/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \ defined(__clang__) && __clang_major__ < 18 && __clang_major__ > 3 /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged. * * The intrinsic declaration are guarded by predefined ACLE macros in clang: * these are normally only enabled by the -march option on the command line. * By defining the macros ourselves we gain access to those declarations without * requiring -march on the command line. * * `arm_neon.h` could be included by any header file, so we put these defines * at the top of this file, before any includes. */ #define __ARM_FEATURE_CRYPTO 1 #define NEED_TARGET_OPTIONS #endif /* __aarch64__ && __clang__ && !__ARM_FEATURE_CRYPTO && __clang_major__ < 18 && __clang_major__ > 3 */ #include "common.h" #if defined(MBEDTLS_SHA256_C) || defined(MBEDTLS_SHA224_C) #include "mbedtls/sha256.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #include "mbedtls/platform.h" #if defined(__aarch64__) # if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \ defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) /* *INDENT-OFF* */ # if !defined(__ARM_FEATURE_CRYPTO) || defined(NEED_TARGET_OPTIONS) # if defined(__clang__) # if __clang_major__ < 4 # error "A more recent Clang is required for MBEDTLS_SHA256_USE_A64_CRYPTO_*" # endif # pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function) # define MBEDTLS_POP_TARGET_PRAGMA # elif defined(__GNUC__) /* FIXME: GCC-5 annouce crypto extension, but some intrinsic are missed. * Known miss intrinsic can be workaround. */ # if __GNUC__ < 6 # error "A more recent GCC is required for MBEDTLS_SHA256_USE_A64_CRYPTO_*" # else # pragma GCC push_options # pragma GCC target ("arch=armv8-a+crypto") # define MBEDTLS_POP_TARGET_PRAGMA # endif # else # error "Only GCC and Clang supported for MBEDTLS_SHA256_USE_A64_CRYPTO_*" # endif # endif /* *INDENT-ON* */ # include # endif # if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) # if defined(__unix__) # if defined(__linux__) /* Our preferred method of detection is getauxval() */ # include # endif /* Use SIGILL on Unix, and fall back to it on Linux */ # include # endif # endif #elif defined(_M_ARM64) # if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \ defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) # include # endif #else # undef MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY # undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT #endif #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) /* * Capability detection code comes early, so we can disable * MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found */ #if defined(HWCAP_SHA2) static int mbedtls_a64_crypto_sha256_determine_support(void) { return (getauxval(AT_HWCAP) & HWCAP_SHA2) ? 1 : 0; } #elif defined(__APPLE__) static int mbedtls_a64_crypto_sha256_determine_support(void) { return 1; } #elif defined(_M_ARM64) #define WIN32_LEAN_AND_MEAN #include #include static int mbedtls_a64_crypto_sha256_determine_support(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ? 1 : 0; } #elif defined(__unix__) && defined(SIG_SETMASK) /* Detection with SIGILL, setjmp() and longjmp() */ #include #include static jmp_buf return_from_sigill; /* * A64 SHA256 support detection via SIGILL */ static void sigill_handler(int signal) { (void) signal; longjmp(return_from_sigill, 1); } static int mbedtls_a64_crypto_sha256_determine_support(void) { struct sigaction old_action, new_action; sigset_t old_mask; if (sigprocmask(0, NULL, &old_mask)) { return 0; } sigemptyset(&new_action.sa_mask); new_action.sa_flags = 0; new_action.sa_handler = sigill_handler; sigaction(SIGILL, &new_action, &old_action); static int ret = 0; if (setjmp(return_from_sigill) == 0) { /* First return only */ /* If this traps, we will return a second time from setjmp() with 1 */ asm ("sha256h q0, q0, v0.4s" : : : "v0"); ret = 1; } sigaction(SIGILL, &old_action, NULL); sigprocmask(SIG_SETMASK, &old_mask, NULL); return ret; } #else #warning "No mechanism to detect A64_CRYPTO found, using C code only" #undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT #endif /* HWCAP_SHA2, __APPLE__, __unix__ && SIG_SETMASK */ #endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */ #if !defined(MBEDTLS_SHA256_ALT) #define SHA256_BLOCK_SIZE 64 void mbedtls_sha256_init(mbedtls_sha256_context *ctx) { memset(ctx, 0, sizeof(mbedtls_sha256_context)); } void mbedtls_sha256_free(mbedtls_sha256_context *ctx) { if (ctx == NULL) { return; } mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context)); } void mbedtls_sha256_clone(mbedtls_sha256_context *dst, const mbedtls_sha256_context *src) { *dst = *src; } /* * SHA-256 context setup */ int mbedtls_sha256_starts(mbedtls_sha256_context *ctx, int is224) { #if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C) if (is224 != 0 && is224 != 1) { return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA; } #elif defined(MBEDTLS_SHA256_C) if (is224 != 0) { return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA; } #else /* defined MBEDTLS_SHA224_C only */ if (is224 == 0) { return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA; } #endif ctx->total[0] = 0; ctx->total[1] = 0; if (is224 == 0) { #if defined(MBEDTLS_SHA256_C) ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; #endif } else { #if defined(MBEDTLS_SHA224_C) ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; #endif } #if defined(MBEDTLS_SHA224_C) ctx->is224 = is224; #endif return 0; } #if !defined(MBEDTLS_SHA256_PROCESS_ALT) static const uint32_t K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; #endif #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \ defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) # define mbedtls_internal_sha256_process_many_a64_crypto mbedtls_internal_sha256_process_many # define mbedtls_internal_sha256_process_a64_crypto mbedtls_internal_sha256_process #endif static size_t mbedtls_internal_sha256_process_many_a64_crypto( mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len) { uint32x4_t abcd = vld1q_u32(&ctx->state[0]); uint32x4_t efgh = vld1q_u32(&ctx->state[4]); size_t processed = 0; for (; len >= SHA256_BLOCK_SIZE; processed += SHA256_BLOCK_SIZE, msg += SHA256_BLOCK_SIZE, len -= SHA256_BLOCK_SIZE) { uint32x4_t tmp, abcd_prev; uint32x4_t abcd_orig = abcd; uint32x4_t efgh_orig = efgh; uint32x4_t sched0 = (uint32x4_t) vld1q_u8(msg + 16 * 0); uint32x4_t sched1 = (uint32x4_t) vld1q_u8(msg + 16 * 1); uint32x4_t sched2 = (uint32x4_t) vld1q_u8(msg + 16 * 2); uint32x4_t sched3 = (uint32x4_t) vld1q_u8(msg + 16 * 3); #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* Will be true if not defined */ /* Untested on BE */ sched0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched0))); sched1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched1))); sched2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched2))); sched3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched3))); #endif /* Rounds 0 to 3 */ tmp = vaddq_u32(sched0, vld1q_u32(&K[0])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); /* Rounds 4 to 7 */ tmp = vaddq_u32(sched1, vld1q_u32(&K[4])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); /* Rounds 8 to 11 */ tmp = vaddq_u32(sched2, vld1q_u32(&K[8])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); /* Rounds 12 to 15 */ tmp = vaddq_u32(sched3, vld1q_u32(&K[12])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); for (int t = 16; t < 64; t += 16) { /* Rounds t to t + 3 */ sched0 = vsha256su1q_u32(vsha256su0q_u32(sched0, sched1), sched2, sched3); tmp = vaddq_u32(sched0, vld1q_u32(&K[t])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); /* Rounds t + 4 to t + 7 */ sched1 = vsha256su1q_u32(vsha256su0q_u32(sched1, sched2), sched3, sched0); tmp = vaddq_u32(sched1, vld1q_u32(&K[t + 4])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); /* Rounds t + 8 to t + 11 */ sched2 = vsha256su1q_u32(vsha256su0q_u32(sched2, sched3), sched0, sched1); tmp = vaddq_u32(sched2, vld1q_u32(&K[t + 8])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); /* Rounds t + 12 to t + 15 */ sched3 = vsha256su1q_u32(vsha256su0q_u32(sched3, sched0), sched1, sched2); tmp = vaddq_u32(sched3, vld1q_u32(&K[t + 12])); abcd_prev = abcd; abcd = vsha256hq_u32(abcd_prev, efgh, tmp); efgh = vsha256h2q_u32(efgh, abcd_prev, tmp); } abcd = vaddq_u32(abcd, abcd_orig); efgh = vaddq_u32(efgh, efgh_orig); } vst1q_u32(&ctx->state[0], abcd); vst1q_u32(&ctx->state[4], efgh); return processed; } #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) /* * This function is for internal use only if we are building both C and A64 * versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process() */ static #endif int mbedtls_internal_sha256_process_a64_crypto(mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_SIZE]) { return (mbedtls_internal_sha256_process_many_a64_crypto(ctx, data, SHA256_BLOCK_SIZE) == SHA256_BLOCK_SIZE) ? 