/* * Public Key abstraction layer: wrapper functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common.h" #if defined(MBEDTLS_PK_C) #include "pk_wrap.h" #include "mbedtls/error.h" /* Even if RSA not activated, for the sake of RSA-alt */ #include "mbedtls/rsa.h" #include #if defined(MBEDTLS_ECP_C) #include "mbedtls/ecp.h" #endif #if defined(MBEDTLS_RSA_C) || defined(MBEDTLS_ECP_C) #include "pkwrite.h" #endif #if defined(MBEDTLS_ECDSA_C) #include "mbedtls/ecdsa.h" #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) #include "mbedtls/asn1write.h" #endif #if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) #include "mbedtls/platform_util.h" #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) #include "psa/crypto.h" #include "mbedtls/psa_util.h" #include "mbedtls/asn1.h" #endif #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_calloc calloc #define mbedtls_free free #endif #include #include #if defined(MBEDTLS_PSA_CRYPTO_C) int mbedtls_pk_error_from_psa( psa_status_t status ) { switch( status ) { case PSA_SUCCESS: return( 0 ); case PSA_ERROR_INVALID_HANDLE: return( MBEDTLS_ERR_PK_KEY_INVALID_FORMAT ); case PSA_ERROR_NOT_PERMITTED: return( MBEDTLS_ERR_ERROR_GENERIC_ERROR ); case PSA_ERROR_BUFFER_TOO_SMALL: return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL ); case PSA_ERROR_NOT_SUPPORTED: return( MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE ); case PSA_ERROR_INVALID_ARGUMENT: return( MBEDTLS_ERR_PK_INVALID_ALG ); case PSA_ERROR_INSUFFICIENT_MEMORY: return( MBEDTLS_ERR_PK_ALLOC_FAILED ); case PSA_ERROR_BAD_STATE: return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); case PSA_ERROR_COMMUNICATION_FAILURE: case PSA_ERROR_HARDWARE_FAILURE: return( MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED ); case PSA_ERROR_DATA_CORRUPT: case PSA_ERROR_DATA_INVALID: case PSA_ERROR_STORAGE_FAILURE: return( MBEDTLS_ERR_PK_FILE_IO_ERROR ); case PSA_ERROR_CORRUPTION_DETECTED: return( MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED ); default: return( MBEDTLS_ERR_ERROR_GENERIC_ERROR ); } } #if defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY) int mbedtls_pk_error_from_psa_rsa( psa_status_t status ) { switch( status ) { case PSA_ERROR_NOT_PERMITTED: case PSA_ERROR_INVALID_ARGUMENT: case PSA_ERROR_INVALID_HANDLE: return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); case PSA_ERROR_BUFFER_TOO_SMALL: return( MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE ); case PSA_ERROR_INSUFFICIENT_ENTROPY: return( MBEDTLS_ERR_RSA_RNG_FAILED ); case PSA_ERROR_INVALID_SIGNATURE: return( MBEDTLS_ERR_RSA_VERIFY_FAILED ); case PSA_ERROR_INVALID_PADDING: return( MBEDTLS_ERR_RSA_INVALID_PADDING ); default: return( mbedtls_pk_error_from_psa( status ) ); } } #endif #endif /* MBEDTLS_PSA_CRYPTO_C */ #if defined(MBEDTLS_USE_PSA_CRYPTO) #if defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY) int mbedtls_pk_error_from_psa_ecdsa( psa_status_t status ) { switch( status ) { case PSA_ERROR_NOT_PERMITTED: case PSA_ERROR_INVALID_ARGUMENT: return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); case PSA_ERROR_INVALID_HANDLE: return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ); case PSA_ERROR_BUFFER_TOO_SMALL: return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL ); case PSA_ERROR_INSUFFICIENT_ENTROPY: return( MBEDTLS_ERR_ECP_RANDOM_FAILED ); case PSA_ERROR_INVALID_SIGNATURE: return( MBEDTLS_ERR_ECP_VERIFY_FAILED ); default: return( mbedtls_pk_error_from_psa( status ) ); } } #endif /* PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY */ #endif /* MBEDTLS_USE_PSA_CRYPTO */ #if defined(MBEDTLS_RSA_C) static int rsa_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_RSA || type == MBEDTLS_PK_RSASSA_PSS ); } static size_t rsa_get_bitlen( const void *ctx ) { const mbedtls_rsa_context * rsa = (const mbedtls_rsa_context *) ctx; return( 8 * mbedtls_rsa_get_len( rsa ) ); } #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES]; mbedtls_pk_info_t pk_info = mbedtls_rsa_info; psa_algorithm_t psa_alg_md = PSA_ALG_RSA_PKCS1V15_SIGN( mbedtls_psa_translate_md( md_alg ) ); size_t rsa_len = mbedtls_rsa_get_len( rsa ); #if SIZE_MAX > UINT_MAX if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ if( sig_len < rsa_len ) return( MBEDTLS_ERR_RSA_VERIFY_FAILED ); /* mbedtls_pk_write_pubkey_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &pk_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_pubkey_der( &key, buf, sizeof( buf ) ); if( key_len <= 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_HASH ); psa_set_key_algorithm( &attributes, psa_alg_md ); psa_set_key_type( &attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY ); status = psa_import_key( &attributes, buf + sizeof( buf ) - key_len, key_len, &key_id ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa( status ); goto cleanup; } status = psa_verify_hash( key_id, psa_alg_md, hash, hash_len, sig, sig_len ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa_rsa( status ); goto cleanup; } ret = 0; cleanup: status = psa_destroy_key( key_id ); if( ret == 0 && status != PSA_SUCCESS ) ret = mbedtls_pk_error_from_psa( status ); return( ret ); } #else static int rsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; size_t rsa_len = mbedtls_rsa_get_len( rsa ); #if SIZE_MAX > UINT_MAX if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ if( sig_len < rsa_len ) return( MBEDTLS_ERR_RSA_VERIFY_FAILED ); if( ( ret = mbedtls_rsa_pkcs1_verify( rsa, md_alg, (unsigned int) hash_len, hash, sig ) ) != 0 ) return( ret ); /* The buffer contains a valid signature followed by extra data. * We have a special error code for that so that so that callers can * use mbedtls_pk_verify() to check "Does the buffer start with a * valid signature?" and not just "Does the buffer contain a valid * signature?". */ if( sig_len > rsa_len ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( 0 ); } #endif #if defined(MBEDTLS_PSA_CRYPTO_C) int mbedtls_pk_psa_rsa_sign_ext( psa_algorithm_t alg, mbedtls_rsa_context *rsa_ctx, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES]; mbedtls_pk_info_t pk_info = mbedtls_rsa_info; *sig_len = mbedtls_rsa_get_len( rsa_ctx ); if( sig_size < *sig_len ) return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL ); /* mbedtls_pk_write_key_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &pk_info; key.pk_ctx = rsa_ctx; key_len = mbedtls_pk_write_key_der( &key, buf, sizeof( buf ) ); if( key_len <= 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH ); psa_set_key_algorithm( &attributes, alg ); psa_set_key_type( &attributes, PSA_KEY_TYPE_RSA_KEY_PAIR ); status = psa_import_key( &attributes, buf + sizeof( buf ) - key_len, key_len, &key_id ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa( status ); goto cleanup; } status = psa_sign_hash( key_id, alg, hash, hash_len, sig, sig_size, sig_len ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa_rsa( status ); goto cleanup; } ret = 0; cleanup: status = psa_destroy_key( key_id ); if( ret == 0 && status != PSA_SUCCESS ) ret = mbedtls_pk_error_from_psa( status ); return( ret ); } #endif /* MBEDTLS_PSA_CRYPTO_C */ #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { ((void) f_rng); ((void) p_rng); psa_algorithm_t psa_md_alg; psa_md_alg = mbedtls_psa_translate_md( md_alg ); if( psa_md_alg == 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); return( mbedtls_pk_psa_rsa_sign_ext( PSA_ALG_RSA_PKCS1V15_SIGN( psa_md_alg ), ctx, hash, hash_len, sig, sig_size, sig_len ) ); } #else static int rsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; #if SIZE_MAX > UINT_MAX if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ *sig_len = mbedtls_rsa_get_len( rsa ); if( sig_size < *sig_len ) return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL ); return( mbedtls_rsa_pkcs1_sign( rsa, f_rng, p_rng, md_alg, (unsigned int) hash_len, hash, sig ) ); } #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_decrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES]; ((void) f_rng); ((void) p_rng); #if !defined(MBEDTLS_RSA_ALT) if( rsa->padding != MBEDTLS_RSA_PKCS_V15 ) return( MBEDTLS_ERR_RSA_INVALID_PADDING ); #endif /* !MBEDTLS_RSA_ALT */ if( ilen != mbedtls_rsa_get_len( rsa ) ) return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); /* mbedtls_pk_write_key_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &mbedtls_rsa_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_key_der( &key, buf, sizeof( buf ) ); if( key_len <= 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); psa_set_key_type( &attributes, PSA_KEY_TYPE_RSA_KEY_PAIR ); psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DECRYPT ); psa_set_key_algorithm( &attributes, PSA_ALG_RSA_PKCS1V15_CRYPT ); status = psa_import_key( &attributes, buf + sizeof( buf ) - key_len, key_len, &key_id ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa( status ); goto cleanup; } status = psa_asymmetric_decrypt( key_id, PSA_ALG_RSA_PKCS1V15_CRYPT, input, ilen, NULL, 0, output, osize, olen ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa_rsa( status ); goto cleanup; } ret = 0; cleanup: mbedtls_platform_zeroize( buf, sizeof( buf ) ); status = psa_destroy_key( key_id ); if( ret == 0 && status != PSA_SUCCESS ) ret = mbedtls_pk_error_from_psa( status ); return( ret ); } #else static int rsa_decrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; if( ilen != mbedtls_rsa_get_len( rsa ) ) return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); return( mbedtls_rsa_pkcs1_decrypt( rsa, f_rng, p_rng, olen, input, output, osize ) ); } #endif #if defined(MBEDTLS_USE_PSA_CRYPTO) static int rsa_encrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES]; ((void) f_rng); ((void) p_rng); #if !defined(MBEDTLS_RSA_ALT) if( rsa->padding != MBEDTLS_RSA_PKCS_V15 ) return( MBEDTLS_ERR_RSA_INVALID_PADDING ); #endif if( mbedtls_rsa_get_len( rsa ) > osize ) return( MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE ); /* mbedtls_pk_write_pubkey_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &mbedtls_rsa_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_pubkey_der( &key, buf, sizeof( buf ) ); if( key_len <= 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT ); psa_set_key_algorithm( &attributes, PSA_ALG_RSA_PKCS1V15_CRYPT ); psa_set_key_type( &attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY ); status = psa_import_key( &attributes, buf + sizeof( buf ) - key_len, key_len, &key_id ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa( status ); goto cleanup; } status = psa_asymmetric_encrypt( key_id, PSA_ALG_RSA_PKCS1V15_CRYPT, input, ilen, NULL, 0, output, osize, olen ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa_rsa( status ); goto cleanup; } ret = 0; cleanup: status = psa_destroy_key( key_id ); if( ret == 0 && status != PSA_SUCCESS ) ret = mbedtls_pk_error_from_psa( status ); return( ret ); } #else static int rsa_encrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx; *olen = mbedtls_rsa_get_len( rsa ); if( *olen > osize ) return( MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE ); return( mbedtls_rsa_pkcs1_encrypt( rsa, f_rng, p_rng, ilen, input, output ) ); } #endif static int rsa_check_pair_wrap( const void *pub, const void *prv, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { (void) f_rng; (void) p_rng; return( mbedtls_rsa_check_pub_priv( (const mbedtls_rsa_context *) pub, (const mbedtls_rsa_context *) prv ) ); } static void *rsa_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_context ) ); if( ctx != NULL ) mbedtls_rsa_init( (mbedtls_rsa_context *) ctx ); return( ctx ); } static void rsa_free_wrap( void *ctx ) { mbedtls_rsa_free( (mbedtls_rsa_context *) ctx ); mbedtls_free( ctx ); } static void rsa_debug( const void *ctx, mbedtls_pk_debug_item *items ) { #if defined(MBEDTLS_RSA_ALT) /* Not supported */ (void) ctx; (void) items; #else items->type = MBEDTLS_PK_DEBUG_MPI; items->name = "rsa.N"; items->value = &( ((mbedtls_rsa_context *) ctx)->N ); items++; items->type = MBEDTLS_PK_DEBUG_MPI; items->name = "rsa.E"; items->value = &( ((mbedtls_rsa_context *) ctx)->E ); #endif } const mbedtls_pk_info_t mbedtls_rsa_info = { MBEDTLS_PK_RSA, "RSA", rsa_get_bitlen, rsa_can_do, rsa_verify_wrap, rsa_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_decrypt_wrap, rsa_encrypt_wrap, rsa_check_pair_wrap, rsa_alloc_wrap, rsa_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_debug, }; #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_ECP_C) /* * Generic EC key */ static int eckey_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECKEY_DH || type == MBEDTLS_PK_ECDSA ); } static size_t eckey_get_bitlen( const void *ctx ) { return( ((mbedtls_ecp_keypair *) ctx)->grp.pbits ); } #if defined(MBEDTLS_ECDSA_C) /* Forward declarations */ static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ); static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ); static int eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecdsa_context ecdsa; mbedtls_ecdsa_init( &ecdsa ); if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 ) ret = ecdsa_verify_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len ); mbedtls_ecdsa_free( &ecdsa ); return( ret ); } static int eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecdsa_context ecdsa; mbedtls_ecdsa_init( &ecdsa ); if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 ) ret = ecdsa_sign_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng ); mbedtls_ecdsa_free( &ecdsa ); return( ret ); } #if defined(MBEDTLS_ECP_RESTARTABLE) /* Forward declarations */ static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx ); static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx ); /* * Restart context for ECDSA operations with ECKEY context * * We need to store an actual ECDSA context, as we need to pass the same to * the underlying ecdsa function, so we can't create it on the fly every time. */ typedef struct { mbedtls_ecdsa_restart_ctx ecdsa_rs; mbedtls_ecdsa_context ecdsa_ctx; } eckey_restart_ctx; static void *eckey_rs_alloc( void ) { eckey_restart_ctx *rs_ctx; void *ctx = mbedtls_calloc( 1, sizeof( eckey_restart_ctx ) ); if( ctx != NULL ) { rs_ctx = ctx; mbedtls_ecdsa_restart_init( &rs_ctx->ecdsa_rs ); mbedtls_ecdsa_init( &rs_ctx->ecdsa_ctx ); } return( ctx ); } static void eckey_rs_free( void *ctx ) { eckey_restart_ctx *rs_ctx; if( ctx == NULL) return; rs_ctx = ctx; mbedtls_ecdsa_restart_free( &rs_ctx->ecdsa_rs ); mbedtls_ecdsa_free( &rs_ctx->ecdsa_ctx ); mbedtls_free( ctx ); } static int eckey_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; eckey_restart_ctx *rs = rs_ctx; /* Should never happen */ if( rs == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* set up our own sub-context if needed (that is, on first run) */ if( rs->ecdsa_ctx.grp.pbits == 0 ) MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) ); MBEDTLS_MPI_CHK( ecdsa_verify_rs_wrap( &rs->ecdsa_ctx, md_alg, hash, hash_len, sig, sig_len, &rs->ecdsa_rs ) ); cleanup: return( ret ); } static int eckey_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; eckey_restart_ctx *rs = rs_ctx; /* Should never happen */ if( rs == NULL ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* set up our own sub-context if needed (that is, on first run) */ if( rs->ecdsa_ctx.grp.pbits == 0 ) MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) ); MBEDTLS_MPI_CHK( ecdsa_sign_rs_wrap( &rs->ecdsa_ctx, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng, &rs->ecdsa_rs ) ); cleanup: return( ret ); } #endif /* MBEDTLS_ECP_RESTARTABLE */ #endif /* MBEDTLS_ECDSA_C */ static int eckey_check_pair( const void *pub, const void *prv, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { return( mbedtls_ecp_check_pub_priv( (const mbedtls_ecp_keypair *) pub, (const mbedtls_ecp_keypair *) prv, f_rng, p_rng ) ); } static void *eckey_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecp_keypair ) ); if( ctx != NULL ) mbedtls_ecp_keypair_init( ctx ); return( ctx ); } static void eckey_free_wrap( void *ctx ) { mbedtls_ecp_keypair_free( (mbedtls_ecp_keypair *) ctx ); mbedtls_free( ctx ); } static void eckey_debug( const void *ctx, mbedtls_pk_debug_item *items ) { items->type = MBEDTLS_PK_DEBUG_ECP; items->name = "eckey.Q"; items->value = &( ((mbedtls_ecp_keypair *) ctx)->Q ); } const mbedtls_pk_info_t mbedtls_eckey_info = { MBEDTLS_PK_ECKEY, "EC", eckey_get_bitlen, eckey_can_do, #if defined(MBEDTLS_ECDSA_C) eckey_verify_wrap, eckey_sign_wrap, #if defined(MBEDTLS_ECP_RESTARTABLE) eckey_verify_rs_wrap, eckey_sign_rs_wrap, #endif #else /* MBEDTLS_ECDSA_C */ NULL, NULL, #endif /* MBEDTLS_ECDSA_C */ NULL, NULL, eckey_check_pair, eckey_alloc_wrap, eckey_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) eckey_rs_alloc, eckey_rs_free, #endif eckey_debug, }; /* * EC key restricted to ECDH */ static int eckeydh_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECKEY_DH ); } const mbedtls_pk_info_t mbedtls_eckeydh_info = { MBEDTLS_PK_ECKEY_DH, "EC_DH", eckey_get_bitlen, /* Same underlying key structure */ eckeydh_can_do, NULL, NULL, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif NULL, NULL, eckey_check_pair, eckey_alloc_wrap, /* Same underlying key structure */ eckey_free_wrap, /* Same