_C */
#if defined(MBEDTLS_GCM_C)
case PSA_ALG_GCM:
mbedtls_gcm_free( &operation->ctx.gcm );
break;
#endif /* MBEDTLS_GCM_C */
}
}
static psa_status_t psa_aead_setup( aead_operation_t *operation,
psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_status_t status;
size_t key_bits;
mbedtls_cipher_id_t cipher_id;
status = psa_get_key_from_slot( handle, &operation->slot, usage, alg );
if( status != PSA_SUCCESS )
return( status );
key_bits = psa_get_key_bits( operation->slot );
operation->cipher_info =
mbedtls_cipher_info_from_psa( alg, operation->slot->type, key_bits,
&cipher_id );
if( operation->cipher_info == NULL )
return( PSA_ERROR_NOT_SUPPORTED );
switch( PSA_ALG_AEAD_WITH_TAG_LENGTH( alg, 0 ) )
{
#if defined(MBEDTLS_CCM_C)
case PSA_ALG_AEAD_WITH_TAG_LENGTH( PSA_ALG_CCM, 0 ):
operation->core_alg = PSA_ALG_CCM;
operation->full_tag_length = 16;
if( PSA_BLOCK_CIPHER_BLOCK_SIZE( operation->slot->type ) != 16 )
return( PSA_ERROR_INVALID_ARGUMENT );
mbedtls_ccm_init( &operation->ctx.ccm );
status = mbedtls_to_psa_error(
mbedtls_ccm_setkey( &operation->ctx.ccm, cipher_id,
operation->slot->data.raw.data,
(unsigned int) key_bits ) );
if( status != 0 )
goto cleanup;
break;
#endif /* MBEDTLS_CCM_C */
#if defined(MBEDTLS_GCM_C)
case PSA_ALG_AEAD_WITH_TAG_LENGTH( PSA_ALG_GCM, 0 ):
operation->core_alg = PSA_ALG_GCM;
operation->full_tag_length = 16;
if( PSA_BLOCK_CIPHER_BLOCK_SIZE( operation->slot->type ) != 16 )
return( PSA_ERROR_INVALID_ARGUMENT );
mbedtls_gcm_init( &operation->ctx.gcm );
status = mbedtls_to_psa_error(
mbedtls_gcm_setkey( &operation->ctx.gcm, cipher_id,
operation->slot->data.raw.data,
(unsigned int) key_bits ) );
break;
#endif /* MBEDTLS_GCM_C */
default:
return( PSA_ERROR_NOT_SUPPORTED );
}
if( PSA_AEAD_TAG_LENGTH( alg ) > operation->full_tag_length )
{
status = PSA_ERROR_INVALID_ARGUMENT;
goto cleanup;
}
operation->tag_length = PSA_AEAD_TAG_LENGTH( alg );
/* CCM allows the following tag lengths: 4, 6, 8, 10, 12, 14, 16.
* GCM allows the following tag lengths: 4, 8, 12, 13, 14, 15, 16.
* In both cases, mbedtls_xxx will validate the tag length below. */
return( PSA_SUCCESS );
cleanup:
psa_aead_abort( operation );
return( status );
}
psa_status_t psa_aead_encrypt( psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *nonce,
size_t nonce_length,
const uint8_t *additional_data,
size_t additional_data_length,
const uint8_t *plaintext,
size_t plaintext_length,
uint8_t *ciphertext,
size_t ciphertext_size,
size_t *ciphertext_length )
{
psa_status_t status;
aead_operation_t operation;
uint8_t *tag;
*ciphertext_length = 0;
status = psa_aead_setup( &operation, handle, PSA_KEY_USAGE_ENCRYPT, alg );
if( status != PSA_SUCCESS )
return( status );
/* For all currently supported modes, the tag is at the end of the
* ciphertext. */
if( ciphertext_size < ( plaintext_length + operation.tag_length ) )
{
status = PSA_ERROR_BUFFER_TOO_SMALL;
goto exit;
}
tag = ciphertext + plaintext_length;
#if defined(MBEDTLS_GCM_C)
if( operation.core_alg == PSA_ALG_GCM )
{
status = mbedtls_to_psa_error(
mbedtls_gcm_crypt_and_tag( &operation.ctx.gcm,
MBEDTLS_GCM_ENCRYPT,
plaintext_length,
nonce, nonce_length,
additional_data, additional_data_length,
plaintext, ciphertext,
operation.tag_length, tag ) );
}
else
#endif /* MBEDTLS_GCM_C */
#if defined(MBEDTLS_CCM_C)
if( operation.core_alg == PSA_ALG_CCM )
{
status = mbedtls_to_psa_error(
mbedtls_ccm_encrypt_and_tag( &operation.ctx.ccm,
plaintext_length,
nonce, nonce_length,
additional_data,
additional_data_length,
plaintext, ciphertext,
tag, operation.tag_length ) );
}
else
#endif /* MBEDTLS_CCM_C */
{
return( PSA_ERROR_NOT_SUPPORTED );
}
if( status != PSA_SUCCESS && ciphertext_size != 0 )
memset( ciphertext, 0, ciphertext_size );
exit:
psa_aead_abort( &operation );
if( status == PSA_SUCCESS )
*ciphertext_length = plaintext_length + operation.tag_length;
return( status );
}
/* Locate the tag in a ciphertext buffer containing the encrypted data
* followed by the tag. Return the length of the part preceding the tag in
* *plaintext_length. This is the size of the plaintext in modes where
* the encrypted data has the same size as the plaintext, such as
* CCM and GCM. */
static psa_status_t psa_aead_unpadded_locate_tag( size_t tag_length,
const uint8_t *ciphertext,
size_t ciphertext_length,
size_t plaintext_size,
