/* BEGIN_HEADER */ #include "mbedtls/bignum.h" #include "mbedtls/entropy.h" #include "bignum_core.h" #include "constant_time_internal.h" #include "test/constant_flow.h" /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_BIGNUM_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void mpi_core_io_null() { mbedtls_mpi_uint X = 0; int ret; ret = mbedtls_mpi_core_read_be( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_be( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_read_be( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_be( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_read_le( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_le( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_read_le( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_le( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_be( data_t *input, int nb_int, int nx_32_int, int iret, int oret ) { if( iret != 0 ) TEST_ASSERT( oret == 0 ); TEST_LE_S( 0, nb_int ); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U( nb, sizeof( buf ) ); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S( 0, nx_32_int ); if( sizeof( mbedtls_mpi_uint ) == 8 ) nx = nx_32_int / 2 + nx_32_int % 2; else nx = nx_32_int; mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )]; TEST_LE_U( nx, sizeof( X ) / sizeof( X[0] ) ); int ret = mbedtls_mpi_core_read_be( X, nx, input->x, input->len ); TEST_EQUAL( ret, iret ); if( iret == 0 ) { ret = mbedtls_mpi_core_write_be( X, nx, buf, nb ); TEST_EQUAL( ret, oret ); } if( ( iret == 0 ) && ( oret == 0 ) ) { if( nb > input->len ) { size_t leading_zeroes = nb - input->len; TEST_ASSERT( memcmp( buf + nb - input->len, input->x, input->len ) == 0 ); for( size_t i = 0; i < leading_zeroes; i++ ) TEST_EQUAL( buf[i], 0 ); } else { size_t leading_zeroes = input->len - nb; TEST_ASSERT( memcmp( input->x + input->len - nb, buf, nb ) == 0 ); for( size_t i = 0; i < leading_zeroes; i++ ) TEST_EQUAL( input->x[i], 0 ); } } exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_le( data_t *input, int nb_int, int nx_32_int, int iret, int oret ) { if( iret != 0 ) TEST_ASSERT( oret == 0 ); TEST_LE_S( 0, nb_int ); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U( nb, sizeof( buf ) ); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S( 0, nx_32_int ); if( sizeof( mbedtls_mpi_uint ) == 8 ) nx = nx_32_int / 2 + nx_32_int % 2; else nx = nx_32_int; mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )]; TEST_LE_U( nx, sizeof( X ) / sizeof( X[0] ) ); int ret = mbedtls_mpi_core_read_le( X, nx, input->x, input->len ); TEST_EQUAL( ret, iret ); if( iret == 0 ) { ret = mbedtls_mpi_core_write_le( X, nx, buf, nb ); TEST_EQUAL( ret, oret ); } if( ( iret == 0 ) && ( oret == 0 ) ) { if( nb > input->len ) { TEST_ASSERT( memcmp( buf, input->x, input->len ) == 0 ); for( size_t i = input->len; i < nb; i++ ) TEST_EQUAL( buf[i], 0 ); } else { TEST_ASSERT( memcmp( input->x, buf, nb ) == 0 ); for( size_t i = nb; i < input->len; i++ ) TEST_EQUAL( input->x[i], 0 ); } } exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_bitlen( char *input_X, int nr_bits ) { mbedtls_mpi_uint *X = NULL; size_t limbs; TEST_EQUAL( mbedtls_test_read_mpi_core( &X, &limbs, input_X ), 0 ); TEST_EQUAL( mbedtls_mpi_core_bitlen( X, limbs ), nr_bits ); exit: mbedtls_free( X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_lt_ct( char *input_X, char *input_Y, int exp_ret ) { mbedtls_mpi_uint *X = NULL; size_t X_limbs; mbedtls_mpi_uint *Y = NULL; size_t Y_limbs; int ret; TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &X, &X_limbs, input_X ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &Y, &Y_limbs, input_Y ) ); /* We need two same-length limb arrays */ TEST_EQUAL( X_limbs, Y_limbs ); TEST_CF_SECRET( X, X_limbs * sizeof( mbedtls_mpi_uint ) ); TEST_CF_SECRET( Y, X_limbs * sizeof( mbedtls_mpi_uint ) ); ret = mbedtls_mpi_core_lt_ct( X, Y, X_limbs ); TEST_EQUAL( ret, exp_ret ); exit: mbedtls_free( X ); mbedtls_free( Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_cond_assign( data_t * input_X, data_t * input_Y, int input_bytes ) { mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *Y = NULL; size_t limbs_X = CHARS_TO_LIMBS( input_X->len ); size_t limbs_Y = CHARS_TO_LIMBS( input_Y->len ); size_t limbs = limbs_X; size_t copy_limbs = CHARS_TO_LIMBS( input_bytes ); size_t bytes = limbs * sizeof( mbedtls_mpi_uint ); size_t copy_bytes = copy_limbs * sizeof( mbedtls_mpi_uint ); TEST_EQUAL( limbs_X, limbs_Y ); TEST_ASSERT( copy_limbs <= limbs ); ASSERT_ALLOC( X, limbs ); ASSERT_ALLOC( Y, limbs ); TEST_ASSERT( mbedtls_mpi_core_read_be( X, limbs, input_X->x, input_X->len ) == 0 ); TEST_ASSERT( mbedtls_mpi_core_read_be( Y, limbs, input_Y->x, input_Y->len ) == 0 ); /* condition is false */ TEST_CF_SECRET( X, bytes ); TEST_CF_SECRET( Y, bytes ); mbedtls_mpi_core_cond_assign( X, Y, copy_limbs, 0 ); TEST_CF_PUBLIC( X, bytes ); TEST_CF_PUBLIC( Y, bytes ); TEST_ASSERT( memcmp( X, Y, bytes ) != 0 ); /* condition is true */ TEST_CF_SECRET( X, bytes ); TEST_CF_SECRET( Y, bytes ); mbedtls_mpi_core_cond_assign( X, Y, copy_limbs, 1 ); TEST_CF_PUBLIC( X, bytes ); TEST_CF_PUBLIC( Y, bytes ); /* Check if the given length is copied even it is smaller than the length of the given MPIs. */ if( copy_limbs < limbs ) { ASSERT_COMPARE( X, copy_bytes, Y, copy_bytes ); TEST_ASSERT( memcmp( X, Y, bytes ) != 0 ); } else ASSERT_COMPARE( X, bytes, Y, bytes ); exit: mbedtls_free( X ); mbedtls_free( Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_cond_swap( data_t * input_X, data_t * input_Y, int input_bytes ) { mbedtls_mpi_uint *tmp_X = NULL; mbedtls_mpi_uint *tmp_Y = NULL; mbedtls_mpi_uint *X = NULL; mbedtls_mpi_uint *Y = NULL; size_t limbs_X = CHARS_TO_LIMBS( input_X->len ); size_t limbs_Y = CHARS_TO_LIMBS( input_Y->len ); size_t limbs = limbs_X; size_t copy_limbs = CHARS_TO_LIMBS( input_bytes ); size_t bytes = limbs * sizeof( mbedtls_mpi_uint ); size_t copy_bytes = copy_limbs * sizeof( mbedtls_mpi_uint ); TEST_EQUAL( limbs_X, limbs_Y ); TEST_ASSERT( copy_limbs <= limbs ); ASSERT_ALLOC( tmp_X, limbs ); ASSERT_ALLOC( tmp_Y, limbs ); TEST_ASSERT( mbedtls_mpi_core_read_be( tmp_X, limbs, input_X->x, input_X->len ) == 0 ); ASSERT_ALLOC( X, limbs ); memcpy( X, tmp_X, bytes ); TEST_ASSERT( mbedtls_mpi_core_read_be( tmp_Y, limbs, input_Y->x, input_Y->len ) == 0 ); ASSERT_ALLOC( Y, limbs ); memcpy( Y, tmp_Y, bytes ); /* condition is false */ TEST_CF_SECRET( X, bytes ); TEST_CF_SECRET( Y, bytes ); mbedtls_mpi_core_cond_swap( X, Y, copy_limbs, 0 ); TEST_CF_PUBLIC( X, bytes ); TEST_CF_PUBLIC( Y, bytes ); ASSERT_COMPARE( X, bytes, tmp_X, bytes ); ASSERT_COMPARE( Y, bytes, tmp_Y, bytes ); /* condition is true */ TEST_CF_SECRET( X, bytes ); TEST_CF_SECRET( Y, bytes ); mbedtls_mpi_core_cond_swap( X, Y, copy_limbs, 1 ); TEST_CF_PUBLIC( X, bytes ); TEST_CF_PUBLIC( Y, bytes ); /* Check if the given length is copied even it is smaller than the length of the given MPIs. */ if( copy_limbs < limbs ) { ASSERT_COMPARE( X, copy_bytes, tmp_Y, copy_bytes ); ASSERT_COMPARE( Y, copy_bytes, tmp_X, copy_bytes ); TEST_ASSERT( memcmp( X, tmp_X, bytes ) != 0 ); TEST_ASSERT( memcmp( X, tmp_Y, bytes ) != 0 ); TEST_ASSERT( memcmp( Y, tmp_X, bytes ) != 0 ); TEST_ASSERT( memcmp( Y, tmp_Y, bytes ) != 0 ); } else { ASSERT_COMPARE( X, bytes, tmp_Y, bytes ); ASSERT_COMPARE( Y, bytes, tmp_X, bytes ); } exit: mbedtls_free( tmp_X ); mbedtls_free( tmp_Y ); mbedtls_free( X ); mbedtls_free( Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_add_if( char * input_A, char * input_B, char * input_S, int carry ) { mbedtls_mpi_uint *A = NULL; /* first value to add */ size_t A_limbs; mbedtls_mpi_uint *B = NULL; /* second value to add */ size_t B_limbs; mbedtls_mpi_uint *S = NULL; /* expected result */ size_t S_limbs; mbedtls_mpi_uint *X = NULL; /* destination - the in/out first operand */ size_t X_limbs; TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &A, &A_limbs, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &B, &B_limbs, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi_core( &S, &S_limbs, input_S ) ); X_limbs = S_limbs; ASSERT_ALLOC( X, X_limbs ); /* add_if expects all operands to be the same length */ TEST_EQUAL( A_limbs, B_limbs ); TEST_EQUAL( A_limbs, S_limbs ); size_t limbs = A_limbs; size_t bytes = limbs * sizeof( *A ); /* The test cases have A <= B to avoid repetition, so we test A + B then, * if A != B, B + A. If A == B, we can test when A and B are aliased */ /* A + B */ /* cond = 0 => X unchanged, no carry */ memcpy( X, A, bytes ); TEST_EQUAL( 0, mbedtls_mpi_core_add_if( X, B, limbs, 0 ) ); ASSERT_COMPARE( X, bytes, A, bytes ); /* cond = 1 => correct result and carry */ TEST_EQUAL( carry, mbedtls_mpi_core_add_if( X, B, limbs, 1 ) ); ASSERT_COMPARE( X, bytes, S, bytes ); if ( memcmp( A, B, bytes ) == 0 ) { /* A == B, so test where A and B are aliased */ /* cond = 0 => X unchanged, no carry */ memcpy( X, B, bytes ); TEST_EQUAL( 0, mbedtls_mpi_core_add_if( X, X, limbs, 0 ) ); ASSERT_COMPARE( X, bytes, B, bytes ); /* cond = 1 => correct result and carry */ TEST_EQUAL( carry, mbedtls_mpi_core_add_if( X, X, limbs, 1 ) ); ASSERT_COMPARE( X, bytes, S, bytes ); } else { /* A != B, so test B + A */ /* cond = 0 => d unchanged, no carry */ memcpy( X, B, bytes ); TEST_EQUAL( 0, mbedtls_mpi_core_add_if( X, A, limbs, 0 ) ); ASSERT_COMPARE( X, bytes, B, bytes ); /* cond = 1 => correct result and carry */ TEST_EQUAL( carry, mbedtls_mpi_core_add_if( X, A, limbs, 1 ) ); ASSERT_COMPARE( X, bytes, S, bytes ); } exit: mbedtls_free( A ); mbedtls_free( B ); mbedtls_free( S ); mbedtls_free( X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_sub( char * input_A, char * input_B, char * input_X4, char * input_X8, int carry ) { mbedtls_mpi A, B, X4, X8; mbedtls_mpi_uint *a = NULL; mbedtls_mpi_uint *b = NULL; mbedtls_mpi_uint *x = NULL; /* expected */ mbedtls_mpi_uint *r = NULL; /* result */ mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &X4 ); mbedtls_mpi_init( &X8 ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, X4.s ); TEST_EQUAL( 1, X8.s ); /* Get the number of limbs we will need */ size_t limbs = MAX( A.n, B.n ); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* We only need to work with X4 or X8, depending on sizeof(mbedtls_mpi_uint) */ mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8; /* The result shouldn't have more limbs than the longest input */ TEST_LE_U( X->n, limbs ); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC( a, bytes ); ASSERT_ALLOC( b, bytes ); ASSERT_ALLOC( x, bytes ); ASSERT_ALLOC( r, bytes ); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_sub()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()) */ memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) ); memcpy( b, B.p, B.n * sizeof(mbedtls_mpi_uint) ); memcpy( x, X->p, X->n * sizeof(mbedtls_mpi_uint) ); /* 1a) r = a - b => we should get the correct carry */ TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, a, b, limbs ) ); /* 1b) r = a - b => we should get the correct result */ ASSERT_COMPARE( r, bytes, x, bytes ); /* 2 and 3 test "r may be aliased to a or b" */ /* 2a) r = a; r -= b => we should get the correct carry (use r to avoid clobbering a) */ memcpy( r, a, bytes ); TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, r, b, limbs ) ); /* 2b) r -= b => we should get the correct result */ ASSERT_COMPARE( r, bytes, x, bytes ); /* 3a) r = b; r = a - r => we should get the correct carry (use r to avoid clobbering b) */ memcpy( r, b, bytes ); TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, a, r, limbs ) ); /* 3b) r = a - b => we should get the correct result */ ASSERT_COMPARE( r, bytes, x, bytes ); /* 4 tests "r may be aliased to [...] both" */ if ( A.n == B.n && memcmp( A.p, B.p, bytes ) == 0 ) { memcpy( r, b, bytes ); TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, r, r, limbs ) ); ASSERT_COMPARE( r, bytes, x, bytes ); } exit: mbedtls_free( a ); mbedtls_free( b ); mbedtls_free( x ); mbedtls_free( r ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); mbedtls_mpi_free( &X4 ); mbedtls_mpi_free( &X8 ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_mla( char * input_A, char * input_B, char * input_S, char * input_X4, char * input_cy4, char * input_X8, char * input_cy8 ) { /* We are testing A += B * s; A, B are MPIs, s is a scalar. * * However, we encode s as an MPI in the .data file as the test framework * currently only supports `int`-typed scalars, and that doesn't cover the * full range of `mbedtls_mpi_uint`. * * We also have the different results for sizeof(mbedtls_mpi_uint) == 4 or 8. */ mbedtls_mpi A, B, S, X4, X8, cy4, cy8; mbedtls_mpi_uint *a = NULL; mbedtls_mpi_uint *x = NULL; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &X4 ); mbedtls_mpi_init( &X8 ); mbedtls_mpi_init( &cy4 ); mbedtls_mpi_init( &cy8 ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &S, input_S ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &cy4, input_cy4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &cy8, input_cy8 ) ); /* The MPI encoding of scalar s must be only 1 limb */ TEST_EQUAL( 1, S.n ); /* We only need to work with X4 or X8, and cy4 or cy8, depending on sizeof(mbedtls_mpi_uint) */ mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8; mbedtls_mpi *cy = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &cy4 : &cy8; /* The carry should only have one limb */ TEST_EQUAL( 1, cy->n ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, S.s ); TEST_EQUAL( 1, X->s ); TEST_EQUAL( 1, cy->s ); /* Get the (max) number of limbs we will need */ size_t limbs = MAX( A.n, B.n ); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* The result shouldn't have more limbs than the longest input */ TEST_LE_U( X->n, limbs ); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC( a, bytes ); ASSERT_ALLOC( x, bytes ); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_mla()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()). */ memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) ); memcpy( x, X->p, X->n * sizeof(mbedtls_mpi_uint) ); /* 1a) A += B * s => we should get the correct carry */ TEST_EQUAL( mbedtls_mpi_core_mla( a, limbs, B.p, B.n, *S.p ), *cy->p ); /* 1b) A += B * s => we should get the correct result */ ASSERT_COMPARE( a, bytes, x, bytes ); if ( A.n == B.n && memcmp( A.p, B.p, bytes ) == 0 ) { /* Check when A and B are aliased */ memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) ); TEST_EQUAL( mbedtls_mpi_core_mla( a, limbs, a, limbs, *S.p ), *cy->p ); ASSERT_COMPARE( a, bytes, x, bytes ); } exit: mbedtls_free( a ); mbedtls_free( x ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &X4 ); mbedtls_mpi_free( &X8 ); mbedtls_mpi_free( &cy4 ); mbedtls_mpi_free( &cy8 ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_montg_init( char * input_N, char * input_mm ) { mbedtls_mpi N, mm; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &mm ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &N, input_N ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &mm, input_mm ) ); /* The MPI encoding of mm should be 1 limb (sizeof(mbedtls_mpi_uint) == 8) or * 2 limbs (sizeof(mbedtls_mpi_uint) == 4). * * The data file contains the expected result for sizeof(mbedtls_mpi_uint) == 8; * for sizeof(mbedtls_mpi_uint) == 4 it's just the LSW of this. */ TEST_ASSERT( mm.n == 1 || mm.n == 2 ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, N.s ); TEST_EQUAL( 1, mm.s ); /* mbedtls_mpi_core_montmul_init() only returns a result, no error possible */ mbedtls_mpi_uint result = mbedtls_mpi_core_montmul_init( N.p ); /* Check we got the correct result */ TEST_EQUAL( result, mm.p[0] ); exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &mm ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_montmul( int limbs_AN4, int limbs_B4, int limbs_AN8, int limbs_B8, char * input_A, char * input_B, char * input_N, char * input_X4, char * input_X8 ) { mbedtls_mpi A, B, N, X4, X8, T, R; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X4 ); /* expected result, sizeof(mbedtls_mpi_uint) == 4 */ mbedtls_mpi_init( &X8 ); /* expected result, sizeof(mbedtls_mpi_uint) == 8 */ mbedtls_mpi_init( &T ); mbedtls_mpi_init( &R ); /* for the result */ TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &N, input_N ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) ); mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8; int limbs_AN = ( sizeof(mbedtls_mpi_uint) == 4 ) ? limbs_AN4 : limbs_AN8; int limbs_B = ( sizeof(mbedtls_mpi_uint) == 4 ) ? limbs_B4 : limbs_B8; TEST_LE_U( A.n, (size_t)limbs_AN ); TEST_LE_U( X->n, (size_t)limbs_AN ); TEST_LE_U( B.n, (size_t)limbs_B ); TEST_LE_U( limbs_B, limbs_AN ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, N.s ); TEST_EQUAL( 1, X->s ); TEST_EQUAL( 0, mbedtls_mpi_grow( &A, limbs_AN ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( &N, limbs_AN ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( X, limbs_AN ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( &B, limbs_B ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( &T, limbs_AN * 2 + 1 ) ); /* Calculate the Montgomery constant (this is unit tested separately) */ mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init( N.p ); TEST_EQUAL( 0, mbedtls_mpi_grow( &R, limbs_AN ) ); /* ensure it's got the right number of limbs */ mbedtls_mpi_core_montmul( R.p, A.p, B.p, B.n, N.p, N.n, mm, T.p ); size_t bytes = N.n * sizeof(mbedtls_mpi_uint); ASSERT_COMPARE( R.p, bytes, X->p, bytes ); /* The output (R, above) may be aliased to A - use R to save the value of A */ memcpy( R.p, A.p, bytes ); mbedtls_mpi_core_montmul( A.p, A.p, B.p, B.n, N.p, N.n, mm, T.p ); ASSERT_COMPARE( A.p, bytes, X->p, bytes ); memcpy( A.p, R.p, bytes ); /* restore A */ /* The output may be aliased to N - use R to save the value of N */ memcpy( R.p, N.p, bytes ); mbedtls_mpi_core_montmul( N.p, A.p, B.p, B.n, N.p, N.n, mm, T.p ); ASSERT_COMPARE( N.p, bytes, X->p, bytes ); memcpy( N.p, R.p, bytes ); if (limbs_AN == limbs_B) { /* Test when A aliased to B (requires A == B on input values) */ if ( memcmp( A.p, B.p, bytes ) == 0 ) { /* Test with A aliased to B and output, since this is permitted - * don't bother with yet another test with only A and B aliased */ mbedtls_mpi_core_montmul( B.p, B.p, B.p, B.n, N.p, N.n, mm, T.p ); ASSERT_COMPARE( B.p, bytes, X->p, bytes ); memcpy( B.p, A.p, bytes ); /* restore B from equal value A */ } /* The output may be aliased to B - last test, so we don't save B */ mbedtls_mpi_core_montmul( B.p, A.p, B.p, B.n, N.p, N.n, mm, T.p ); ASSERT_COMPARE( B.p, bytes, X->p, bytes ); } exit: mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X4 ); mbedtls_mpi_free( &X8 ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &R ); } /* END_CASE */