0 : -1; } #if defined(MBEDTLS_POP_TARGET_PRAGMA) #if defined(__clang__) #pragma clang attribute pop #elif defined(__GNUC__) #pragma GCC pop_options #endif #undef MBEDTLS_POP_TARGET_PRAGMA #endif #endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */ #if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) #define mbedtls_internal_sha256_process_many_c mbedtls_internal_sha256_process_many #define mbedtls_internal_sha256_process_c mbedtls_internal_sha256_process #endif #if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \ !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) #define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n)) #define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n)))) #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) #define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define R(t) \ ( \ local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \ S0(local.W[(t) - 15]) + local.W[(t) - 16] \ ) #define P(a, b, c, d, e, f, g, h, x, K) \ do \ { \ local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x); \ local.temp2 = S2(a) + F0((a), (b), (c)); \ (d) += local.temp1; (h) = local.temp1 + local.temp2; \ } while (0) #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) /* * This function is for internal use only if we are building both C and A64 * versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process() */ static #endif int mbedtls_internal_sha256_process_c(mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_SIZE]) { struct { uint32_t temp1, temp2, W[64]; uint32_t A[8]; } local; unsigned int i; for (i = 0; i < 8; i++) { local.A[i] = ctx->state[i]; } #if defined(MBEDTLS_SHA256_SMALLER) for (i = 0; i < 64; i++) { if (i < 16) { local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i); } else { R(i); } P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i], K[i]); local.temp1 = local.A[7]; local.A[7] = local.A[6]; local.A[6] = local.A[5]; local.A[5] = local.A[4]; local.A[4] = local.A[3]; local.A[3] = local.A[2]; local.A[2] = local.A[1]; local.A[1] = local.A[0]; local.A[0] = local.temp1; } #else /* MBEDTLS_SHA256_SMALLER */ for (i = 0; i < 16; i++) { local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i); } for (i = 0; i < 16; i += 8) { P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0]); P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1]); P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2]); P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3]); P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4]); P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5]); P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6]); P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7]); } for (i = 16; i < 64; i += 8) { P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], R(i+0), K[i+0]); P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], R(i+1), K[i+1]); P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], R(i+2), K[i+2]); P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], local.A[4], R(i+3), K[i+3]); P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], local.A[3], R(i+4), K[i+4]); P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], local.A[2], R(i+5), K[i+5]); P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], local.A[1], R(i+6), K[i+6]); P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5], local.A[6], local.A[7], local.A[0], R(i+7), K[i+7]); } #endif /* MBEDTLS_SHA256_SMALLER */ for (i = 0; i < 8; i++) { ctx->state[i] += local.A[i]; } /* Zeroise buffers and variables to clear sensitive data from memory. */ mbedtls_platform_zeroize(&local, sizeof(local)); return 0; } #endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */ #if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY) static size_t mbedtls_internal_sha256_process_many_c( mbedtls_sha256_context *ctx, const uint8_t *data, size_t len) { size_t processed = 0; while (len >= SHA256_BLOCK_SIZE) { if (mbedtls_internal_sha256_process_c(ctx, data) != 0) { return 0; } data += SHA256_BLOCK_SIZE; len -= SHA256_BLOCK_SIZE; processed += SHA256_BLOCK_SIZE; } return processed; } #endif /* !