const uint8_t **p_tag )
{
size_t payload_length;
if( tag_length > ciphertext_length )
return( PSA_ERROR_INVALID_ARGUMENT );
payload_length = ciphertext_length - tag_length;
if( payload_length > plaintext_size )
return( PSA_ERROR_BUFFER_TOO_SMALL );
*p_tag = ciphertext + payload_length;
return( PSA_SUCCESS );
}
psa_status_t psa_aead_decrypt( psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *nonce,
size_t nonce_length,
const uint8_t *additional_data,
size_t additional_data_length,
const uint8_t *ciphertext,
size_t ciphertext_length,
uint8_t *plaintext,
size_t plaintext_size,
size_t *plaintext_length )
{
psa_status_t status;
aead_operation_t operation;
const uint8_t *tag = NULL;
*plaintext_length = 0;
status = psa_aead_setup( &operation, handle, PSA_KEY_USAGE_DECRYPT, alg );
if( status != PSA_SUCCESS )
return( status );
#if defined(MBEDTLS_GCM_C)
if( operation.core_alg == PSA_ALG_GCM )
{
status = psa_aead_unpadded_locate_tag( operation.tag_length,
ciphertext, ciphertext_length,
plaintext_size, &tag );
if( status != PSA_SUCCESS )
goto exit;
status = mbedtls_to_psa_error(
mbedtls_gcm_auth_decrypt( &operation.ctx.gcm,
ciphertext_length - operation.tag_length,
nonce, nonce_length,
additional_data,
additional_data_length,
tag, operation.tag_length,
ciphertext, plaintext ) );
}
else
#endif /* MBEDTLS_GCM_C */
#if defined(MBEDTLS_CCM_C)
if( operation.core_alg == PSA_ALG_CCM )
{
status = psa_aead_unpadded_locate_tag( operation.tag_length,
ciphertext, ciphertext_length,
plaintext_size, &tag );
if( status != PSA_SUCCESS )
goto exit;
status = mbedtls_to_psa_error(
mbedtls_ccm_auth_decrypt( &operation.ctx.ccm,
ciphertext_length - operation.tag_length,
nonce, nonce_length,
additional_data,
additional_data_length,
ciphertext, plaintext,
tag, operation.tag_length ) );
}
else
#endif /* MBEDTLS_CCM_C */
{
return( PSA_ERROR_NOT_SUPPORTED );
}
if( status != PSA_SUCCESS && plaintext_size != 0 )
memset( plaintext, 0, plaintext_size );
exit:
psa_aead_abort( &operation );
if( status == PSA_SUCCESS )
*plaintext_length = ciphertext_length - operation.tag_length;
return( status );
}
/****************************************************************/
/* Generators */
/****************************************************************/
psa_status_t psa_generator_abort( psa_crypto_generator_t *generator )
{
psa_status_t status = PSA_SUCCESS;
if( generator->alg == 0 )
{
/* The object has (apparently) been initialized but it is not
* in use. It's ok to call abort on such an object, and there's
* nothing to do. */
}
else
if( generator->alg == PSA_ALG_SELECT_RAW )
{
if( generator->ctx.buffer.data != NULL )
{
mbedtls_platform_zeroize( generator->ctx.buffer.data,
generator->ctx.buffer.size );
mbedtls_free( generator->ctx.buffer.data );
}
}
else
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HKDF( generator->alg ) )
{
mbedtls_free( generator->ctx.hkdf.info );
status = psa_hmac_abort_internal( &generator->ctx.hkdf.hmac );
}
else if( PSA_ALG_IS_TLS12_PRF( generator->alg ) ||
/* TLS-1.2 PSK-to-MS KDF uses the same generator as TLS-1.2 PRF */
PSA_ALG_IS_TLS12_PSK_TO_MS( generator->alg ) )
{
if( generator->ctx.tls12_prf.key != NULL )
{
mbedtls_platform_zeroize( generator->ctx.tls12_prf.key,
generator->ctx.tls12_prf.key_len );
mbedtls_free( generator->ctx.tls12_prf.key );
}
if( generator->ctx.tls12_prf.Ai_with_seed != NULL )
{
mbedtls_platform_zeroize( generator->ctx.tls12_prf.Ai_with_seed,
generator->ctx.tls12_prf.Ai_with_seed_len );
mbedtls_free( generator->ctx.tls12_prf.Ai_with_seed );
}
}
else
#endif /* MBEDTLS_MD_C */
{
status = PSA_ERROR_BAD_STATE;
}
memset( generator, 0, sizeof( *generator ) );
return( status );
}
psa_status_t psa_get_generator_capacity(const psa_crypto_generator_t *generator,
size_t *capacity)
{
if( generator->alg == 0 )
{
/* This is a blank generator. */
return PSA_ERROR_BAD_STATE;
}
*capacity = generator->capacity;
return( PSA_SUCCESS );
}
#if defined(MBEDTLS_MD_C)
/* Read some bytes from an HKDF-based generator. This performs a chunk
* of the expand phase of the HKDF algorithm. */
static psa_status_t psa_generator_hkdf_read( psa_hkdf_generator_t *hkdf,
psa_algorithm_t hash_alg,
uint8_t *output,
size_t output_length )
{
uint8_t hash_length = PSA_HASH_SIZE( hash_alg );
psa_status_t status;
while( output_length != 0 )
{