underlying key structure */ #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif eckey_debug, /* Same underlying key structure */ }; #endif /* MBEDTLS_ECP_C */ #if defined(MBEDTLS_ECDSA_C) static int ecdsa_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_ECDSA ); } #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * An ASN.1 encoded signature is a sequence of two ASN.1 integers. Parse one of * those integers and convert it to the fixed-length encoding expected by PSA. */ static int extract_ecdsa_sig_int( unsigned char **from, const unsigned char *end, unsigned char *to, size_t to_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t unpadded_len, padding_len; if( ( ret = mbedtls_asn1_get_tag( from, end, &unpadded_len, MBEDTLS_ASN1_INTEGER ) ) != 0 ) { return( ret ); } while( unpadded_len > 0 && **from == 0x00 ) { ( *from )++; unpadded_len--; } if( unpadded_len > to_len || unpadded_len == 0 ) return( MBEDTLS_ERR_ASN1_LENGTH_MISMATCH ); padding_len = to_len - unpadded_len; memset( to, 0x00, padding_len ); memcpy( to + padding_len, *from, unpadded_len ); ( *from ) += unpadded_len; return( 0 ); } /* * Convert a signature from an ASN.1 sequence of two integers * to a raw {r,s} buffer. Note: the provided sig buffer must be at least * twice as big as int_size. */ static int extract_ecdsa_sig( unsigned char **p, const unsigned char *end, unsigned char *sig, size_t int_size ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t tmp_size; if( ( ret = mbedtls_asn1_get_tag( p, end, &tmp_size, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) return( ret ); /* Extract r */ if( ( ret = extract_ecdsa_sig_int( p, end, sig, int_size ) ) != 0 ) return( ret ); /* Extract s */ if( ( ret = extract_ecdsa_sig_int( p, end, sig + int_size, int_size ) ) != 0 ) return( ret ); return( 0 ); } static int ecdsa_verify_wrap( void *ctx_arg, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { mbedtls_ecdsa_context *ctx = ctx_arg; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; int key_len; unsigned char buf[MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES]; unsigned char *p; mbedtls_pk_info_t pk_info = mbedtls_eckey_info; psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA_ANY; size_t curve_bits; psa_ecc_family_t curve = mbedtls_ecc_group_to_psa( ctx->grp.id, &curve_bits ); const size_t signature_part_size = ( ctx->grp.nbits + 7 ) / 8; ((void) md_alg); if( curve == 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* mbedtls_pk_write_pubkey() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &pk_info; key.pk_ctx = ctx; p = buf + sizeof( buf ); key_len = mbedtls_pk_write_pubkey( &p, buf, &key ); if( key_len <= 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); psa_set_key_type( &attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY( curve ) ); psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_VERIFY_HASH ); psa_set_key_algorithm( &attributes, psa_sig_md ); status = psa_import_key( &attributes, buf + sizeof( buf ) - key_len, key_len, &key_id ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa( status ); goto cleanup; } /* We don't need the exported key anymore and can * reuse its buffer for signature extraction. */ if( 2 * signature_part_size > sizeof( buf ) ) { ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA; goto cleanup; } p = (unsigned char*) sig; if( ( ret = extract_ecdsa_sig( &p, sig + sig_len, buf, signature_part_size ) ) != 0 ) { goto cleanup; } status = psa_verify_hash( key_id, psa_sig_md, hash, hash_len, buf, 2 * signature_part_size ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa_ecdsa( status ); goto cleanup; } if( p != sig + sig_len ) { ret = MBEDTLS_ERR_PK_SIG_LEN_MISMATCH; goto cleanup; } ret = 0; cleanup: status = psa_destroy_key( key_id ); if( ret == 0 && status != PSA_SUCCESS ) ret = mbedtls_pk_error_from_psa( status ); return( ret ); } #else /* MBEDTLS_USE_PSA_CRYPTO */ static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ((void) md_alg); ret = mbedtls_ecdsa_read_signature( (mbedtls_ecdsa_context *) ctx, hash, hash_len, sig, sig_len ); if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( ret ); } #endif /* MBEDTLS_USE_PSA_CRYPTO */ #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * Simultaneously convert and move raw MPI from the beginning of a buffer * to an