/* BEGIN_HEADER */ #include "mbedtls/bignum.h" #include "mbedtls/entropy.h" #include "bignum_core.h" #include "bignum_mod.h" #include "bignum_mod_raw.h" #include "constant_time_internal.h" #include "test/constant_flow.h" #if MBEDTLS_MPI_MAX_BITS > 792 #define MPI_MAX_BITS_LARGER_THAN_792 #endif /* Check the validity of the sign bit in an MPI object. Reject representations * that are not supported by the rest of the library and indicate a bug when * constructing the value. */ static int sign_is_valid( const mbedtls_mpi *X ) { if( X->s != 1 && X->s != -1 ) return( 0 ); // invalid sign bit, e.g. 0 if( mbedtls_mpi_bitlen( X ) == 0 && X->s != 1 ) return( 0 ); // negative zero return( 1 ); } typedef struct mbedtls_test_mpi_random { data_t *data; size_t pos; size_t chunk_len; } mbedtls_test_mpi_random; /* * This function is called by the Miller-Rabin primality test each time it * chooses a random witness. The witnesses (or non-witnesses as provided by the * test) are stored in the data member of the state structure. Each number is in * the format that mbedtls_mpi_read_string understands and is chunk_len long. */ int mbedtls_test_mpi_miller_rabin_determinizer( void* state, unsigned char* buf, size_t len ) { mbedtls_test_mpi_random *random = (mbedtls_test_mpi_random*) state; if( random == NULL || random->data->x == NULL || buf == NULL ) return( -1 ); if( random->pos + random->chunk_len > random->data->len || random->chunk_len > len ) { return( -1 ); } memset( buf, 0, len ); /* The witness is written to the end of the buffer, since the buffer is * used as big endian, unsigned binary data in mbedtls_mpi_read_binary. * Writing the witness to the start of the buffer would result in the * buffer being 'witness 000...000', which would be treated as * witness * 2^n for some n. */ memcpy( buf + len - random->chunk_len, &random->data->x[random->pos], random->chunk_len ); random->pos += random->chunk_len; return( 0 ); } /* Random generator that is told how many bytes to return. */ static int f_rng_bytes_left( void *state, unsigned char *buf, size_t len ) { size_t *bytes_left = state; size_t i; for( i = 0; i < len; i++ ) { if( *bytes_left == 0 ) return( MBEDTLS_ERR_ENTROPY_SOURCE_FAILED ); buf[i] = *bytes_left & 0xff; --( *bytes_left ); } return( 0 ); } /* Test whether bytes represents (in big-endian base 256) a number b that * is significantly above a power of 2. That is, b must not have a long run * of unset bits after the most significant bit. * * Let n be the bit-size of b, i.e. the integer such that 2^n <= b < 2^{n+1}. * This function returns 1 if, when drawing a number between 0 and b, * the probability that this number is at least 2^n is not negligible. * This probability is (b - 2^n) / b and this function checks that this * number is above some threshold A. The threshold value is heuristic and * based on the needs of mpi_random_many(). */ static int is_significantly_above_a_power_of_2( data_t *bytes ) { const uint8_t *p = bytes->x; size_t len = bytes->len; unsigned x; /* Skip leading null bytes */ while( len > 0 && p[0] == 0 ) { ++p; --len; } /* 0 is not significantly above a power of 2 */ if( len == 0 ) return( 0 ); /* Extract the (up to) 2 most significant bytes */ if( len == 1 ) x = p[0]; else x = ( p[0] << 8 ) | p[1]; /* Shift the most significant bit of x to position 8 and mask it out */ while( ( x & 0xfe00 ) != 0 ) x >>= 1; x &= 0x00ff; /* At this point, x = floor((b - 2^n) / 2^(n-8)). b is significantly above * a power of 2 iff x is significantly above 0 compared to 2^8. * Testing x >= 2^4 amounts to picking A = 1/16 in the function * description above. */ return( x >= 0x10 ); } /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_BIGNUM_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void mpi_null( ) { mbedtls_mpi X, Y, Z; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); TEST_ASSERT( mbedtls_mpi_get_bit( &X, 42 ) == 0 ); TEST_ASSERT( mbedtls_mpi_lsb( &X ) == 0 ); TEST_ASSERT( mbedtls_mpi_bitlen( &X ) == 0 ); TEST_ASSERT( mbedtls_mpi_size( &X ) == 0 ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_read_write_string( int radix_X, char * input_X, int radix_A, char * input_A, int output_size, int result_read, int result_write ) { mbedtls_mpi X; char str[1000]; size_t len; mbedtls_mpi_init( &X ); memset( str, '!', sizeof( str ) ); TEST_ASSERT( mbedtls_mpi_read_string( &X, radix_X, input_X ) == result_read ); if( result_read == 0 ) { TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_write_string( &X, radix_A, str, output_size, &len ) == result_write ); if( result_write == 0 ) { TEST_ASSERT( strcasecmp( str, input_A ) == 0 ); TEST_ASSERT( str[len] == '!' ); } } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_read_binary( data_t * buf, char * input_A ) { mbedtls_mpi X; char str[1000]; size_t len; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_mpi_read_binary( &X, buf->x, buf->len ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_write_string( &X, 16, str, sizeof( str ), &len ) == 0 ); TEST_ASSERT( strcmp( (char *) str, input_A ) == 0 ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_null() { mbedtls_mpi_uint X = 0; int ret; ret = mbedtls_mpi_core_read_be( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_be( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_read_be( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_be( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_read_le( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_le( &X, 1, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_read_le( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); ret = mbedtls_mpi_core_write_le( NULL, 0, NULL, 0 ); TEST_EQUAL( ret, 0 ); exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_be( data_t *input, int nb_int, int nx_32_int, int iret, int oret ) { if( iret != 0 ) TEST_ASSERT( oret == 0 ); TEST_LE_S( 0, nb_int ); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U( nb, sizeof( buf ) ); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S( 0, nx_32_int ); if( sizeof( mbedtls_mpi_uint ) == 8 ) nx = nx_32_int / 2 + nx_32_int % 2; else nx = nx_32_int; mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )]; TEST_LE_U( nx, sizeof( X ) / sizeof( X[0] ) ); int ret = mbedtls_mpi_core_read_be( X, nx, input->x, input->len ); TEST_EQUAL( ret, iret ); if( iret == 0 ) { ret = mbedtls_mpi_core_write_be( X, nx, buf, nb ); TEST_EQUAL( ret, oret ); } if( ( iret == 0 ) && ( oret == 0 ) ) { if( nb > input->len ) { size_t leading_zeroes = nb - input->len; TEST_ASSERT( memcmp( buf + nb - input->len, input->x, input->len ) == 0 ); for( size_t i = 0; i < leading_zeroes; i++ ) TEST_EQUAL( buf[i], 0 ); } else { size_t leading_zeroes = input->len - nb; TEST_ASSERT( memcmp( input->x + input->len - nb, buf, nb ) == 0 ); for( size_t i = 0; i < leading_zeroes; i++ ) TEST_EQUAL( input->x[i], 0 ); } } exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_io_le( data_t *input, int nb_int, int nx_32_int, int iret, int oret ) { if( iret != 0 ) TEST_ASSERT( oret == 0 ); TEST_LE_S( 0, nb_int ); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U( nb, sizeof( buf ) ); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S( 0, nx_32_int ); if( sizeof( mbedtls_mpi_uint ) == 8 ) nx = nx_32_int / 2 + nx_32_int % 2; else nx = nx_32_int; mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )]; TEST_LE_U( nx, sizeof( X ) / sizeof( X[0] ) ); int ret = mbedtls_mpi_core_read_le( X, nx, input->x, input->len ); TEST_EQUAL( ret, iret ); if( iret == 0 ) { ret = mbedtls_mpi_core_write_le( X, nx, buf, nb ); TEST_EQUAL( ret, oret ); } if( ( iret == 0 ) && ( oret == 0 ) ) { if( nb > input->len ) { TEST_ASSERT( memcmp( buf, input->x, input->len ) == 0 ); for( size_t i = input->len; i < nb; i++ ) TEST_EQUAL( buf[i], 0 ); } else { TEST_ASSERT( memcmp( input->x, buf, nb ) == 0 ); for( size_t i = nb; i < input->len; i++ ) TEST_EQUAL( input->x[i], 0 ); } } exit: ; } /* END_CASE */ /* BEGIN_CASE */ void mpi_mod_setup( int ext_rep, int int_rep, int iret ) { #define MLIMBS 8 mbedtls_mpi_uint mp[MLIMBS]; mbedtls_mpi_mod_modulus m; int ret; memset( mp, 0xFF, sizeof(mp) ); mbedtls_mpi_mod_modulus_init( &m ); ret = mbedtls_mpi_mod_modulus_setup( &m, mp, MLIMBS, ext_rep, int_rep ); TEST_EQUAL( ret, iret ); /* Address sanitiser should catch if we try to free mp */ mbedtls_mpi_mod_modulus_free( &m ); /* Make sure that the modulus doesn't have reference to mp anymore */ TEST_ASSERT( m.p != mp ); exit: /* It should be safe to call an mbedtls free several times */ mbedtls_mpi_mod_modulus_free( &m ); #undef MLIMBS } /* END_CASE */ /* BEGIN_CASE */ void mpi_mod_raw_io( data_t *input, int nb_int, int nx_32_int, int iendian, int iret, int oret ) { if( iret != 0 ) TEST_ASSERT( oret == 0 ); TEST_LE_S( 0, nb_int ); size_t nb = nb_int; unsigned char buf[1024]; TEST_LE_U( nb, sizeof( buf ) ); /* nx_32_int is the number of 32 bit limbs, if we have 64 bit limbs we need * to halve the number of limbs to have the same size. */ size_t nx; TEST_LE_S( 0, nx_32_int ); if( sizeof( mbedtls_mpi_uint ) == 8 ) nx = nx_32_int / 2 + nx_32_int % 2; else nx = nx_32_int; mbedtls_mpi_uint X[sizeof( buf ) / sizeof( mbedtls_mpi_uint )]; TEST_LE_U( nx, sizeof( X ) / sizeof( X[0] ) ); int endian; if( iendian == MBEDTLS_MPI_MOD_EXT_REP_INVALID ) endian = MBEDTLS_MPI_MOD_EXT_REP_LE; else endian = iendian; mbedtls_mpi_mod_modulus m; mbedtls_mpi_mod_modulus_init( &m ); mbedtls_mpi_uint init[sizeof( X ) / sizeof( X[0] )]; memset( init, 0xFF, sizeof( init ) ); int ret = mbedtls_mpi_mod_modulus_setup( &m, init, nx, endian, MBEDTLS_MPI_MOD_REP_MONTGOMERY ); TEST_EQUAL( ret, 0 ); if( iendian == MBEDTLS_MPI_MOD_EXT_REP_INVALID && iret != 0 ) m.ext_rep = MBEDTLS_MPI_MOD_EXT_REP_INVALID; ret = mbedtls_mpi_mod_raw_read( X, &m, input->x, input->len ); TEST_EQUAL( ret, iret ); if( iret == 0 ) { if( iendian == MBEDTLS_MPI_MOD_EXT_REP_INVALID && oret != 0 ) m.ext_rep = MBEDTLS_MPI_MOD_EXT_REP_INVALID; ret = mbedtls_mpi_mod_raw_write( X, &m, buf, nb ); TEST_EQUAL( ret, oret ); } if( ( iret == 0 ) && ( oret == 0 ) ) { if( nb > input->len ) { if( endian == MBEDTLS_MPI_MOD_EXT_REP_BE ) { size_t leading_zeroes = nb - input->len; TEST_ASSERT( memcmp( buf + nb - input->len, input->x, input->len ) == 0 ); for( size_t i = 0; i < leading_zeroes; i++ ) TEST_EQUAL( buf[i], 0 ); } else { TEST_ASSERT( memcmp( buf, input->x, input->len ) == 0 ); for( size_t i = input->len; i < nb; i++ ) TEST_EQUAL( buf[i], 0 ); } } else { if( endian == MBEDTLS_MPI_MOD_EXT_REP_BE ) { size_t leading_zeroes = input->len - nb; TEST_ASSERT( memcmp( input->x + input->len - nb, buf, nb ) == 0 ); for( size_t i = 0; i < leading_zeroes; i++ ) TEST_EQUAL( input->x[i], 0 ); } else { TEST_ASSERT( memcmp( input->x, buf, nb ) == 0 ); for( size_t i = nb; i < input->len; i++ ) TEST_EQUAL( input->x[i], 0 ); } } } exit: mbedtls_mpi_mod_modulus_free( &m ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_read_binary_le( data_t * buf, char * input_A ) { mbedtls_mpi X; char str[1000]; size_t len; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_mpi_read_binary_le( &X, buf->x, buf->len ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_write_string( &X, 16, str, sizeof( str ), &len ) == 0 ); TEST_ASSERT( strcmp( (char *) str, input_A ) == 0 ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_write_binary( char * input_X, data_t * input_A, int output_size, int result ) { mbedtls_mpi X; unsigned char buf[1000]; size_t buflen; memset( buf, 0x00, 1000 ); mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); buflen = mbedtls_mpi_size( &X ); if( buflen > (size_t) output_size ) buflen = (size_t) output_size; TEST_ASSERT( mbedtls_mpi_write_binary( &X, buf, buflen ) == result ); if( result == 0) { TEST_ASSERT( mbedtls_test_hexcmp( buf, input_A->x, buflen, input_A->len ) == 0 ); } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_write_binary_le( char * input_X, data_t * input_A, int output_size, int result ) { mbedtls_mpi X; unsigned char buf[1000]; size_t buflen; memset( buf, 0x00, 1000 ); mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); buflen = mbedtls_mpi_size( &X ); if( buflen > (size_t) output_size ) buflen = (size_t) output_size; TEST_ASSERT( mbedtls_mpi_write_binary_le( &X, buf, buflen ) == result ); if( result == 0) { TEST_ASSERT( mbedtls_test_hexcmp( buf, input_A->x, buflen, input_A->len ) == 0 ); } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_FS_IO */ void mpi_read_file( char * input_file, data_t * input_A, int result ) { mbedtls_mpi X; unsigned char buf[1000]; size_t buflen; FILE *file; int ret; memset( buf, 0x00, 1000 ); mbedtls_mpi_init( &X ); file = fopen( input_file, "r" ); TEST_ASSERT( file != NULL ); ret = mbedtls_mpi_read_file( &X, 16, file ); fclose(file); TEST_ASSERT( ret == result ); if( result == 0 ) { TEST_ASSERT( sign_is_valid( &X ) ); buflen = mbedtls_mpi_size( &X ); TEST_ASSERT( mbedtls_mpi_write_binary( &X, buf, buflen ) == 0 ); TEST_ASSERT( mbedtls_test_hexcmp( buf, input_A->x, buflen, input_A->len ) == 0 ); } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_FS_IO */ void mpi_write_file( char * input_X, char * output_file ) { mbedtls_mpi X, Y; FILE *file_out, *file_in; int ret; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); file_out = fopen( output_file, "w" ); TEST_ASSERT( file_out != NULL ); ret = mbedtls_mpi_write_file( NULL, &X, 16, file_out ); fclose(file_out); TEST_ASSERT( ret == 0 ); file_in = fopen( output_file, "r" ); TEST_ASSERT( file_in != NULL ); ret = mbedtls_mpi_read_file( &Y, 16, file_in ); fclose(file_in); TEST_ASSERT( ret == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_get_bit( char * input_X, int pos, int val ) { mbedtls_mpi X; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_get_bit( &X, pos ) == val ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_set_bit( char * input_X, int pos, int val, char * output_Y, int result ) { mbedtls_mpi X, Y; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, output_Y ) == 0 ); TEST_ASSERT( mbedtls_mpi_set_bit( &X, pos, val ) == result ); if( result == 0 ) { TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y ) == 0 ); } exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_lsb( char * input_X, int nr_bits ) { mbedtls_mpi X; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_lsb( &X ) == (size_t) nr_bits ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_bitlen( char * input_X, int nr_bits ) { mbedtls_mpi X; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_bitlen( &X ) == (size_t) nr_bits ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_gcd( char * input_X, char * input_Y, char * input_A ) { mbedtls_mpi A, X, Y, Z; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_gcd( &Z, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); exit: mbedtls_mpi_free( &A ); mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_cmp_int( int input_X, int input_A, int result_CMP ) { mbedtls_mpi X; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_mpi_lset( &X, input_X ) == 0); TEST_ASSERT( mbedtls_mpi_cmp_int( &X, input_A ) == result_CMP); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_cmp_mpi( char * input_X, char * input_Y, int input_A ) { mbedtls_mpi X, Y; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y ) == input_A ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_lt_ct( data_t * input_X, data_t * input_Y, int input_ret ) { #define MAX_LEN 64 mbedtls_mpi_uint X[MAX_LEN]; mbedtls_mpi_uint Y[MAX_LEN]; unsigned exp_ret = input_ret; unsigned ret; size_t len = CHARS_TO_LIMBS( input_X->len > input_Y->len ? input_X->len : input_Y->len ); TEST_LE_U( len, MAX_LEN ); TEST_ASSERT( mbedtls_mpi_core_read_be( X, len, input_X->x, input_X->len ) == 0 ); TEST_ASSERT( mbedtls_mpi_core_read_be( Y, len, input_Y->x, input_Y->len ) == 0 ); TEST_CF_SECRET( X, len * sizeof( mbedtls_mpi_uint ) ); TEST_CF_SECRET( Y, len * sizeof( mbedtls_mpi_uint ) ); ret = mbedtls_mpi_core_lt_ct( X, Y, len ); TEST_CF_PUBLIC( X, len * sizeof( mbedtls_mpi_uint ) ); TEST_CF_PUBLIC( Y, len * sizeof( mbedtls_mpi_uint ) ); TEST_CF_PUBLIC( &ret, sizeof( ret ) ); TEST_EQUAL( ret, exp_ret ); exit: ; #undef MAX_LEN } /* END_CASE */ /* BEGIN_CASE */ void mpi_lt_mpi_ct( int size_X, char * input_X, int size_Y, char * input_Y, int input_ret, int input_err ) { unsigned ret = -1; unsigned input_uret = input_ret; mbedtls_mpi X, Y; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_mpi_grow( &X, size_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_grow( &Y, size_Y ) == 0 ); TEST_ASSERT( mbedtls_mpi_lt_mpi_ct( &X, &Y, &ret ) == input_err ); if( input_err == 0 ) TEST_ASSERT( ret == input_uret ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_cmp_abs( char * input_X, char * input_Y, int input_A ) { mbedtls_mpi X, Y; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_abs( &X, &Y ) == input_A ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_copy( char *src_hex, char *dst_hex ) { mbedtls_mpi src, dst, ref; mbedtls_mpi_init( &src ); mbedtls_mpi_init( &dst ); mbedtls_mpi_init( &ref ); TEST_ASSERT( mbedtls_test_read_mpi( &src, src_hex ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &ref, dst_hex ) == 0 ); /* mbedtls_mpi_copy() */ TEST_ASSERT( mbedtls_test_read_mpi( &dst, dst_hex ) == 0 ); TEST_ASSERT( mbedtls_mpi_copy( &dst, &src ) == 0 ); TEST_ASSERT( sign_is_valid( &dst ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &dst, &src ) == 0 ); /* mbedtls_mpi_safe_cond_assign(), assignment done */ mbedtls_mpi_free( &dst ); TEST_ASSERT( mbedtls_test_read_mpi( &dst, dst_hex ) == 0 ); TEST_ASSERT( mbedtls_mpi_safe_cond_assign( &dst, &src, 1 ) == 0 ); TEST_ASSERT( sign_is_valid( &dst ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &dst, &src ) == 0 ); /* mbedtls_mpi_safe_cond_assign(), assignment not done */ mbedtls_mpi_free( &dst ); TEST_ASSERT( mbedtls_test_read_mpi( &dst, dst_hex ) == 0 ); TEST_ASSERT( mbedtls_mpi_safe_cond_assign( &dst, &src, 0 ) == 0 ); TEST_ASSERT( sign_is_valid( &dst ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &dst, &ref ) == 0 ); exit: mbedtls_mpi_free( &src ); mbedtls_mpi_free( &dst ); mbedtls_mpi_free( &ref ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_copy_self( char *input_X ) { mbedtls_mpi X, A; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_copy( &X, &X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_X ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); exit: mbedtls_mpi_free( &A ); mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_swap( char *X_hex, char *Y_hex ) { mbedtls_mpi X, Y, X0, Y0; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &X0 ); mbedtls_mpi_init( &Y0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X0, X_hex ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y0, Y_hex ) == 0 ); /* mbedtls_mpi_swap() */ TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, Y_hex ) == 0 ); mbedtls_mpi_swap( &X, &Y ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( sign_is_valid( &Y ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y0 ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &X0 ) == 0 ); /* mbedtls_mpi_safe_cond_swap(), swap done */ mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, Y_hex ) == 0 ); TEST_ASSERT( mbedtls_mpi_safe_cond_swap( &X, &Y, 1 ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( sign_is_valid( &Y ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &Y0 ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &X0 ) == 0 ); /* mbedtls_mpi_safe_cond_swap(), swap not done */ mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, Y_hex ) == 0 ); TEST_ASSERT( mbedtls_mpi_safe_cond_swap( &X, &Y, 0 ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( sign_is_valid( &Y ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &X0 ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &Y0 ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &X0 ); mbedtls_mpi_free( &Y0 ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_swap_self( char *X_hex ) { mbedtls_mpi X, X0; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &X0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, X_hex ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X0, X_hex ) == 0 ); mbedtls_mpi_swap( &X, &X ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &X0 ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &X0 ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_shrink( int before, int used, int min, int after ) { mbedtls_mpi X; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_mpi_grow( &X, before ) == 0 ); if( used > 0 ) { size_t used_bit_count = used * 8 * sizeof( mbedtls_mpi_uint ); TEST_ASSERT( mbedtls_mpi_set_bit( &X, used_bit_count - 1, 1 ) == 0 ); } TEST_EQUAL( X.n, (size_t) before ); TEST_ASSERT( mbedtls_mpi_shrink( &X, min ) == 0 ); TEST_EQUAL( X.n, (size_t) after ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_add_mpi( char * input_X, char * input_Y, char * input_A ) { mbedtls_mpi X, Y, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_add_mpi( &Z, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); /* result == first operand */ TEST_ASSERT( mbedtls_mpi_add_mpi( &X, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); /* result == second operand */ TEST_ASSERT( mbedtls_mpi_add_mpi( &Y, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Y ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_add_mpi_inplace( char * input_X, char * input_A ) { mbedtls_mpi X, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_sub_abs( &X, &X, &X ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_int( &X, 0 ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_add_abs( &X, &X, &X ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_mpi_add_mpi( &X, &X, &X ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_add_abs( char * input_X, char * input_Y, char * input_A ) { mbedtls_mpi X, Y, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_add_abs( &Z, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); /* result == first operand */ TEST_ASSERT( mbedtls_mpi_add_abs( &X, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); /* result == second operand */ TEST_ASSERT( mbedtls_mpi_add_abs( &Y, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Y ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_add_int( char * input_X, int input_Y, char * input_A ) { mbedtls_mpi X, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_add_int( &Z, &X, input_Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_sub_mpi( char * input_X, char * input_Y, char * input_A ) { mbedtls_mpi X, Y, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_sub_mpi( &Z, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); /* result == first operand */ TEST_ASSERT( mbedtls_mpi_sub_mpi( &X, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); /* result == second operand */ TEST_ASSERT( mbedtls_mpi_sub_mpi( &Y, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Y ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_sub_abs( char * input_X, char * input_Y, char * input_A, int sub_result ) { mbedtls_mpi X, Y, Z, A; int res; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); res = mbedtls_mpi_sub_abs( &Z, &X, &Y ); TEST_ASSERT( res == sub_result ); TEST_ASSERT( sign_is_valid( &Z ) ); if( res == 0 ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); /* result == first operand */ TEST_ASSERT( mbedtls_mpi_sub_abs( &X, &X, &Y ) == sub_result ); TEST_ASSERT( sign_is_valid( &X ) ); if( sub_result == 0 ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); /* result == second operand */ TEST_ASSERT( mbedtls_mpi_sub_abs( &Y, &X, &Y ) == sub_result ); TEST_ASSERT( sign_is_valid( &Y ) ); if( sub_result == 0 ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Y, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_sub_int( char * input_X, int input_Y, char * input_A ) { mbedtls_mpi X, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_sub_int( &Z, &X, input_Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_mul_mpi( char * input_X, char * input_Y, char * input_A ) { mbedtls_mpi X, Y, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_mul_mpi( &Z, &X, &Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_mul_int( char * input_X, int input_Y, char * input_A, char * result_comparison ) { mbedtls_mpi X, Z, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_mul_int( &Z, &X, input_Y ) == 0 ); TEST_ASSERT( sign_is_valid( &Z ) ); if( strcmp( result_comparison, "==" ) == 0 ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); else if( strcmp( result_comparison, "!