/* Copy what remains of the current block */
uint8_t n = hash_length - hkdf->offset_in_block;
if( n > output_length )
n = (uint8_t) output_length;
memcpy( output, hkdf->output_block + hkdf->offset_in_block, n );
output += n;
output_length -= n;
hkdf->offset_in_block += n;
if( output_length == 0 )
break;
/* We can't be wanting more output after block 0xff, otherwise
* the capacity check in psa_generator_read() would have
* prevented this call. It could happen only if the generator
* object was corrupted or if this function is called directly
* inside the library. */
if( hkdf->block_number == 0xff )
return( PSA_ERROR_BAD_STATE );
/* We need a new block */
++hkdf->block_number;
hkdf->offset_in_block = 0;
status = psa_hmac_setup_internal( &hkdf->hmac,
hkdf->prk, hash_length,
hash_alg );
if( status != PSA_SUCCESS )
return( status );
if( hkdf->block_number != 1 )
{
status = psa_hash_update( &hkdf->hmac.hash_ctx,
hkdf->output_block,
hash_length );
if( status != PSA_SUCCESS )
return( status );
}
status = psa_hash_update( &hkdf->hmac.hash_ctx,
hkdf->info,
hkdf->info_length );
if( status != PSA_SUCCESS )
return( status );
status = psa_hash_update( &hkdf->hmac.hash_ctx,
&hkdf->block_number, 1 );
if( status != PSA_SUCCESS )
return( status );
status = psa_hmac_finish_internal( &hkdf->hmac,
hkdf->output_block,
sizeof( hkdf->output_block ) );
if( status != PSA_SUCCESS )
return( status );
}
return( PSA_SUCCESS );
}
static psa_status_t psa_generator_tls12_prf_generate_next_block(
psa_tls12_prf_generator_t *tls12_prf,
psa_algorithm_t alg )
{
psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( alg );
uint8_t hash_length = PSA_HASH_SIZE( hash_alg );
psa_hmac_internal_data hmac;
psa_status_t status, cleanup_status;
unsigned char *Ai;
size_t Ai_len;
/* We can't be wanting more output after block 0xff, otherwise
* the capacity check in psa_generator_read() would have
* prevented this call. It could happen only if the generator
* object was corrupted or if this function is called directly
* inside the library. */
if( tls12_prf->block_number == 0xff )
return( PSA_ERROR_BAD_STATE );
/* We need a new block */
++tls12_prf->block_number;
tls12_prf->offset_in_block = 0;
/* Recall the definition of the TLS-1.2-PRF from RFC 5246:
*
* PRF(secret, label, seed) = P_<hash>(secret, label + seed)
*
* P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
* HMAC_hash(secret, A(2) + seed) +
* HMAC_hash(secret, A(3) + seed) + ...
*
* A(0) = seed
* A(i) = HMAC_hash( secret, A(i-1) )
*
* The `psa_tls12_prf_generator` structures saves the block
* `HMAC_hash(secret, A(i) + seed)` from which the output
* is currently extracted as `output_block`, while
* `A(i) + seed` is stored in `Ai_with_seed`.
*
* Generating a new block means recalculating `Ai_with_seed`
* from the A(i)-part of it, and afterwards recalculating
* `output_block`.
*
* A(0) is computed at setup time.
*
*/
psa_hmac_init_internal( &hmac );
/* We must distinguish the calculation of A(1) from those
* of A(2) and higher, because A(0)=seed has a different
* length than the other A(i). */
if( tls12_prf->block_number == 1 )
{
Ai = tls12_prf->Ai_with_seed + hash_length;
Ai_len = tls12_prf->Ai_with_seed_len - hash_length;
}
else
{
Ai = tls12_prf->Ai_with_seed;
Ai_len = hash_length;
}
/* Compute A(i+1) = HMAC_hash(secret, A(i)) */
status = psa_hmac_setup_internal( &hmac,
tls12_prf->key,
tls12_prf->key_len,
hash_alg );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hash_update( &hmac.hash_ctx,
Ai, Ai_len );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hmac_finish_internal( &hmac,
tls12_prf->Ai_with_seed,
hash_length );
if( status != PSA_SUCCESS )
goto cleanup;
/* Compute the next block `HMAC_hash(secret, A(i+1) + seed)`. */
status = psa_hmac_setup_internal( &hmac,
tls12_prf->key,
tls12_prf->key_len,
hash_alg );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hash_update( &hmac.hash_ctx,
tls12_prf->Ai_with_seed,
tls12_prf->Ai_with_seed_len );
if( status != PSA_SUCCESS )
goto cleanup;
status = psa_hmac_finish_internal( &hmac,
tls12_prf->output_block,
hash_length );
if( status != PSA_SUCCESS )
goto cleanup;
cleanup:
cleanup_status = psa_hmac_abort_internal( &hmac );
if( status == PSA_SUCCESS && cleanup_status != PSA_SUCCESS )
status = cleanup_status;
return( status );
}
/* Read some bytes from an TLS-1.2-PRF-based generator.