ASN.1 MPI at the end of the buffer. * See also mbedtls_asn1_write_mpi(). * * p: pointer to the end of the output buffer * start: start of the output buffer, and also of the mpi to write at the end * n_len: length of the mpi to read from start */ static int asn1_write_mpibuf( unsigned char **p, unsigned char *start, size_t n_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t len = 0; if( (size_t)( *p - start ) < n_len ) return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); len = n_len; *p -= len; memmove( *p, start, len ); /* ASN.1 DER encoding requires minimal length, so skip leading 0s. * Neither r nor s should be 0, but as a failsafe measure, still detect * that rather than overflowing the buffer in case of a PSA error. */ while( len > 0 && **p == 0x00 ) { ++(*p); --len; } /* this is only reached if the signature was invalid */ if( len == 0 ) return( MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED ); /* if the msb is 1, ASN.1 requires that we prepend a 0. * Neither r nor s can be 0, so we can assume len > 0 at all times. */ if( **p & 0x80 ) { if( *p - start < 1 ) return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); *--(*p) = 0x00; len += 1; } MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, start, len ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, start, MBEDTLS_ASN1_INTEGER ) ); return( (int) len ); } /* Transcode signature from PSA format to ASN.1 sequence. * See ecdsa_signature_to_asn1 in ecdsa.c, but with byte buffers instead of * MPIs, and in-place. * * [in/out] sig: the signature pre- and post-transcoding * [in/out] sig_len: signature length pre- and post-transcoding * [int] buf_len: the available size the in/out buffer */ static int pk_ecdsa_sig_asn1_from_psa( unsigned char *sig, size_t *sig_len, size_t buf_len ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t len = 0; const size_t rs_len = *sig_len / 2; unsigned char *p = sig + buf_len; MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig + rs_len, rs_len ) ); MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig, rs_len ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, sig, len ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, sig, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ); memmove( sig, p, len ); *sig_len = len; return( 0 ); } /* Locate an ECDSA privateKey in a RFC 5915, or SEC1 Appendix C.4 ASN.1 buffer * * [in/out] buf: ASN.1 buffer start as input - ECDSA privateKey start as output * [in] end: ASN.1 buffer end * [out] key_len: the ECDSA privateKey length in bytes */ static int find_ecdsa_private_key( unsigned char **buf, unsigned char *end, size_t *key_len ) { size_t len; int ret; /* * RFC 5915, or SEC1 Appendix C.4 * * ECPrivateKey ::= SEQUENCE { * version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1), * privateKey OCTET STRING, * parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, * publicKey [1] BIT STRING OPTIONAL * } */ if( ( ret = mbedtls_asn1_get_tag( buf, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) return( ret ); /* version */ if( ( ret = mbedtls_asn1_get_tag( buf, end, &len, MBEDTLS_ASN1_INTEGER ) ) != 0 ) return( ret ); *buf += len; /* privateKey */ if( ( ret = mbedtls_asn1_get_tag( buf, end, &len, MBEDTLS_ASN1_OCTET_STRING ) ) != 0 ) return( ret ); *key_len = len; return 0; } static int ecdsa_sign_wrap( void *ctx_arg, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_ecdsa_context *ctx = ctx_arg; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT; psa_status_t status; mbedtls_pk_context key; size_t key_len; unsigned char buf[MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES]; unsigned char *p; psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA( mbedtls_psa_translate_md( md_alg ) ); size_t curve_bits; psa_ecc_family_t curve = mbedtls_ecc_group_to_psa( ctx->grp.id, &curve_bits ); /* PSA has its own RNG */ ((void) f_rng); ((void) p_rng); if( curve == 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* mbedtls_pk_write_key_der() expects a full PK context; * re-construct one to make it happy */ key.pk_info = &mbedtls_eckey_info; key.pk_ctx = ctx; key_len = mbedtls_pk_write_key_der( &key, buf, sizeof( buf ) ); if( key_len <= 0 ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); p = buf + sizeof( buf ) - key_len; ret = find_ecdsa_private_key( &p, buf + sizeof( buf ), &key_len ); if( ret != 0 ) goto cleanup; psa_set_key_type( &attributes, PSA_KEY_TYPE_ECC_KEY_PAIR( curve ) ); psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH ); psa_set_key_algorithm( &attributes, psa_sig_md ); status = psa_import_key( &attributes, p, key_len, &key_id ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa( status ); goto cleanup; } status = psa_sign_hash( key_id, psa_sig_md, hash, hash_len, sig, sig_size, sig_len ); if( status != PSA_SUCCESS ) { ret = mbedtls_pk_error_from_psa_ecdsa( status ); goto cleanup; } ret = pk_ecdsa_sig_asn1_from_psa( sig, sig_len, sig_size ); cleanup: mbedtls_platform_zeroize( buf, sizeof( buf ) ); status = psa_destroy_key( key_id ); if( ret == 0 && status != PSA_SUCCESS ) ret = mbedtls_pk_error_from_psa( status ); return( ret ); } #else static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { return( mbedtls_ecdsa_write_signature( (mbedtls_ecdsa_context *) ctx, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng ) ); } #endif #if defined(MBEDTLS_ECP_RESTARTABLE) static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, const unsigned char *sig, size_t sig_len, void *rs_ctx ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ((void) md_alg); ret = mbedtls_ecdsa_read_signature_restartable( (mbedtls_ecdsa_context *) ctx, hash, hash_len, sig, sig_len, (mbedtls_ecdsa_restart_ctx *) rs_ctx ); if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH ) return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH ); return( ret ); } static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, void *rs_ctx ) { return( mbedtls_ecdsa_write_signature_restartable( (mbedtls_ecdsa_context *) ctx, md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng, (mbedtls_ecdsa_restart_ctx *) rs_ctx ) ); } #endif /* MBEDTLS_ECP_RESTARTABLE */ static void *ecdsa_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_context ) ); if( ctx != NULL ) mbedtls_ecdsa_init( (mbedtls_ecdsa_context *) ctx ); return( ctx ); } static void ecdsa_free_wrap( void *ctx ) { mbedtls_ecdsa_free( (mbedtls_ecdsa_context *) ctx ); mbedtls_free( ctx ); } #if defined(MBEDTLS_ECP_RESTARTABLE) static void *ecdsa_rs_alloc( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_restart_ctx ) ); if( ctx != NULL ) mbedtls_ecdsa_restart_init( ctx ); return( ctx ); } static void ecdsa_rs_free( void *ctx ) { mbedtls_ecdsa_restart_free( ctx ); mbedtls_free( ctx ); } #endif /* MBEDTLS_ECP_RESTARTABLE */ const mbedtls_pk_info_t mbedtls_ecdsa_info = { MBEDTLS_PK_ECDSA, "ECDSA", eckey_get_bitlen, /* Compatible key structures */ ecdsa_can_do, ecdsa_verify_wrap, ecdsa_sign_wrap, #if defined(MBEDTLS_ECP_RESTARTABLE) ecdsa_verify_rs_wrap, ecdsa_sign_rs_wrap, #endif NULL, NULL, eckey_check_pair, /* Compatible key structures */ ecdsa_alloc_wrap, ecdsa_free_wrap, #if defined(MBEDTLS_ECP_RESTARTABLE) ecdsa_rs_alloc, ecdsa_rs_free, #endif eckey_debug, /* Compatible key structures */ }; #endif /* MBEDTLS_ECDSA_C */ #if defined(MBEDTLS_PK_RSA_ALT_SUPPORT) /* * Support for alternative RSA-private implementations */ static int rsa_alt_can_do( mbedtls_pk_type_t type ) { return( type == MBEDTLS_PK_RSA ); } static size_t rsa_alt_get_bitlen( const void *ctx ) { const mbedtls_rsa_alt_context *rsa_alt = (const mbedtls_rsa_alt_context *) ctx; return( 8 * rsa_alt->key_len_func( rsa_alt->key ) ); } static int rsa_alt_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx; #if SIZE_MAX > UINT_MAX if( UINT_MAX < hash_len ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ *sig_len = rsa_alt->key_len_func( rsa_alt->key ); if( *sig_len > MBEDTLS_PK_SIGNATURE_MAX_SIZE ) return( MBEDTLS_ERR_PK_BAD_INPUT_DATA ); if( *sig_len > sig_size ) return( MBEDTLS_ERR_PK_BUFFER_TOO_SMALL ); return( rsa_alt->sign_func( rsa_alt->key, f_rng, p_rng, md_alg, (unsigned int) hash_len, hash, sig ) ); } static int rsa_alt_decrypt_wrap( void *ctx, const unsigned char *input, size_t ilen, unsigned char *output, size_t *olen, size_t osize, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx; ((void) f_rng); ((void) p_rng); if( ilen != rsa_alt->key_len_func( rsa_alt->key ) ) return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA ); return( rsa_alt->decrypt_func( rsa_alt->key, olen, input, output, osize ) ); } #if defined(MBEDTLS_RSA_C) static