=" ) == 0 ) TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) != 0 ); else TEST_ASSERT( "unknown operator" == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_div_mpi( char * input_X, char * input_Y, char * input_A, char * input_B, int div_result ) { mbedtls_mpi X, Y, Q, R, A, B; int res; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &B, input_B ) == 0 ); res = mbedtls_mpi_div_mpi( &Q, &R, &X, &Y ); TEST_ASSERT( res == div_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &Q ) ); TEST_ASSERT( sign_is_valid( &R ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Q, &A ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) == 0 ); } exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_div_int( char * input_X, int input_Y, char * input_A, char * input_B, int div_result ) { mbedtls_mpi X, Q, R, A, B; int res; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &B, input_B ) == 0 ); res = mbedtls_mpi_div_int( &Q, &R, &X, input_Y ); TEST_ASSERT( res == div_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &Q ) ); TEST_ASSERT( sign_is_valid( &R ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Q, &A ) == 0 ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &R, &B ) == 0 ); } exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_mod_mpi( char * input_X, char * input_Y, char * input_A, int div_result ) { mbedtls_mpi X, Y, A; int res; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); res = mbedtls_mpi_mod_mpi( &X, &X, &Y ); TEST_ASSERT( res == div_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); } exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_mod_int( char * input_X, int input_Y, int input_A, int div_result ) { mbedtls_mpi X; int res; mbedtls_mpi_uint r; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); res = mbedtls_mpi_mod_int( &r, &X, input_Y ); TEST_ASSERT( res == div_result ); if( res == 0 ) { TEST_ASSERT( r == (mbedtls_mpi_uint) input_A ); } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_exp_mod( char * input_A, char * input_E, char * input_N, char * input_X, int exp_result ) { mbedtls_mpi A, E, N, RR, Z, X; int res; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &E, input_E ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &N, input_N ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); res = mbedtls_mpi_exp_mod( &Z, &A, &E, &N, NULL ); TEST_ASSERT( res == exp_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &X ) == 0 ); } /* Now test again with the speed-up parameter supplied as an output. */ res = mbedtls_mpi_exp_mod( &Z, &A, &E, &N, &RR ); TEST_ASSERT( res == exp_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &X ) == 0 ); } /* Now test again with the speed-up parameter supplied in calculated form. */ res = mbedtls_mpi_exp_mod( &Z, &A, &E, &N, &RR ); TEST_ASSERT( res == exp_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &X ) == 0 ); } exit: mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &RR ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_exp_mod_size( int A_bytes, int E_bytes, int N_bytes, char * input_RR, int exp_result ) { mbedtls_mpi A, E, N, RR, Z; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &Z ); /* Set A to 2^(A_bytes - 1) + 1 */ TEST_ASSERT( mbedtls_mpi_lset( &A, 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_shift_l( &A, ( A_bytes * 8 ) - 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_set_bit( &A, 0, 1 ) == 0 ); /* Set E to 2^(E_bytes - 1) + 1 */ TEST_ASSERT( mbedtls_mpi_lset( &E, 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_shift_l( &E, ( E_bytes * 8 ) - 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_set_bit( &E, 0, 1 ) == 0 ); /* Set N to 2^(N_bytes - 1) + 1 */ TEST_ASSERT( mbedtls_mpi_lset( &N, 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_shift_l( &N, ( N_bytes * 8 ) - 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_set_bit( &N, 0, 1 ) == 0 ); if( strlen( input_RR ) ) TEST_ASSERT( mbedtls_test_read_mpi( &RR, input_RR ) == 0 ); TEST_ASSERT( mbedtls_mpi_exp_mod( &Z, &A, &E, &N, &RR ) == exp_result ); exit: mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &RR ); mbedtls_mpi_free( &Z ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_inv_mod( char * input_X, char * input_Y, char * input_A, int div_result ) { mbedtls_mpi X, Y, Z, A; int res; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Y, input_Y ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); res = mbedtls_mpi_inv_mod( &Z, &X, &Y ); TEST_ASSERT( res == div_result ); if( res == 0 ) { TEST_ASSERT( sign_is_valid( &Z ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &Z, &A ) == 0 ); } exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_GENPRIME */ void mpi_is_prime( char * input_X, int div_result ) { mbedtls_mpi X; int res; mbedtls_mpi_init( &X ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); res = mbedtls_mpi_is_prime_ext( &X, 40, mbedtls_test_rnd_std_rand, NULL ); TEST_ASSERT( res == div_result ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_GENPRIME */ void mpi_is_prime_det( data_t * input_X, data_t * witnesses, int chunk_len, int rounds ) { mbedtls_mpi X; int res; mbedtls_test_mpi_random rand; mbedtls_mpi_init( &X ); rand.data = witnesses; rand.pos = 0; rand.chunk_len = chunk_len; TEST_ASSERT( mbedtls_mpi_read_binary( &X, input_X->x, input_X->len ) == 0 ); res = mbedtls_mpi_is_prime_ext( &X, rounds - 1, mbedtls_test_mpi_miller_rabin_determinizer, &rand ); TEST_ASSERT( res == 0 ); rand.data = witnesses; rand.pos = 0; rand.chunk_len = chunk_len; res = mbedtls_mpi_is_prime_ext( &X, rounds, mbedtls_test_mpi_miller_rabin_determinizer, &rand ); TEST_ASSERT( res == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ); exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_GENPRIME */ void mpi_gen_prime( int bits, int flags, int ref_ret ) { mbedtls_mpi X; int my_ret; mbedtls_mpi_init( &X ); my_ret = mbedtls_mpi_gen_prime( &X, bits, flags, mbedtls_test_rnd_std_rand, NULL ); TEST_ASSERT( my_ret == ref_ret ); if( ref_ret == 0 ) { size_t actual_bits = mbedtls_mpi_bitlen( &X ); TEST_ASSERT( actual_bits >= (size_t) bits ); TEST_ASSERT( actual_bits <= (size_t) bits + 1 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_is_prime_ext( &X, 40, mbedtls_test_rnd_std_rand, NULL ) == 0 ); if( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) { /* X = ( X - 1 ) / 2 */ TEST_ASSERT( mbedtls_mpi_shift_r( &X, 1 ) == 0 ); TEST_ASSERT( mbedtls_mpi_is_prime_ext( &X, 40, mbedtls_test_rnd_std_rand, NULL ) == 0 ); } } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_shift_l( char * input_X, int shift_X, char * input_A ) { mbedtls_mpi X, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_shift_l( &X, shift_X ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_shift_r( char * input_X, int shift_X, char * input_A ) { mbedtls_mpi X, A; mbedtls_mpi_init( &X ); mbedtls_mpi_init( &A ); TEST_ASSERT( mbedtls_test_read_mpi( &X, input_X ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &A, input_A ) == 0 ); TEST_ASSERT( mbedtls_mpi_shift_r( &X, shift_X ) == 0 ); TEST_ASSERT( sign_is_valid( &X ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &X, &A ) == 0 ); exit: mbedtls_mpi_free( &X ); mbedtls_mpi_free( &A ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_fill_random( int wanted_bytes, int rng_bytes, int before, int expected_ret ) { mbedtls_mpi X; int ret; size_t bytes_left = rng_bytes; mbedtls_mpi_init( &X ); if( before != 0 ) { /* Set X to sign(before) * 2^(|before|-1) */ TEST_ASSERT( mbedtls_mpi_lset( &X, before > 0 ? 1 : -1 ) == 0 ); if( before < 0 ) before = - before; TEST_ASSERT( mbedtls_mpi_shift_l( &X, before - 1 ) == 0 ); } ret = mbedtls_mpi_fill_random( &X, wanted_bytes, f_rng_bytes_left, &bytes_left ); TEST_ASSERT( ret == expected_ret ); if( expected_ret == 0 ) { /* mbedtls_mpi_fill_random is documented to use bytes from the RNG * as a big-endian representation of the number. We know when * our RNG function returns null bytes, so we know how many * leading zero bytes the number has. */ size_t leading_zeros = 0; if( wanted_bytes > 0 && rng_bytes % 256 == 0 ) leading_zeros = 1; TEST_ASSERT( mbedtls_mpi_size( &X ) + leading_zeros == (size_t) wanted_bytes ); TEST_ASSERT( (int) bytes_left == rng_bytes - wanted_bytes ); TEST_ASSERT( sign_is_valid( &X ) ); } exit: mbedtls_mpi_free( &X ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_many( int min, data_t *bound_bytes, int iterations ) { /* Generate numbers in the range 1..bound-1. Do it iterations times. * This function assumes that the value of bound is at least 2 and * that iterations is large enough that a one-in-2^iterations chance * effectively never occurs. */ mbedtls_mpi upper_bound; size_t n_bits; mbedtls_mpi result; size_t b; /* If upper_bound is small, stats[b] is the number of times the value b * has been generated. Otherwise stats[b] is the number of times a * value with bit b set has been generated. */ size_t *stats = NULL; size_t stats_len; int full_stats; size_t i; mbedtls_mpi_init( &upper_bound ); mbedtls_mpi_init( &result ); TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound, bound_bytes->x, bound_bytes->len ) ); n_bits = mbedtls_mpi_bitlen( &upper_bound ); /* Consider a bound "small" if it's less than 2^5. This value is chosen * to be small enough that the probability of missing one value is * negligible given the number of iterations. It must be less than * 256 because some of the code below assumes that "small" values * fit in a byte. */ if( n_bits <= 5 ) { full_stats = 1; stats_len = bound_bytes->x[bound_bytes->len - 1]; } else { full_stats = 0; stats_len = n_bits; } ASSERT_ALLOC( stats, stats_len ); for( i = 0; i < (size_t) iterations; i++ ) { mbedtls_test_set_step( i ); TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound, mbedtls_test_rnd_std_rand, NULL ) ); TEST_ASSERT( sign_is_valid( &result ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 ); TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 ); if( full_stats ) { uint8_t value; TEST_EQUAL( 0, mbedtls_mpi_write_binary( &result, &value, 1 ) ); TEST_ASSERT( value < stats_len ); ++stats[value]; } else { for( b = 0; b < n_bits; b++ ) stats[b] += mbedtls_mpi_get_bit( &result, b ); } } if( full_stats ) { for( b = min; b < stats_len; b++ ) { mbedtls_test_set_step( 1000000 + b ); /* Assert that each value has been reached at least once. * This is almost guaranteed if the iteration count is large * enough. This is a very crude way of checking the distribution. */ TEST_ASSERT( stats[b] > 0 ); } } else { int statistically_safe_all_the_way = is_significantly_above_a_power_of_2( bound_bytes ); for( b = 0; b < n_bits; b++ ) { mbedtls_test_set_step( 1000000 + b ); /* Assert that each bit has been set in at least one result and * clear in at least one result. Provided that iterations is not * too small, it would be extremely unlikely for this not to be * the case if the results are uniformly distributed. * * As an exception, the top bit may legitimately never be set * if bound is a power of 2 or only slightly above. */ if( statistically_safe_all_the_way || b != n_bits - 1 ) { TEST_ASSERT( stats[b] > 0 ); } TEST_ASSERT( stats[b] < (size_t) iterations ); } } exit: mbedtls_mpi_free( &upper_bound ); mbedtls_mpi_free( &result ); mbedtls_free( stats ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_sizes( int min, data_t *bound_bytes, int nlimbs, int before ) { mbedtls_mpi upper_bound; mbedtls_mpi result; mbedtls_mpi_init( &upper_bound ); mbedtls_mpi_init( &result ); if( before != 0 ) { /* Set result to sign(before) * 2^(|before|-1) */ TEST_ASSERT( mbedtls_mpi_lset( &result, before > 0 ? 