/* * Diffie-Hellman-Merkle key exchange (client side) * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbedtls/build_info.h" #include "mbedtls/platform.h" #if defined(MBEDTLS_AES_C) && defined(MBEDTLS_DHM_C) && \ defined(MBEDTLS_ENTROPY_C) && defined(MBEDTLS_NET_C) && \ defined(MBEDTLS_RSA_C) && defined(MBEDTLS_SHA256_C) && \ defined(MBEDTLS_FS_IO) && defined(MBEDTLS_CTR_DRBG_C) && \ defined(MBEDTLS_SHA1_C) #include "mbedtls/net_sockets.h" #include "mbedtls/aes.h" #include "mbedtls/dhm.h" #include "mbedtls/rsa.h" #include "mbedtls/sha1.h" #include "mbedtls/entropy.h" #include "mbedtls/ctr_drbg.h" #include #include #endif #define SERVER_NAME "localhost" #define SERVER_PORT "11999" #if !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_DHM_C) || \ !defined(MBEDTLS_ENTROPY_C) || !defined(MBEDTLS_NET_C) || \ !defined(MBEDTLS_RSA_C) || !defined(MBEDTLS_SHA256_C) || \ !defined(MBEDTLS_FS_IO) || !defined(MBEDTLS_CTR_DRBG_C) || \ !defined(MBEDTLS_SHA1_C) int main(void) { mbedtls_printf("MBEDTLS_AES_C and/or MBEDTLS_DHM_C and/or MBEDTLS_ENTROPY_C " "and/or MBEDTLS_NET_C and/or MBEDTLS_RSA_C and/or " "MBEDTLS_SHA256_C and/or MBEDTLS_FS_IO and/or " "MBEDTLS_CTR_DRBG_C not defined.\n"); mbedtls_exit(0); } #else int main(void) { FILE *f; int ret = 1; int exit_code = MBEDTLS_EXIT_FAILURE; size_t n, buflen; mbedtls_net_context server_fd; unsigned char *p, *end; unsigned char buf[2048]; unsigned char hash[32]; const char *pers = "dh_client"; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; mbedtls_rsa_context rsa; mbedtls_dhm_context dhm; mbedtls_aes_context aes; mbedtls_net_init(&server_fd); mbedtls_dhm_init(&dhm); mbedtls_aes_init(&aes); mbedtls_ctr_drbg_init(&ctr_drbg); /* * 1. Setup the RNG */ mbedtls_printf("\n . Seeding the random number generator"); fflush(stdout); mbedtls_entropy_init(&entropy); if ((ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen(pers))) != 0) { mbedtls_printf(" failed\n ! mbedtls_ctr_drbg_seed returned %d\n", ret); goto exit; } /* * 2. Read the server's public RSA key */ mbedtls_printf("\n . Reading public key from rsa_pub.txt"); fflush(stdout); if ((f = fopen("rsa_pub.txt", "rb")) == NULL) { mbedtls_printf(" failed\n ! Could not open rsa_pub.txt\n" \ " ! Please run rsa_genkey first\n\n"); goto exit; } mbedtls_rsa_init(&rsa); if ((ret = mbedtls_mpi_read_file(&rsa.MBEDTLS_PRIVATE(N), 16, f)) != 0 || (ret = mbedtls_mpi_read_file(&rsa.MBEDTLS_PRIVATE(E), 16, f)) != 0) { mbedtls_printf(" failed\n ! mbedtls_mpi_read_file returned %d\n\n", ret); fclose(f); goto exit; } rsa.MBEDTLS_PRIVATE(len) = (mbedtls_mpi_bitlen(&rsa.MBEDTLS_PRIVATE(N)) + 7) >> 3; fclose(f); /* * 3. Initiate the connection */ mbedtls_printf("\n . Connecting to tcp/%s/%s", SERVER_NAME, SERVER_PORT); fflush(stdout); if ((ret = mbedtls_net_connect(&server_fd, SERVER_NAME, SERVER_PORT, MBEDTLS_NET_PROTO_TCP)) != 0) { mbedtls_printf(" failed\n ! mbedtls_net_connect returned %d\n\n", ret); goto exit; } /* * 4a. First get the buffer length */ mbedtls_printf("\n . Receiving the server's DH parameters"); fflush(stdout); memset(buf, 0, sizeof(buf)); if ((ret = mbedtls_net_recv(&server_fd, buf, 2)) != 2) { mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret); goto exit; } n = buflen = (buf[0] << 8) | buf[1]; if (buflen < 1 || buflen > sizeof(buf)) { mbedtls_printf(" failed\n ! Got an invalid buffer length\n\n"); goto exit; } /* * 4b. Get the DHM parameters: P, G and Ys = G^Xs mod P */ memset(buf, 0, sizeof(buf)); if ((ret = mbedtls_net_recv(&server_fd, buf, n)) != (int) n) { mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret); goto exit; } p = buf, end = buf + buflen; if ((ret = mbedtls_dhm_read_params(&dhm, &p, end)) != 0) { mbedtls_printf(" failed\n ! mbedtls_dhm_read_params returned %d\n\n", ret); goto exit; } n = mbedtls_dhm_get_len(&dhm); if (n < 64 || n > 512) { mbedtls_printf(" failed\n ! Invalid DHM modulus size\n\n"); goto exit; } /* * 5. Check that the server's RSA signature matches * the SHA-256 hash of (P,G,Ys) */ mbedtls_printf("\n . Verifying the server's RSA signature"); fflush(stdout); p += 2; if ((n = (size_t) (end - p)) != rsa.MBEDTLS_PRIVATE(len)) { mbedtls_printf(" failed\n ! Invalid RSA signature size\n\n"); goto exit; } if ((ret = mbedtls_sha1(buf, (int) (p - 2 - buf), hash)) != 0) { mbedtls_printf(" failed\n ! mbedtls_sha1 returned %d\n\n", ret); goto exit; } if ((ret = mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA256, 32, hash, p)) != 0) { mbedtls_printf(" failed\n ! mbedtls_rsa_pkcs1_verify returned %d\n\n", ret); goto exit; } /* * 6. Send our public value: Yc = G ^ Xc mod P */ mbedtls_printf("\n . Sending own public value to server"); fflush(stdout); n = mbedtls_dhm_get_len(&dhm); if ((ret = mbedtls_dhm_make_public(&dhm, (int) n, buf, n, mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) { mbedtls_printf(" failed\n ! mbedtls_dhm_make_public returned %d\n\n", ret); goto exit; } if ((ret = mbedtls_net_send(&server_fd, buf, n)) != (int) n) { mbedtls_printf(" failed\n ! mbedtls_net_send returned %d\n\n", ret); goto exit; } /* * 7. Derive the shared secret: K = Ys ^ Xc mod P */ mbedtls_printf("\n . Shared secret: "); fflush(stdout); if ((ret = mbedtls_dhm_calc_secret(&dhm, buf, sizeof(buf), &n, mbedtls_ctr_drbg_random, &ctr_drbg)) != 0) { mbedtls_printf(" failed\n ! mbedtls_dhm_calc_secret returned %d\n\n", ret); goto exit; } for (n = 0; n < 16; n++) { mbedtls_printf("%02x", buf[n]); } /* * 8. Setup the AES-256 decryption key * * This is an overly simplified example; best practice is * to hash the shared secret with a random value to derive * the keying material for the encryption/decryption keys, * IVs and MACs. */ mbedtls_printf("...\n . Receiving and decrypting the ciphertext"); fflush(stdout); ret = mbedtls_aes_setkey_dec(&aes, buf, 256); if (ret != 0) { goto exit; } memset(buf, 0, sizeof(buf)); if ((ret = mbedtls_net_recv(&server_fd, buf, 16)) != 16) { mbedtls_printf(" failed\n ! mbedtls_net_recv returned %d\n\n", ret); goto exit; } ret = mbedtls_aes_crypt_ecb(&aes, MBEDTLS_AES_DECRYPT, buf, buf); if (ret != 0) { goto exit; } buf[16] = '\0'; mbedtls_printf("\n . Plaintext is \"%s\"\n\n", (char *) buf); exit_code = MBEDTLS_EXIT_SUCCESS; exit: mbedtls_net_free(&server_fd); mbedtls_aes_free(&aes); mbedtls_rsa_free(&rsa); mbedtls_dhm_free(&dhm); mbedtls_ctr_drbg_free(&ctr_drbg); mbedtls_entropy_free(&entropy); mbedtls_exit(exit_code); } #endif /* MBEDTLS_AES_C && MBEDTLS_DHM_C && MBEDTLS_ENTROPY_C && MBEDTLS_NET_C && MBEDTLS_RSA_C && MBEDTLS_SHA256_C && MBEDTLS_FS_IO && MBEDTLS_CTR_DRBG_C */