mbedtls/tests/suites/test_suite_bignum_random.function
Gilles Peskine acdefdd51a Unify RNG initialization that must be unified
mpi_core_random_basic and mpi_random_values must generate the same random
sequences in order to get the expected test coverage (where we know we'll
hit certain numbers of retries). Facilitate this by defining the RNG seed
only once.

Fix the seed to explicitly list all 16 words of the key. This isn't strictly
required (missing initializer fields get the value zero), but it's clearer.

Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
2022-12-15 15:15:47 +01:00

334 lines
11 KiB
C

/* BEGIN_HEADER */
/* Dedicated test suite for mbedtls_mpi_core_random() and the upper-layer
* functions. Due to the complexity of how these functions are tested,
* we test all the layers in a single test suite, unlike the way other
* functions are tested with each layer in its own test suite.
*/
#include "mbedtls/bignum.h"
#include "mbedtls/entropy.h"
#include "bignum_core.h"
#include "constant_time_internal.h"
/* This test suite only manipulates non-negative bignums. */
static int sign_is_valid( const mbedtls_mpi *X )
{
return( X->s == 1 );
}
/* A common initializer for test functions that should generate the same
* sequences for reproducibility and good coverage. */
const mbedtls_test_rnd_pseudo_info rnd_pseudo_seed = {
/* 16-word key */
{'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
'a', ' ', 's', 'e', 'e', 'd', '!', 0},
/* 2-word initial state, should be zero */
0, 0};
/* Test whether bytes represents (in big-endian base 256) a number b that
* is significantly above a power of 2. That is, b must not have a long run
* of unset bits after the most significant bit.
*
* Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}.
* This function returns 1 if, when drawing a number between 0 and b,
* the probability that this number is at least 2^n is not negligible.
* This probability is (b - 2^n) / b and this function checks that this
* number is above some threshold A. The threshold value is heuristic and
* based on the needs of mpi_random_many().
*/
static int is_significantly_above_a_power_of_2( data_t *bytes )
{
const uint8_t *p = bytes->x;
size_t len = bytes->len;
unsigned x;
/* Skip leading null bytes */
while( len > 0 && p[0] == 0 )
{
++p;
--len;
}
/* 0 is not significantly above a power of 2 */
if( len == 0 )
return( 0 );
/* Extract the (up to) 2 most significant bytes */
if( len == 1 )
x = p[0];
else
x = ( p[0] << 8 ) | p[1];
/* Shift the most significant bit of x to position 8 and mask it out */
while( ( x & 0xfe00 ) != 0 )
x >>= 1;
x &= 0x00ff;
/* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above
* a power of 2 iff x is significantly above 0 compared to 2^8.
* Testing x >= 2^4 amounts to picking A = 1/16 in the function
* description above. */
return( x >= 0x10 );
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_BIGNUM_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void mpi_core_random_basic( int min, char *bound_bytes, int expected_ret )
{
/* Same RNG as in mpi_random_values */
mbedtls_test_rnd_pseudo_info rnd = rnd_pseudo_seed;
size_t limbs;
mbedtls_mpi_uint *lower_bound = NULL;
mbedtls_mpi_uint *upper_bound = NULL;
mbedtls_mpi_uint *result = NULL;
TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs,
bound_bytes ) );
ASSERT_ALLOC( lower_bound, limbs );
lower_bound[0] = min;
ASSERT_ALLOC( result, limbs );
TEST_EQUAL( expected_ret,
mbedtls_mpi_core_random( result, min, upper_bound, limbs,
mbedtls_test_rnd_pseudo_rand, &rnd ) );
if( expected_ret == 0 )
{
TEST_EQUAL( 0, mbedtls_mpi_core_lt_ct( result, lower_bound, limbs ) );
TEST_EQUAL( 1, mbedtls_mpi_core_lt_ct( result, upper_bound, limbs ) );
}
exit:
mbedtls_free( lower_bound );
mbedtls_free( upper_bound );
mbedtls_free( result );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_values( int min, char *max_hex )
{
/* Same RNG as in mpi_core_random_basic */
mbedtls_test_rnd_pseudo_info rnd_core = rnd_pseudo_seed;
mbedtls_test_rnd_pseudo_info rnd_legacy;
memcpy( &rnd_legacy, &rnd_core, sizeof( rnd_core ) );
mbedtls_mpi max_legacy;
mbedtls_mpi_init( &max_legacy );
mbedtls_mpi_uint *R_core = NULL;
mbedtls_mpi R_legacy;
mbedtls_mpi_init( &R_legacy );
TEST_EQUAL( 0, mbedtls_test_read_mpi( &max_legacy, max_hex ) );
size_t limbs = max_legacy.n;
ASSERT_ALLOC( R_core, limbs );
/* Call the legacy function and the core function with the same random
* stream. */
int core_ret = mbedtls_mpi_core_random( R_core, min, max_legacy.p, limbs,
mbedtls_test_rnd_pseudo_rand,
&rnd_core );
int legacy_ret = mbedtls_mpi_random( &R_legacy, min, &max_legacy,
mbedtls_test_rnd_pseudo_rand,
&rnd_legacy );
/* They must return the same status, and, on success, output the
* same number, with the same limb count. */
TEST_EQUAL( core_ret, legacy_ret );
if( core_ret == 0 )
{
ASSERT_COMPARE( R_core, limbs * ciL,
R_legacy.p, R_legacy.n * ciL );
}
/* Also check that they have consumed the RNG in the same way. */
/* This may theoretically fail on rare platforms with padding in