* See Section 5 of RFC 5246. */
static psa_status_t psa_generator_tls12_prf_read(
psa_tls12_prf_generator_t *tls12_prf,
psa_algorithm_t alg,
uint8_t *output,
size_t output_length )
{
psa_algorithm_t hash_alg = PSA_ALG_TLS12_PRF_GET_HASH( alg );
uint8_t hash_length = PSA_HASH_SIZE( hash_alg );
psa_status_t status;
while( output_length != 0 )
{
/* Copy what remains of the current block */
uint8_t n = hash_length - tls12_prf->offset_in_block;
/* Check if we have fully processed the current block. */
if( n == 0 )
{
status = psa_generator_tls12_prf_generate_next_block( tls12_prf,
alg );
if( status != PSA_SUCCESS )
return( status );
continue;
}
if( n > output_length )
n = (uint8_t) output_length;
memcpy( output, tls12_prf->output_block + tls12_prf->offset_in_block,
n );
output += n;
output_length -= n;
tls12_prf->offset_in_block += n;
}
return( PSA_SUCCESS );
}
#endif /* MBEDTLS_MD_C */
psa_status_t psa_generator_read( psa_crypto_generator_t *generator,
uint8_t *output,
size_t output_length )
{
psa_status_t status;
if( generator->alg == 0 )
{
/* This is a blank generator. */
return PSA_ERROR_BAD_STATE;
}
if( output_length > generator->capacity )
{
generator->capacity = 0;
/* Go through the error path to wipe all confidential data now
* that the generator object is useless. */
status = PSA_ERROR_INSUFFICIENT_DATA;
goto exit;
}
if( output_length == 0 && generator->capacity == 0 )
{
/* Edge case: this is a finished generator, and 0 bytes
* were requested. The right error in this case could
* be either INSUFFICIENT_CAPACITY or BAD_STATE. Return
* INSUFFICIENT_CAPACITY, which is right for a finished
* generator, for consistency with the case when
* output_length > 0. */
return( PSA_ERROR_INSUFFICIENT_DATA );
}
generator->capacity -= output_length;
if( generator->alg == PSA_ALG_SELECT_RAW )
{
/* Initially, the capacity of a selection generator is always
* the size of the buffer, i.e. `generator->ctx.buffer.size`,
* abbreviated in this comment as `size`. When the remaining
* capacity is `c`, the next bytes to serve start `c` bytes
* from the end of the buffer, i.e. `size - c` from the
* beginning of the buffer. Since `generator->capacity` was just
* decremented above, we need to serve the bytes from
* `size - generator->capacity - output_length` to
* `size - generator->capacity`. */
size_t offset =
generator->ctx.buffer.size - generator->capacity - output_length;
memcpy( output, generator->ctx.buffer.data + offset, output_length );
status = PSA_SUCCESS;
}
else
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HKDF( generator->alg ) )
{
psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( generator->alg );
status = psa_generator_hkdf_read( &generator->ctx.hkdf, hash_alg,
output, output_length );
}
else if( PSA_ALG_IS_TLS12_PRF( generator->alg ) ||
PSA_ALG_IS_TLS12_PSK_TO_MS( generator->alg ) )
{
status = psa_generator_tls12_prf_read( &generator->ctx.tls12_prf,
generator->alg, output,
output_length );
}
else
#endif /* MBEDTLS_MD_C */
{
return( PSA_ERROR_BAD_STATE );
}
exit:
if( status != PSA_SUCCESS )
{
/* Preserve the algorithm upon errors, but clear all sensitive state.
* This allows us to differentiate between exhausted generators and
* blank generators, so we can return PSA_ERROR_BAD_STATE on blank
* generators. */
psa_algorithm_t alg = generator->alg;
psa_generator_abort( generator );
generator->alg = alg;
memset( output, '!', output_length );
}
return( status );
}
#if defined(MBEDTLS_DES_C)
static void psa_des_set_key_parity( uint8_t *data, size_t data_size )
{
if( data_size >= 8 )
mbedtls_des_key_set_parity( data );
if( data_size >= 16 )
mbedtls_des_key_set_parity( data + 8 );
if( data_size >= 24 )
mbedtls_des_key_set_parity( data + 16 );
}
#endif /* MBEDTLS_DES_C */
psa_status_t psa_generator_import_key( psa_key_handle_t handle,
psa_key_type_t type,
size_t bits,
psa_crypto_generator_t *generator )
{
uint8_t *data = NULL;
size_t bytes = PSA_BITS_TO_BYTES( bits );
psa_status_t status;
if( ! key_type_is_raw_bytes( type ) )
return( PSA_ERROR_INVALID_ARGUMENT );
if( bits % 8 != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
data = mbedtls_calloc( 1, bytes );
if( data == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
status = psa_generator_read( generator, data, bytes );
if( status != PSA_SUCCESS )
goto exit;
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
psa_des_set_key_parity( data, bytes );
#endif /* MBEDTLS_DES_C */
status = psa_import_key( handle, type, data, bytes );
exit:
mbedtls_free( data );
return( status );
}
/****************************************************************/
/* Key derivation */
/****************************************************************/
#if defined(MBEDTLS_MD_C)
/* Set up an HKDF-based generator. This is exactly the extract phase
* of the HKDF algorithm.
*
* Note that if this function fails, you must call psa_generator_abort()
* to potentially free embedded data structures and wipe confidential data.