int rsa_alt_check_pair( const void *pub, const void *prv, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { unsigned char sig[MBEDTLS_MPI_MAX_SIZE]; unsigned char hash[32]; size_t sig_len = 0; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub ) ) return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); memset( hash, 0x2a, sizeof( hash ) ); if( ( ret = rsa_alt_sign_wrap( (void *) prv, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sizeof( sig ), &sig_len, f_rng, p_rng ) ) != 0 ) { return( ret ); } if( rsa_verify_wrap( (void *) pub, MBEDTLS_MD_NONE, hash, sizeof( hash ), sig, sig_len ) != 0 ) { return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ); } return( 0 ); } #endif /* MBEDTLS_RSA_C */ static void *rsa_alt_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_alt_context ) ); if( ctx != NULL ) memset( ctx, 0, sizeof( mbedtls_rsa_alt_context ) ); return( ctx ); } static void rsa_alt_free_wrap( void *ctx ) { mbedtls_platform_zeroize( ctx, sizeof( mbedtls_rsa_alt_context ) ); mbedtls_free( ctx ); } const mbedtls_pk_info_t mbedtls_rsa_alt_info = { MBEDTLS_PK_RSA_ALT, "RSA-alt", rsa_alt_get_bitlen, rsa_alt_can_do, NULL, rsa_alt_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif rsa_alt_decrypt_wrap, NULL, #if defined(MBEDTLS_RSA_C) rsa_alt_check_pair, #else NULL, #endif rsa_alt_alloc_wrap, rsa_alt_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, NULL, #endif NULL, }; #endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */ #if defined(MBEDTLS_USE_PSA_CRYPTO) static void *pk_opaque_alloc_wrap( void ) { void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_svc_key_id_t ) ); /* no _init() function to call, an calloc() already zeroized */ return( ctx ); } static void pk_opaque_free_wrap( void *ctx ) { mbedtls_platform_zeroize( ctx, sizeof( mbedtls_svc_key_id_t ) ); mbedtls_free( ctx ); } static size_t pk_opaque_get_bitlen( const void *ctx ) { const mbedtls_svc_key_id_t *key = (const mbedtls_svc_key_id_t *) ctx; size_t bits; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; if( PSA_SUCCESS != psa_get_key_attributes( *key, &attributes ) ) return( 0 ); bits = psa_get_key_bits( &attributes ); psa_reset_key_attributes( &attributes ); return( bits ); } static int pk_opaque_can_do( mbedtls_pk_type_t type ) { /* For now opaque PSA keys can only wrap ECC keypairs, * as checked by setup_psa(). * Also, ECKEY_DH does not really make sense with the current API. */ return( type == MBEDTLS_PK_ECKEY || type == MBEDTLS_PK_ECDSA ); } static int pk_opaque_sign_wrap( void *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hash_len, unsigned char *sig, size_t sig_size, size_t *sig_len, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { #if !defined(MBEDTLS_ECDSA_C) ((void) ctx); ((void) md_alg); ((void) hash); ((void) hash_len); ((void) sig); ((void) sig_size); ((void) sig_len); ((void) f_rng); ((void) p_rng); return( MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE ); #else /* !MBEDTLS_ECDSA_C */ const mbedtls_svc_key_id_t *key = (const mbedtls_svc_key_id_t *) ctx; psa_algorithm_t alg = PSA_ALG_ECDSA( mbedtls_psa_translate_md( md_alg ) ); psa_status_t status; /* PSA has its own RNG */ (void) f_rng; (void) p_rng; /* make the signature */ status = psa_sign_hash( *key, alg, hash, hash_len, sig, sig_size, sig_len ); if( status != PSA_SUCCESS ) return( mbedtls_pk_error_from_psa_ecdsa( status ) ); /* transcode it to ASN.1 sequence */ return( pk_ecdsa_sig_asn1_from_psa( sig, sig_len, sig_size ) ); #endif /* !MBEDTLS_ECDSA_C */ } const mbedtls_pk_info_t mbedtls_pk_opaque_info = { MBEDTLS_PK_OPAQUE, "Opaque", pk_opaque_get_bitlen, pk_opaque_can_do, NULL, /* verify - will be done later */ pk_opaque_sign_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, /* restartable verify - not relevant */ NULL, /* restartable sign - not relevant */ #endif NULL, /* decrypt - will be done later */ NULL, /* encrypt - will be done later */ NULL, /* check_pair - could be done later or left NULL */ pk_opaque_alloc_wrap, pk_opaque_free_wrap, #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) NULL, /* restart alloc - not relevant */ NULL, /* restart free - not relevant */ #endif NULL, /* debug - could be done later, or even left NULL */ }; #endif /* MBEDTLS_USE_PSA_CRYPTO */ #endif /* MBEDTLS_PK_C */