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */ #if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) static int mbedtls_a64_crypto_sha256_has_support(void) { static int done = 0; static int supported = 0; if (!done) { supported = mbedtls_a64_crypto_sha256_determine_support(); done = 1; } return supported; } static size_t mbedtls_internal_sha256_process_many(mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len) { if (mbedtls_a64_crypto_sha256_has_support()) { return mbedtls_internal_sha256_process_many_a64_crypto(ctx, msg, len); } else { return mbedtls_internal_sha256_process_many_c(ctx, msg, len); } } int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx, const unsigned char data[SHA256_BLOCK_SIZE]) { if (mbedtls_a64_crypto_sha256_has_support()) { return mbedtls_internal_sha256_process_a64_crypto(ctx, data); } else { return mbedtls_internal_sha256_process_c(ctx, data); } } #endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */ /* * SHA-256 process buffer */ int mbedtls_sha256_update(mbedtls_sha256_context *ctx, const unsigned char *input, size_t ilen) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t fill; uint32_t left; if (ilen == 0) { return 0; } left = ctx->total[0] & 0x3F; fill = SHA256_BLOCK_SIZE - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < (uint32_t) ilen) { ctx->total[1]++; } if (left && ilen >= fill) { memcpy((void *) (ctx->buffer + left), input, fill); if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) { return ret; } input += fill; ilen -= fill; left = 0; } while (ilen >= SHA256_BLOCK_SIZE) { size_t processed = mbedtls_internal_sha256_process_many(ctx, input, ilen); if (processed < SHA256_BLOCK_SIZE) { return MBEDTLS_ERR_ERROR_GENERIC_ERROR; } input += processed; ilen -= processed; } if (ilen > 0) { memcpy((void *) (ctx->buffer + left), input, ilen); } return 0; } /* * SHA-256 final digest */ int mbedtls_sha256_finish(mbedtls_sha256_context *ctx, unsigned char *output) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; uint32_t used; uint32_t high, low; /* * Add padding: 0x80 then 0x00 until 8 bytes remain for the length */ used = ctx->total[0] & 0x3F; ctx->buffer[used++] = 0x80; if (used <= 56) { /* Enough room for padding + length in current block */ memset(ctx->buffer + used, 0, 56 - used); } else { /* We'll need an extra block */ memset(ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used); if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) { return ret; } memset(ctx->buffer, 0, 56); } /* * Add message length */ high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56); MBEDTLS_PUT_UINT32_BE(low, ctx->buffer, 60); if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) { return ret; } /* * Output final state */ MBEDTLS_PUT_UINT32_BE(ctx->state[0], output, 0); MBEDTLS_PUT_UINT32_BE(ctx->state[1], output, 4); MBEDTLS_PUT_UINT32_BE(ctx->state[2], output, 8); MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12); MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16); MBEDTLS_PUT_UINT32_BE(ctx->state[5], output, 20); MBEDTLS_PUT_UINT32_BE(ctx->state[6], output, 24); int truncated = 0; #if defined(MBEDTLS_SHA224_C) truncated = ctx->is224; #endif if (!truncated) { MBEDTLS_PUT_UINT32_BE(ctx->state[7], output, 28); } return 0; } #endif /* !MBEDTLS_SHA256_ALT */ /* * output = SHA-256( input buffer ) */ int mbedtls_sha256(const unsigned char *input, size_t ilen, unsigned char *output, int is224) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_sha256_context ctx; #if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C) if (is224 != 0 && is224 != 1) { return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA; } #elif defined(MBEDTLS_SHA256_C) if (is224 != 0) { return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA; } #else /* defined MBEDTLS_SHA224_C only */ if (is224 == 0) { return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA; } #endif mbedtls_sha256_init(&ctx); if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) { goto exit; } if ((ret = mbedtls_sha256_update(&ctx, input, ilen)) != 0) { goto exit; } if ((ret = mbedtls_sha256_finish(&ctx, output)) != 0) { goto exit; } exit: mbedtls_sha256_free(&ctx); return ret; } #if defined(MBEDTLS_SELF_TEST) /* * FIPS-180-2 test vectors */ static const unsigned char sha_test_buf[3][57] = { { "abc" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" }, { "" } }; static const size_t sha_test_buflen[3] = { 3, 56, 1000 }; typedef const unsigned char (sha_test_sum_t)[32]; /* * SHA-224 test vectors */ #if defined(MBEDTLS_SHA224_C) static sha_test_sum_t sha224_test_sum[] = { { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22, 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3, 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7, 0xE3, 0x6C, 0x9D, 0xA7 }, { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC, 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50, 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19, 0x52, 0x52, 0x25, 0x25 }, { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8, 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B, 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE, 0x4E, 0xE7, 0xAD, 0x67 } }; #endif /* * SHA-256 test vectors */ #if defined(MBEDTLS_SHA256_C) static sha_test_sum_t sha256_test_sum[] = { { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA, 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23, 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C, 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD }, { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8, 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39, 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67, 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 }, { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92, 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67, 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E, 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 } }; #endif /* * Checkup routine */ static int mbedtls_sha256_common_self_test(int verbose, int is224) { int i, buflen, ret = 0; unsigned char *buf; unsigned char sha256sum[32]; mbedtls_sha256_context ctx; #if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C) sha_test_sum_t *sha_test_sum = (is224) ? sha224_test_sum : sha256_test_sum; #elif defined(MBEDTLS_SHA256_C) sha_test_sum_t *sha_test_sum = sha256_test_sum; #else sha_test_sum_t *sha_test_sum = sha224_test_sum; #endif buf = mbedtls_calloc(1024, sizeof(unsigned char)); if (NULL == buf) { if (verbose != 0) { mbedtls_printf("Buffer allocation failed\n"); } return 1; } mbedtls_sha256_init(&ctx); for (i = 0; i < 3; i++) { if (verbose != 0) { mbedtls_printf(" SHA-%d test #%d: ", 256 - is224 * 32, i + 1); } if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) { goto fail; } if (i == 2) { memset(buf, 'a', buflen = 1000); for (int j = 0; j < 1000; j++) { ret = mbedtls_sha256_update(&ctx, buf, buflen); if (ret != 0) { goto fail; } } } else { ret = mbedtls_sha256_update(&ctx, sha_test_buf[i], sha_test_buflen[i]); if (ret != 0) { goto fail; } } if ((ret = mbedtls_sha256_finish(&ctx, sha256sum)) != 0) { goto fail; } if (memcmp(sha256sum, sha_test_sum[i], 32 - is224 * 4) != 0) { ret = 1; goto fail; } if (verbose != 0) { mbedtls_printf("passed\n"); } } if (verbose != 0) { mbedtls_printf("\n"); } goto exit; fail: if (verbose != 0) { mbedtls_printf("failed\n"); } exit: mbedtls_sha256_free(&ctx); mbedtls_free(buf); return ret; } #if defined(MBEDTLS_SHA256_C) int mbedtls_sha256_self_test(int verbose) { return mbedtls_sha256_common_self_test(verbose, 0); } #endif /* MBEDTLS_SHA256_C */ #if defined(MBEDTLS_SHA224_C) int mbedtls_sha224_self_test(int verbose) { return mbedtls_sha256_common_self_test(verbose, 1); } #endif /* MBEDTLS_SHA224_C */ #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_SHA256_C || MBEDTLS_SHA224_C */