* the structure! If this is a problem in practice, change to a
* field-by-field comparison. */
ASSERT_COMPARE( &rnd_core, sizeof( rnd_core ),
&rnd_legacy, sizeof( rnd_legacy ) );
exit:
mbedtls_mpi_free( &max_legacy );
mbedtls_free( R_core );
mbedtls_mpi_free( &R_legacy );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_many( int min, char *bound_hex, int iterations )
{
/* Generate numbers in the range 1..bound-1. Do it iterations times.
* This function assumes that the value of bound is at least 2 and
* that iterations is large enough that a one-in-2^iterations chance
* effectively never occurs.
*/
data_t bound_bytes = {NULL, 0};
mbedtls_mpi_uint *upper_bound = NULL;
size_t limbs;
size_t n_bits;
mbedtls_mpi_uint *result = NULL;
size_t b;
/* If upper_bound is small, stats[b] is the number of times the value b
* has been generated. Otherwise stats[b] is the number of times a
* value with bit b set has been generated. */
size_t *stats = NULL;
size_t stats_len;
int full_stats;
size_t i;
TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &upper_bound, &limbs,
bound_hex ) );
ASSERT_ALLOC( result, limbs );
n_bits = mbedtls_mpi_core_bitlen( upper_bound, limbs );
/* Consider a bound "small" if it's less than 2^5. This value is chosen
* to be small enough that the probability of missing one value is
* negligible given the number of iterations. It must be less than
* 256 because some of the code below assumes that "small" values
* fit in a byte. */
if( n_bits <= 5 )
{
full_stats = 1;
stats_len = (uint8_t) upper_bound[0];
}
else
{
full_stats = 0;
stats_len = n_bits;
}
ASSERT_ALLOC( stats, stats_len );
for( i = 0; i < (size_t) iterations; i++ )
{
mbedtls_test_set_step( i );
TEST_EQUAL( 0, mbedtls_mpi_core_random( result,
min, upper_bound, limbs,
mbedtls_test_rnd_std_rand, NULL ) );
/* Temporarily use a legacy MPI for analysis, because the
* necessary auxiliary functions don't exist yet in core. */
mbedtls_mpi B = {1, limbs, upper_bound};
mbedtls_mpi R = {1, limbs, result};
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) < 0 );
TEST_ASSERT( mbedtls_mpi_cmp_int( &R, min ) >= 0 );
if( full_stats )
{
uint8_t value;
TEST_EQUAL( 0, mbedtls_mpi_write_binary( &R, &value, 1 ) );
TEST_ASSERT( value < stats_len );
++stats[value];
}
else
{
for( b = 0; b < n_bits; b++ )
stats[b] += mbedtls_mpi_get_bit( &R, b );
}
}
if( full_stats )
{
for( b = min; b < stats_len; b++ )
{
mbedtls_test_set_step( 1000000 + b );
/* Assert that each value has been reached at least once.
* This is almost guaranteed if the iteration count is large
* enough. This is a very crude way of checking the distribution.
*/
TEST_ASSERT( stats[b] > 0 );
}
}
else
{
bound_bytes.len = limbs * sizeof( mbedtls_mpi_uint );
ASSERT_ALLOC( bound_bytes.x, bound_bytes.len );
mbedtls_mpi_core_write_be( upper_bound, limbs,
bound_bytes.x, bound_bytes.len );
int statistically_safe_all_the_way =
is_significantly_above_a_power_of_2( &bound_bytes );
for( b = 0; b < n_bits; b++ )
{
mbedtls_test_set_step( 1000000 + b );
/* Assert that each bit has been set in at least one result and
* clear in at least one result. Provided that iterations is not
* too small, it would be extremely unlikely for this not to be
* the case if the results are uniformly distributed.
*
* As an exception, the top bit may legitimately never be set
* if bound is a power of 2 or only slightly above.
*/
if( statistically_safe_all_the_way || b != n_bits - 1 )
{
TEST_ASSERT( stats[b] > 0 );
}
TEST_ASSERT( stats[b] < (size_t) iterations );
}
}
exit:
mbedtls_free( bound_bytes.x );
mbedtls_free( upper_bound );
mbedtls_free( result );
mbedtls_free( stats );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_sizes( int min, data_t *bound_bytes, int nlimbs, int before )
{
mbedtls_mpi upper_bound;
mbedtls_mpi result;
mbedtls_mpi_init( &upper_bound );
mbedtls_mpi_init( &result );
if( before != 0 )
{
/* Set result to sign(before) * 2^(|before|-1) */
TEST_ASSERT( mbedtls_mpi_lset( &result, before > 0 ? 1 : -1 ) == 0 );
if( before < 0 )
before = - before;
TEST_ASSERT( mbedtls_mpi_shift_l( &result, before - 1 ) == 0 );
}
TEST_EQUAL( 0, mbedtls_mpi_grow( &result, nlimbs ) );
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
bound_bytes->x, bound_bytes->len ) );
TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL ) );
TEST_ASSERT( sign_is_valid( &result ) );
TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 );
TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 );
exit:
mbedtls_mpi_free( &upper_bound );
mbedtls_mpi_free( &result );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_random_fail( int min, data_t *bound_bytes, int expected_ret )
{
mbedtls_mpi upper_bound;
mbedtls_mpi result;
int actual_ret;
mbedtls_mpi_init( &upper_bound );
mbedtls_mpi_init( &result );
TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound,
bound_bytes->x, bound_bytes->len ) );
actual_ret = mbedtls_mpi_random( &result, min, &upper_bound,
mbedtls_test_rnd_std_rand, NULL );
TEST_EQUAL( expected_ret, actual_ret );
exit:
mbedtls_mpi_free( &upper_bound );
mbedtls_mpi_free( &result );
}
/* END_CASE */