1 : -1 ) == 0 ); if( before < 0 ) before = - before; TEST_ASSERT( mbedtls_mpi_shift_l( &result, before - 1 ) == 0 ); } TEST_EQUAL( 0, mbedtls_mpi_grow( &result, nlimbs ) ); TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound, bound_bytes->x, bound_bytes->len ) ); TEST_EQUAL( 0, mbedtls_mpi_random( &result, min, &upper_bound, mbedtls_test_rnd_std_rand, NULL ) ); TEST_ASSERT( sign_is_valid( &result ) ); TEST_ASSERT( mbedtls_mpi_cmp_mpi( &result, &upper_bound ) < 0 ); TEST_ASSERT( mbedtls_mpi_cmp_int( &result, min ) >= 0 ); exit: mbedtls_mpi_free( &upper_bound ); mbedtls_mpi_free( &result ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_random_fail( int min, data_t *bound_bytes, int expected_ret ) { mbedtls_mpi upper_bound; mbedtls_mpi result; int actual_ret; mbedtls_mpi_init( &upper_bound ); mbedtls_mpi_init( &result ); TEST_EQUAL( 0, mbedtls_mpi_read_binary( &upper_bound, bound_bytes->x, bound_bytes->len ) ); actual_ret = mbedtls_mpi_random( &result, min, &upper_bound, mbedtls_test_rnd_std_rand, NULL ); TEST_EQUAL( expected_ret, actual_ret ); exit: mbedtls_mpi_free( &upper_bound ); mbedtls_mpi_free( &result ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_add_if( char * input_A, char * input_B, char * input_S4, int carry4, char * input_S8, int carry8 ) { mbedtls_mpi S4, S8, A, B; mbedtls_mpi_uint *a = NULL; /* first value to add */ mbedtls_mpi_uint *b = NULL; /* second value to add */ mbedtls_mpi_uint *sum = NULL; mbedtls_mpi_uint *d = NULL; /* destination - the in/out first operand */ mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &S4 ); mbedtls_mpi_init( &S8 ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &S4, input_S4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &S8, input_S8 ) ); /* We only need to work with one of (S4, carry4) or (S8, carry8) depending * on sizeof(mbedtls_mpi_uint) */ mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &S4 : &S8; mbedtls_mpi_uint carry = ( sizeof(mbedtls_mpi_uint) == 4 ) ? carry4 : carry8; /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, X->s ); /* Test cases are such that A <= B, so #limbs should be <= */ TEST_LE_U( A.n, B.n ); TEST_LE_U( X->n, B.n ); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* mbedtls_mpi_core_add_if() uses input arrays of mbedtls_mpi_uints which * must be the same size. The MPIs we've read in will only have arrays * large enough for the number they represent. Therefore we create new * raw arrays of mbedtls_mpi_uints and populate them from the MPIs we've * just read in. * * We generated test data such that B was always >= A, so that's how many * limbs each of these need. */ size_t limbs = B.n; size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC( a, bytes ); ASSERT_ALLOC( b, bytes ); ASSERT_ALLOC( sum, bytes ); ASSERT_ALLOC( d, bytes ); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_add_if()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()) */ memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) ); memcpy( b, B.p, B.n * sizeof(mbedtls_mpi_uint) ); memcpy( sum, X->p, X->n * sizeof(mbedtls_mpi_uint) ); /* The test cases have a <= b to avoid repetition, so we test a + b then, * if a != b, b + a. If a == b, we can test when a and b are aliased */ /* a + b */ /* cond = 0 => d unchanged, no carry */ memcpy( d, a, bytes ); TEST_EQUAL( 0, mbedtls_mpi_core_add_if( d, b, limbs, 0 ) ); ASSERT_COMPARE( d, bytes, a, bytes ); /* cond = 1 => correct result and carry */ TEST_EQUAL( carry, mbedtls_mpi_core_add_if( d, b, limbs, 1 ) ); ASSERT_COMPARE( d, bytes, sum, bytes ); if ( A.n == B.n && memcmp( A.p, B.p, bytes ) == 0 ) { /* a == b, so test where a and b are aliased */ /* cond = 0 => d unchanged, no carry */ TEST_EQUAL( 0, mbedtls_mpi_core_add_if( b, b, limbs, 0 ) ); ASSERT_COMPARE( b, bytes, B.p, bytes ); /* cond = 1 => correct result and carry */ TEST_EQUAL( carry, mbedtls_mpi_core_add_if( b, b, limbs, 1 ) ); ASSERT_COMPARE( b, bytes, sum, bytes ); } else { /* a != b, so test b + a */ /* cond = 0 => d unchanged, no carry */ memcpy( d, b, bytes ); TEST_EQUAL( 0, mbedtls_mpi_core_add_if( d, a, limbs, 0 ) ); ASSERT_COMPARE( d, bytes, b, bytes ); /* cond = 1 => correct result and carry */ TEST_EQUAL( carry, mbedtls_mpi_core_add_if( d, a, limbs, 1 ) ); ASSERT_COMPARE( d, bytes, sum, bytes ); } exit: mbedtls_free( a ); mbedtls_free( b ); mbedtls_free( sum ); mbedtls_free( d ); mbedtls_mpi_free( &S4 ); mbedtls_mpi_free( &S8 ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_sub( char * input_A, char * input_B, char * input_X4, char * input_X8, int carry ) { mbedtls_mpi A, B, X4, X8; mbedtls_mpi_uint *a = NULL; mbedtls_mpi_uint *b = NULL; mbedtls_mpi_uint *x = NULL; /* expected */ mbedtls_mpi_uint *r = NULL; /* result */ mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &X4 ); mbedtls_mpi_init( &X8 ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, X4.s ); TEST_EQUAL( 1, X8.s ); /* Get the number of limbs we will need */ size_t limbs = MAX( A.n, B.n ); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* We only need to work with X4 or X8, depending on sizeof(mbedtls_mpi_uint) */ mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8; /* The result shouldn't have more limbs than the longest input */ TEST_LE_U( X->n, limbs ); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC( a, bytes ); ASSERT_ALLOC( b, bytes ); ASSERT_ALLOC( x, bytes ); ASSERT_ALLOC( r, bytes ); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_sub()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()) */ memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) ); memcpy( b, B.p, B.n * sizeof(mbedtls_mpi_uint) ); memcpy( x, X->p, X->n * sizeof(mbedtls_mpi_uint) ); /* 1a) r = a - b => we should get the correct carry */ TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, a, b, limbs ) ); /* 1b) r = a - b => we should get the correct result */ ASSERT_COMPARE( r, bytes, x, bytes ); /* 2 and 3 test "r may be aliased to a or b" */ /* 2a) r = a; r -= b => we should get the correct carry (use r to avoid clobbering a) */ memcpy( r, a, bytes ); TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, r, b, limbs ) ); /* 2b) r -= b => we should get the correct result */ ASSERT_COMPARE( r, bytes, x, bytes ); /* 3a) r = b; r = a - r => we should get the correct carry (use r to avoid clobbering b) */ memcpy( r, b, bytes ); TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, a, r, limbs ) ); /* 3b) r = a - b => we should get the correct result */ ASSERT_COMPARE( r, bytes, x, bytes ); /* 4 tests "r may be aliased to [...] both" */ if ( A.n == B.n && memcmp( A.p, B.p, bytes ) == 0 ) { memcpy( r, b, bytes ); TEST_EQUAL( carry, mbedtls_mpi_core_sub( r, r, r, limbs ) ); ASSERT_COMPARE( r, bytes, x, bytes ); } exit: mbedtls_free( a ); mbedtls_free( b ); mbedtls_free( x ); mbedtls_free( r ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); mbedtls_mpi_free( &X4 ); mbedtls_mpi_free( &X8 ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_mla( char * input_A, char * input_B, char * input_S, char * input_X4, char * input_cy4, char * input_X8, char * input_cy8 ) { /* We are testing A += B * s; A, B are MPIs, s is a scalar. * * However, we encode s as an MPI in the .data file as the test framework * currently only supports `int`-typed scalars, and that doesn't cover the * full range of `mbedtls_mpi_uint`. * * We also have the different results for sizeof(mbedtls_mpi_uint) == 4 or 8. */ mbedtls_mpi A, B, S, X4, X8, cy4, cy8; mbedtls_mpi_uint *a = NULL; mbedtls_mpi_uint *x = NULL; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &X4 ); mbedtls_mpi_init( &X8 ); mbedtls_mpi_init( &cy4 ); mbedtls_mpi_init( &cy8 ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &S, input_S ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &cy4, input_cy4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &cy8, input_cy8 ) ); /* The MPI encoding of scalar s must be only 1 limb */ TEST_EQUAL( 1, S.n ); /* We only need to work with X4 or X8, and cy4 or cy8, depending on sizeof(mbedtls_mpi_uint) */ mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8; mbedtls_mpi *cy = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &cy4 : &cy8; /* The carry should only have one limb */ TEST_EQUAL( 1, cy->n ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, S.s ); TEST_EQUAL( 1, X->s ); TEST_EQUAL( 1, cy->s ); /* Get the (max) number of limbs we will need */ size_t limbs = MAX( A.n, B.n ); size_t bytes = limbs * sizeof(mbedtls_mpi_uint); /* The result shouldn't have more limbs than the longest input */ TEST_LE_U( X->n, limbs ); /* Now let's get arrays of mbedtls_mpi_uints, rather than MPI structures */ /* ASSERT_ALLOC() uses calloc() under the hood, so these do get zeroed */ ASSERT_ALLOC( a, bytes ); ASSERT_ALLOC( x, bytes ); /* Populate the arrays. As the mbedtls_mpi_uint[]s in mbedtls_mpis (and as * processed by mbedtls_mpi_core_mla()) are little endian, we can just * copy what we have as long as MSBs are 0 (which they are from ASSERT_ALLOC()). */ memcpy( a, A.p, A.n * sizeof(mbedtls_mpi_uint) ); memcpy( x, X->p, X->n * sizeof(mbedtls_mpi_uint) ); /* 1a) A += B * s => we should get the correct carry */ TEST_EQUAL( mbedtls_mpi_core_mla( a, limbs, B.p, B.n, *S.p ), *cy->p ); /* 1b) A += B * s => we should get the correct result */ ASSERT_COMPARE( a, bytes, x, bytes ); exit: mbedtls_free( a ); mbedtls_free( x ); mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &X4 ); mbedtls_mpi_free( &X8 ); mbedtls_mpi_free( &cy4 ); mbedtls_mpi_free( &cy8 ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_montg_init( char * input_N, char * input_mm ) { mbedtls_mpi N, mm; mbedtls_mpi_init( &N ); mbedtls_mpi_init( &mm ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &N, input_N ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &mm, input_mm ) ); /* The MPI encoding of mm should be 1 limb (sizeof(mbedtls_mpi_uint) == 8) or * 2 limbs (sizeof(mbedtls_mpi_uint) == 4). * * The data file contains the expected result for sizeof(mbedtls_mpi_uint) == 8; * for sizeof(mbedtls_mpi_uint) == 4 it's just the LSW of this. */ TEST_ASSERT( mm.n == 1 || mm.n == 2 ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, N.s ); TEST_EQUAL( 1, mm.s ); /* mbedtls_mpi_core_montmul_init() only returns a result, no error possible */ mbedtls_mpi_uint result = mbedtls_mpi_core_montmul_init( N.p ); /* Check we got the correct result */ TEST_EQUAL( result, mm.p[0] ); exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &mm ); } /* END_CASE */ /* BEGIN_CASE */ void mpi_core_montmul( int limbs_AN4, int limbs_B4, int limbs_AN8, int limbs_B8, char * input_A, char * input_B, char * input_N, char * input_X4, char * input_X8 ) { mbedtls_mpi A, B, N, X4, X8, T, R; mbedtls_mpi_init( &A ); mbedtls_mpi_init( &B ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X4 ); /* expected result, sizeof(mbedtls_mpi_uint) == 4 */ mbedtls_mpi_init( &X8 ); /* expected result, sizeof(mbedtls_mpi_uint) == 8 */ mbedtls_mpi_init( &T ); mbedtls_mpi_init( &R ); /* for the result */ TEST_EQUAL( 0, mbedtls_test_read_mpi( &A, input_A ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &B, input_B ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &N, input_N ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X4, input_X4 ) ); TEST_EQUAL( 0, mbedtls_test_read_mpi( &X8, input_X8 ) ); mbedtls_mpi *X = ( sizeof(mbedtls_mpi_uint) == 4 ) ? &X4 : &X8; int limbs_AN = ( sizeof(mbedtls_mpi_uint) == 4 ) ? limbs_AN4 : limbs_AN8; int limbs_B = ( sizeof(mbedtls_mpi_uint) == 4 ) ? limbs_B4 : limbs_B8; TEST_LE_U( A.n, (size_t)limbs_AN ); TEST_LE_U( X->n, (size_t)limbs_AN ); TEST_LE_U( B.n, (size_t)limbs_B ); TEST_LE_U( limbs_B, limbs_AN ); /* All of the inputs are +ve (or zero) */ TEST_EQUAL( 1, A.s ); TEST_EQUAL( 1, B.s ); TEST_EQUAL( 1, N.s ); TEST_EQUAL( 1, X->s ); TEST_EQUAL( 0, mbedtls_mpi_grow( &A, limbs_AN ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( &N, limbs_AN ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( X, limbs_AN ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( &B, limbs_B ) ); TEST_EQUAL( 0, mbedtls_mpi_grow( &T, limbs_AN * 2 + 1 ) ); /* Calculate the Montgomery constant (this is unit tested separately) */ mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init( N.p ); TEST_EQUAL( 0, mbedtls_mpi_grow( &R, limbs_AN ) ); /* ensure it's got the right number of limbs */ mbedtls_mpi_core_montmul( R.p, A.p, B.p, B.n, N.p, N.n, mm, T.p ); size_t bytes = N.n * sizeof(mbedtls_mpi_uint); ASSERT_COMPARE( R.p, bytes, X->p, bytes ); exit: mbedtls_mpi_free( &A ); mbedtls_mpi_free( &B ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X4 ); mbedtls_mpi_free( &X8 ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &R ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */ void mpi_selftest( ) { TEST_ASSERT( mbedtls_mpi_self_test( 1 ) == 0 ); } /* END_CASE */