*/
static psa_status_t psa_generator_hkdf_setup( psa_hkdf_generator_t *hkdf,
const uint8_t *secret,
size_t secret_length,
psa_algorithm_t hash_alg,
const uint8_t *salt,
size_t salt_length,
const uint8_t *label,
size_t label_length )
{
psa_status_t status;
status = psa_hmac_setup_internal( &hkdf->hmac,
salt, salt_length,
PSA_ALG_HMAC_GET_HASH( hash_alg ) );
if( status != PSA_SUCCESS )
return( status );
status = psa_hash_update( &hkdf->hmac.hash_ctx, secret, secret_length );
if( status != PSA_SUCCESS )
return( status );
status = psa_hmac_finish_internal( &hkdf->hmac,
hkdf->prk,
sizeof( hkdf->prk ) );
if( status != PSA_SUCCESS )
return( status );
hkdf->offset_in_block = PSA_HASH_SIZE( hash_alg );
hkdf->block_number = 0;
hkdf->info_length = label_length;
if( label_length != 0 )
{
hkdf->info = mbedtls_calloc( 1, label_length );
if( hkdf->info == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
memcpy( hkdf->info, label, label_length );
}
return( PSA_SUCCESS );
}
#endif /* MBEDTLS_MD_C */
#if defined(MBEDTLS_MD_C)
/* Set up a TLS-1.2-prf-based generator (see RFC 5246, Section 5).
*
* Note that if this function fails, you must call psa_generator_abort()
* to potentially free embedded data structures and wipe confidential data.
*/
static psa_status_t psa_generator_tls12_prf_setup(
psa_tls12_prf_generator_t *tls12_prf,
const unsigned char *key,
size_t key_len,
psa_algorithm_t hash_alg,
const uint8_t *salt,
size_t salt_length,
const uint8_t *label,
size_t label_length )
{
uint8_t hash_length = PSA_HASH_SIZE( hash_alg );
size_t Ai_with_seed_len = hash_length + salt_length + label_length;
int overflow;
tls12_prf->key = mbedtls_calloc( 1, key_len );
if( tls12_prf->key == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
tls12_prf->key_len = key_len;
memcpy( tls12_prf->key, key, key_len );
overflow = ( salt_length + label_length < salt_length ) ||
( salt_length + label_length + hash_length < hash_length );
if( overflow )
return( PSA_ERROR_INVALID_ARGUMENT );
tls12_prf->Ai_with_seed = mbedtls_calloc( 1, Ai_with_seed_len );
if( tls12_prf->Ai_with_seed == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
tls12_prf->Ai_with_seed_len = Ai_with_seed_len;
/* Write `label + seed' at the end of the `A(i) + seed` buffer,
* leaving the initial `hash_length` bytes unspecified for now. */
if( label_length != 0 )
{
memcpy( tls12_prf->Ai_with_seed + hash_length,
label, label_length );
}
if( salt_length != 0 )
{
memcpy( tls12_prf->Ai_with_seed + hash_length + label_length,
salt, salt_length );
}
/* The first block gets generated when
* psa_generator_read() is called. */
tls12_prf->block_number = 0;
tls12_prf->offset_in_block = hash_length;
return( PSA_SUCCESS );
}
/* Set up a TLS-1.2-PSK-to-MS-based generator. */
static psa_status_t psa_generator_tls12_psk_to_ms_setup(
psa_tls12_prf_generator_t *tls12_prf,
const unsigned char *psk,
size_t psk_len,
psa_algorithm_t hash_alg,
const uint8_t *salt,
size_t salt_length,
const uint8_t *label,
size_t label_length )
{
psa_status_t status;
unsigned char pms[ 4 + 2 * PSA_ALG_TLS12_PSK_TO_MS_MAX_PSK_LEN ];
if( psk_len > PSA_ALG_TLS12_PSK_TO_MS_MAX_PSK_LEN )
return( PSA_ERROR_INVALID_ARGUMENT );
/* Quoting RFC 4279, Section 2:
*
* The premaster secret is formed as follows: if the PSK is N octets
* long, concatenate a uint16 with the value N, N zero octets, a second
* uint16 with the value N, and the PSK itself.
*/
pms[0] = ( psk_len >> 8 ) & 0xff;
pms[1] = ( psk_len >> 0 ) & 0xff;
memset( pms + 2, 0, psk_len );
pms[2 + psk_len + 0] = pms[0];
pms[2 + psk_len + 1] = pms[1];
memcpy( pms + 4 + psk_len, psk, psk_len );
status = psa_generator_tls12_prf_setup( tls12_prf,
pms, 4 + 2 * psk_len,
hash_alg,
salt, salt_length,
label, label_length );
mbedtls_platform_zeroize( pms, sizeof( pms ) );
return( status );
}
#endif /* MBEDTLS_MD_C */
/* Note that if this function fails, you must call psa_generator_abort()
* to potentially free embedded data structures and wipe confidential data.
*/
static psa_status_t psa_key_derivation_internal(
psa_crypto_generator_t *generator,
const uint8_t *secret, size_t secret_length,
psa_algorithm_t alg,
const uint8_t *salt, size_t salt_length,
const uint8_t *label, size_t label_length,
size_t capacity )
{
psa_status_t status;
size_t max_capacity;
/* Set generator->alg even on failure so that abort knows what to do. */
generator->alg = alg;
if( alg == PSA_ALG_SELECT_RAW )
{
(void) salt;
if( salt_length != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
(void) label;
if( label_length != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
generator->ctx.buffer.data = mbedtls_calloc( 1, secret_length );
if( generator->ctx.buffer.data == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
memcpy( generator->ctx.buffer.data, secret, secret_length );
generator->ctx.buffer.size = secret_length;
max_capacity = secret_length;
status = PSA_SUCCESS;
}
else
#if defined(MBEDTLS_MD_C)
if( PSA_ALG_IS_HKDF( alg ) )
{
psa_algorithm_t hash_alg = PSA_ALG_HKDF_GET_HASH( alg );
size_t hash_size = PSA_HASH_SIZE( hash_alg );
if( hash_size == 0 )
return( PSA_ERROR_NOT_SUPPORTED );
max_capacity = 255 * hash_size;
status = psa_generator_hkdf_setup( &generator->ctx.hkdf,
secret, secret_length,
hash_alg,
salt, salt_length,
label, label_length );
}
/* TLS-1.2 PRF and TLS-1.2 PSK-to-MS are very similar, so share code. */
else if( PSA_ALG_IS_TLS12_PRF( alg ) ||
PSA_ALG_IS_TLS12_PSK_TO_MS( alg ) )
{
psa_algorithm_t hash_alg = PSA_ALG_TLS12_PRF_GET_HASH( alg );
size_t hash_size = PSA_HASH_SIZE( hash_alg );
/* TLS-1.2 PRF supports only SHA-256 and SHA-384. */
if( hash_alg != PSA_ALG_SHA_256 &&
hash_alg != PSA_ALG_SHA_384 )
{
return( PSA_ERROR_NOT_SUPPORTED );
}
max_capacity = 255 * hash_size;
if( PSA_ALG_IS_TLS12_PRF( alg ) )
{
status = psa_generator_tls12_prf_setup( &generator->ctx.tls12_prf,
secret, secret_length,
hash_alg, salt, salt_length,
label, label_length );
}
else
{
status = psa_generator_tls12_psk_to_ms_setup(
&generator->ctx.tls12_prf,
secret, secret_length,
hash_alg, salt, salt_length,
label, label_length );
}
}
else
#endif
{
return( PSA_ERROR_NOT_SUPPORTED );
}
if( status != PSA_SUCCESS )
return( status );
if( capacity <= max_capacity )
generator->capacity = capacity;
else if( capacity == PSA_GENERATOR_UNBRIDLED_CAPACITY )
generator->capacity = max_capacity;
else
return( PSA_ERROR_INVALID_ARGUMENT );
return( PSA_SUCCESS );
}
psa_status_t psa_key_derivation( psa_crypto_generator_t *generator,
psa_key_handle_t handle,
psa_algorithm_t alg,
const uint8_t *salt,
size_t salt_length,
const uint8_t *label,
size_t label_length,
size_t capacity )
{
psa_key_slot_t *slot;
psa_status_t status;
if( generator->alg != 0 )
return( PSA_ERROR_BAD_STATE );
/* Make sure that alg is a key derivation algorithm. This prevents
* key selection algorithms, which psa_key_derivation_internal
* accepts for the sake of key agreement. */
if( ! PSA_ALG_IS_KEY_DERIVATION( alg ) )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_key_from_slot( handle, &slot, PSA_KEY_USAGE_DERIVE, alg );
if( status != PSA_SUCCESS )
return( status );
if( slot->type != PSA_KEY_TYPE_DERIVE )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_key_derivation_internal( generator,
slot->data.raw.data,
slot->data.raw.bytes,
alg,
salt, salt_length,
label, label_length,
capacity );
if( status != PSA_SUCCESS )
psa_generator_abort( generator );
return( status );
}
/****************************************************************/
/* Key agreement */
/****************************************************************/
#if defined(MBEDTLS_ECDH_C)
static psa_status_t psa_key_agreement_ecdh( const uint8_t *peer_key,
size_t peer_key_length,
const mbedtls_ecp_keypair *our_key,
uint8_t *shared_secret,
size_t shared_secret_size,
size_t *shared_secret_length )
{
mbedtls_ecp_keypair *their_key = NULL;
mbedtls_ecdh_context ecdh;
psa_status_t status;
mbedtls_ecdh_init( &ecdh );
status = psa_import_ec_public_key(
mbedtls_ecc_group_to_psa( our_key->grp.id ),
peer_key, peer_key_length,
&their_key );
if( status != PSA_SUCCESS )
goto exit;
status = mbedtls_to_psa_error(
mbedtls_ecdh_get_params( &ecdh, their_key, MBEDTLS_ECDH_THEIRS ) );
if( status != PSA_SUCCESS )
goto exit;
status = mbedtls_to_psa_error(
mbedtls_ecdh_get_params( &ecdh, our_key, MBEDTLS_ECDH_OURS ) );
if( status != PSA_SUCCESS )
goto exit;
status = mbedtls_to_psa_error(
mbedtls_ecdh_calc_secret( &ecdh,
shared_secret_length,
shared_secret, shared_secret_size,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg ) );
exit:
mbedtls_ecdh_free( &ecdh );
mbedtls_ecp_keypair_free( their_key );
mbedtls_free( their_key );
return( status );
}
#endif /* MBEDTLS_ECDH_C */
#define PSA_KEY_AGREEMENT_MAX_SHARED_SECRET_SIZE MBEDTLS_ECP_MAX_BYTES
/* Note that if this function fails, you must call psa_generator_abort()
* to potentially free embedded data structures and wipe confidential data.
*/
static psa_status_t psa_key_agreement_internal( psa_crypto_generator_t *generator,
psa_key_slot_t *private_key,
const uint8_t *peer_key,
size_t peer_key_length,
psa_algorithm_t alg )
{
psa_status_t status;
uint8_t shared_secret[PSA_KEY_AGREEMENT_MAX_SHARED_SECRET_SIZE];
size_t shared_secret_length = 0;
/* Step 1: run the secret agreement algorithm to generate the shared
* secret. */
switch( PSA_ALG_KEY_AGREEMENT_GET_BASE( alg ) )
{
#if defined(MBEDTLS_ECDH_C)
case PSA_ALG_ECDH_BASE:
if( ! PSA_KEY_TYPE_IS_ECC_KEYPAIR( private_key->type ) )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_key_agreement_ecdh( peer_key, peer_key_length,
private_key->data.ecp,
shared_secret,
sizeof( shared_secret ),
&shared_secret_length );
break;
#endif /* MBEDTLS_ECDH_C */
default:
(void) private_key;
(void) peer_key;
(void) peer_key_length;
return( PSA_ERROR_NOT_SUPPORTED );
}
if( status != PSA_SUCCESS )
goto exit;
/* Step 2: set up the key derivation to generate key material from
* the shared secret. */
status = psa_key_derivation_internal( generator,
shared_secret, shared_secret_length,
PSA_ALG_KEY_AGREEMENT_GET_KDF( alg ),
NULL, 0, NULL, 0,
PSA_GENERATOR_UNBRIDLED_CAPACITY );
exit:
mbedtls_platform_zeroize( shared_secret, shared_secret_length );
return( status );
}
psa_status_t psa_key_agreement( psa_crypto_generator_t *generator,
psa_key_handle_t private_key,
const uint8_t *peer_key,
size_t peer_key_length,
psa_algorithm_t alg )
{
psa_key_slot_t *slot;
psa_status_t status;
if( ! PSA_ALG_IS_KEY_AGREEMENT( alg ) )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_key_from_slot( private_key, &slot,
PSA_KEY_USAGE_DERIVE, alg );
if( status != PSA_SUCCESS )
return( status );
status = psa_key_agreement_internal( generator,
slot,
peer_key, peer_key_length,
alg );
if( status != PSA_SUCCESS )
psa_generator_abort( generator );
return( status );
}
/****************************************************************/
/* Random generation */
/****************************************************************/
psa_status_t psa_generate_random( uint8_t *output,
size_t output_size )
{
int ret;
GUARD_MODULE_INITIALIZED;
ret = mbedtls_ctr_drbg_random( &global_data.ctr_drbg, output, output_size );
return( mbedtls_to_psa_error( ret ) );
}
#if defined(MBEDTLS_PSA_INJECT_ENTROPY)
#include "mbedtls/entropy_poll.h"
psa_status_t mbedtls_psa_inject_entropy( const unsigned char *seed,
size_t seed_size )
{
if( global_data.initialized )
return( PSA_ERROR_NOT_PERMITTED );
if( ( ( seed_size < MBEDTLS_ENTROPY_MIN_PLATFORM ) ||
( seed_size < MBEDTLS_ENTROPY_BLOCK_SIZE ) ) ||
( seed_size > MBEDTLS_ENTROPY_MAX_SEED_SIZE ) )
return( PSA_ERROR_INVALID_ARGUMENT );
return( mbedtls_psa_storage_inject_entropy( seed, seed_size ) );
}
#endif /* MBEDTLS_PSA_INJECT_ENTROPY */
psa_status_t psa_generate_key( psa_key_handle_t handle,
psa_key_type_t type,
size_t bits,
const void *extra,
size_t extra_size )
{
psa_key_slot_t *slot;
psa_status_t status;
if( extra == NULL && extra_size != 0 )
return( PSA_ERROR_INVALID_ARGUMENT );
status = psa_get_empty_key_slot( handle, &slot );
if( status != PSA_SUCCESS )
return( status );
if( key_type_is_raw_bytes( type ) )
{
status = prepare_raw_data_slot( type, bits, &slot->data.raw );
if( status != PSA_SUCCESS )
return( status );
status = psa_generate_random( slot->data.raw.data,
slot->data.raw.bytes );
if( status != PSA_SUCCESS )
{
mbedtls_free( slot->data.raw.data );
return( status );
}
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
psa_des_set_key_parity( slot->data.raw.data,
slot->data.raw.bytes );
#endif /* MBEDTLS_DES_C */
}
else
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME)
if ( type == PSA_KEY_TYPE_RSA_KEYPAIR )
{
mbedtls_rsa_context *rsa;
int ret;
int exponent = 65537;
if( bits > PSA_VENDOR_RSA_MAX_KEY_BITS )
return( PSA_ERROR_NOT_SUPPORTED );
/* Accept only byte-aligned keys, for the same reasons as
* in psa_import_rsa_key(). */
if( bits % 8 != 0 )
return( PSA_ERROR_NOT_SUPPORTED );
if( extra != NULL )
{
const psa_generate_key_extra_rsa *p = extra;
if( extra_size != sizeof( *p ) )
return( PSA_ERROR_INVALID_ARGUMENT );
#if INT_MAX < 0xffffffff
/* Check that the uint32_t value passed by the caller fits
* in the range supported by this implementation. */
if( p->e > INT_MAX )
return( PSA_ERROR_NOT_SUPPORTED );
#endif
exponent = p->e;
}
rsa = mbedtls_calloc( 1, sizeof( *rsa ) );
if( rsa == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
mbedtls_rsa_init( rsa, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_NONE );
ret = mbedtls_rsa_gen_key( rsa,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg,
(unsigned int) bits,
exponent );
if( ret != 0 )
{
mbedtls_rsa_free( rsa );
mbedtls_free( rsa );
return( mbedtls_to_psa_error( ret ) );
}
slot->data.rsa = rsa;
}
else
#endif /* MBEDTLS_RSA_C && MBEDTLS_GENPRIME */
#if defined(MBEDTLS_ECP_C)
if ( PSA_KEY_TYPE_IS_ECC( type ) && PSA_KEY_TYPE_IS_KEYPAIR( type ) )
{
psa_ecc_curve_t curve = PSA_KEY_TYPE_GET_CURVE( type );
mbedtls_ecp_group_id grp_id = mbedtls_ecc_group_of_psa( curve );
const mbedtls_ecp_curve_info *curve_info =
mbedtls_ecp_curve_info_from_grp_id( grp_id );
mbedtls_ecp_keypair *ecp;
int ret;
if( extra != NULL )
return( PSA_ERROR_NOT_SUPPORTED );
if( grp_id == MBEDTLS_ECP_DP_NONE || curve_info == NULL )
return( PSA_ERROR_NOT_SUPPORTED );
if( curve_info->bit_size != bits )
return( PSA_ERROR_INVALID_ARGUMENT );
ecp = mbedtls_calloc( 1, sizeof( *ecp ) );
if( ecp == NULL )
return( PSA_ERROR_INSUFFICIENT_MEMORY );
mbedtls_ecp_keypair_init( ecp );
ret = mbedtls_ecp_gen_key( grp_id, ecp,
mbedtls_ctr_drbg_random,
&global_data.ctr_drbg );
if( ret != 0 )
{
mbedtls_ecp_keypair_free( ecp );
mbedtls_free( ecp );
return( mbedtls_to_psa_error( ret ) );
}
slot->data.ecp = ecp;
}
else
#endif /* MBEDTLS_ECP_C */
return( PSA_ERROR_NOT_SUPPORTED );
slot->type = type;
#if defined(MBEDTLS_PSA_CRYPTO_STORAGE_C)
if( slot->lifetime == PSA_KEY_LIFETIME_PERSISTENT )
{
return( psa_save_generated_persistent_key( slot, bits ) );
}
#endif /* defined(MBEDTLS_PSA_CRYPTO_STORAGE_C) */
return( status );
}
/****************************************************************/
/* Module setup */
/****************************************************************/
psa_status_t mbedtls_psa_crypto_configure_entropy_sources(
void (* entropy_init )( mbedtls_entropy_context *ctx ),
void (* entropy_free )( mbedtls_entropy_context *ctx ) )
{
if( global_data.rng_state != RNG_NOT_INITIALIZED )
return( PSA_ERROR_BAD_STATE );
global_data.entropy_init = entropy_init;
global_data.entropy_free = entropy_free;
return( PSA_SUCCESS );
}
void mbedtls_psa_crypto_free( void )
{
psa_wipe_all_key_slots( );
if( global_data.rng_state != RNG_NOT_INITIALIZED )
{
mbedtls_ctr_drbg_free( &global_data.ctr_drbg );
global_data.entropy_free( &global_data.entropy );
}
/* Wipe all remaining data, including configuration.
* In particular, this sets all state indicator to the value
* indicating "uninitialized". */
mbedtls_platform_zeroize( &global_data, sizeof( global_data ) );
}
psa_status_t psa_crypto_init( void )
{
psa_status_t status;
const unsigned char drbg_seed[] = "PSA";
/* Double initialization is explicitly allowed. */
if( global_data.initialized != 0 )
return( PSA_SUCCESS );
/* Set default configuration if
* mbedtls_psa_crypto_configure_entropy_sources() hasn't been called. */
if( global_data.entropy_init == NULL )
global_data.entropy_init = mbedtls_entropy_init;
if( global_data.entropy_free == NULL )
global_data.entropy_free = mbedtls_entropy_free;
/* Initialize the random generator. */
global_data.entropy_init( &global_data.entropy );
#if defined(MBEDTLS_PSA_INJECT_ENTROPY) && \
defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
/* The PSA entropy injection feature depends on using NV seed as an entropy
* source. Add NV seed as an entropy source for PSA entropy injection. */
mbedtls_entropy_add_source( &global_data.entropy,
mbedtls_nv_seed_poll, NULL,
MBEDTLS_ENTROPY_BLOCK_SIZE,
MBEDTLS_ENTROPY_SOURCE_STRONG );
#endif
mbedtls_ctr_drbg_init( &global_data.ctr_drbg );
global_data.rng_state = RNG_INITIALIZED;
status = mbedtls_to_psa_error(
mbedtls_ctr_drbg_seed( &global_data.ctr_drbg,
mbedtls_entropy_func,
&global_data.entropy,
drbg_seed, sizeof( drbg_seed ) - 1 ) );
if( status != PSA_SUCCESS )
goto exit;
global_data.rng_state = RNG_SEEDED;
status = psa_initialize_key_slots( );
if( status != PSA_SUCCESS )
goto exit;
/* All done. */
global_data.initialized = 1;
exit:
if( status != PSA_SUCCESS )
mbedtls_psa_crypto_free( );
return( status );
}
#endif /* MBEDTLS_PSA_CRYPTO_C */