/* BEGIN_HEADER */ #include "mbedtls/pk.h" /* For error codes */ #include "mbedtls/asn1.h" #include "mbedtls/base64.h" #include "mbedtls/ecp.h" #include "mbedtls/rsa.h" #include #include /* Needed only for test case data under #if defined(MBEDTLS_USE_PSA_CRYPTO), * but the test code generator requires test case data to be valid C code * unconditionally (https://github.com/ARMmbed/mbedtls/issues/2023). */ #include "psa/crypto.h" #define RSA_KEY_SIZE 512 #define RSA_KEY_LEN 64 /** Generate a key of the desired type. * * \param pk The PK object to fill. It must have been initialized * with mbedtls_pk_setup(). * \param parameter - For RSA keys, the key size in bits. * - For EC keys, the curve (\c MBEDTLS_ECP_DP_xxx). * * \return The status from the underlying type-specific key * generation function. * \return -1 if the key type is not recognized. */ static int pk_genkey( mbedtls_pk_context *pk, int parameter ) { ((void) pk); (void) parameter; #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_GENPRIME) if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_RSA ) return mbedtls_rsa_gen_key( mbedtls_pk_rsa( *pk ), mbedtls_test_rnd_std_rand, NULL, parameter, 3 ); #endif #if defined(MBEDTLS_ECP_C) if( mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY || mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECKEY_DH || mbedtls_pk_get_type( pk ) == MBEDTLS_PK_ECDSA ) { int ret; if( ( ret = mbedtls_ecp_group_load( &mbedtls_pk_ec( *pk )->grp, parameter ) ) != 0 ) return( ret ); return mbedtls_ecp_gen_keypair( &mbedtls_pk_ec( *pk )->grp, &mbedtls_pk_ec( *pk )->d, &mbedtls_pk_ec( *pk )->Q, mbedtls_test_rnd_std_rand, NULL ); } #endif return( -1 ); } #if defined(MBEDTLS_RSA_C) int mbedtls_rsa_decrypt_func( void *ctx, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len ) { return( mbedtls_rsa_pkcs1_decrypt( (mbedtls_rsa_context *) ctx, mbedtls_test_rnd_std_rand, NULL, olen, input, output, output_max_len ) ); } int mbedtls_rsa_sign_func( void *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_md_type_t md_alg, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ) { ((void) f_rng); ((void) p_rng); return( mbedtls_rsa_pkcs1_sign( (mbedtls_rsa_context *) ctx, mbedtls_test_rnd_std_rand, NULL, md_alg, hashlen, hash, sig ) ); } size_t mbedtls_rsa_key_len_func( void *ctx ) { return( ((const mbedtls_rsa_context *) ctx)->len ); } #endif /* MBEDTLS_RSA_C */ #if defined(MBEDTLS_USE_PSA_CRYPTO) /* * Generate a key using PSA and return the key identifier of that key, * or 0 if the key generation failed. * The key uses NIST P-256 and is usable for signing with SHA-256. */ mbedtls_svc_key_id_t pk_psa_genkey( void ) { mbedtls_svc_key_id_t key; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; const psa_key_type_t type = PSA_KEY_TYPE_ECC_KEY_PAIR( PSA_ECC_FAMILY_SECP_R1 ); const size_t bits = 256; psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_SIGN_HASH ); psa_set_key_algorithm( &attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256) ); psa_set_key_type( &attributes, type ); psa_set_key_bits( &attributes, bits ); PSA_ASSERT( psa_generate_key( &attributes, &key ) ); exit: return( key ); } #endif /* MBEDTLS_USE_PSA_CRYPTO */ /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_PK_C * END_DEPENDENCIES */ /* BEGIN_CASE depends_on:MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_ECDSA_C:MBEDTLS_ECP_DP_SECP256R1_ENABLED */ void pk_psa_utils( ) { mbedtls_pk_context pk, pk2; mbedtls_svc_key_id_t key; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; const char * const name = "Opaque"; const size_t bitlen = 256; /* harcoded in genkey() */ mbedtls_md_type_t md_alg = MBEDTLS_MD_NONE; unsigned char b1[1], b2[1]; size_t len; mbedtls_pk_debug_item dbg; PSA_ASSERT( psa_crypto_init( ) ); mbedtls_pk_init( &pk ); mbedtls_pk_init( &pk2 ); TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS ); TEST_ASSERT( mbedtls_pk_setup_opaque( &pk, MBEDTLS_SVC_KEY_ID_INIT ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); mbedtls_pk_free( &pk ); mbedtls_pk_init( &pk ); key = pk_psa_genkey(); if( mbedtls_svc_key_id_is_null( key ) ) goto exit; TEST_ASSERT( mbedtls_pk_setup_opaque( &pk, key ) == 0 ); TEST_ASSERT( mbedtls_pk_get_type( &pk ) == MBEDTLS_PK_OPAQUE ); TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 ); TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == bitlen ); TEST_ASSERT( mbedtls_pk_get_len( &pk ) == bitlen / 8 ); TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECKEY ) == 1 ); TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) == 1 ); TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_RSA ) == 0 ); /* unsupported operations: verify, decrypt, encrypt */ TEST_ASSERT( mbedtls_pk_verify( &pk, md_alg, b1, sizeof( b1), b2, sizeof( b2 ) ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); TEST_ASSERT( mbedtls_pk_decrypt( &pk, b1, sizeof( b1 ), b2, &len, sizeof( b2 ), NULL, NULL ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); TEST_ASSERT( mbedtls_pk_encrypt( &pk, b1, sizeof( b1 ), b2, &len, sizeof( b2 ), NULL, NULL ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); /* unsupported functions: check_pair, debug */ TEST_ASSERT( mbedtls_pk_setup( &pk2, mbedtls_pk_info_from_type( MBEDTLS_PK_ECKEY ) ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pk, &pk2, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); TEST_ASSERT( mbedtls_pk_debug( &pk, &dbg ) == MBEDTLS_ERR_PK_TYPE_MISMATCH ); /* test that freeing the context does not destroy the key */ mbedtls_pk_free( &pk ); TEST_ASSERT( PSA_SUCCESS == psa_get_key_attributes( key, &attributes ) ); TEST_ASSERT( PSA_SUCCESS == psa_destroy_key( key ) ); exit: /* * Key attributes may have been returned by psa_get_key_attributes() * thus reset them as required. */ psa_reset_key_attributes( &attributes ); mbedtls_pk_free( &pk ); /* redundant except upon error */ mbedtls_pk_free( &pk2 ); USE_PSA_DONE( ); } /* END_CASE */ /* BEGIN_CASE */ void valid_parameters( ) { mbedtls_pk_context pk; unsigned char buf[1]; size_t len; void *options = NULL; mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); /* In informational functions, we accept NULL where a context pointer * is expected because that's what the library has done forever. * We do not document that NULL is accepted, so we may wish to change * the behavior in a future version. */ TEST_ASSERT( mbedtls_pk_get_bitlen( NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_get_len( NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_can_do( NULL, MBEDTLS_PK_NONE ) == 0 ); TEST_ASSERT( mbedtls_pk_sign_restartable( &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof( buf ), &len, mbedtls_test_rnd_std_rand, NULL, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_sign_restartable( &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof( buf ), &len, mbedtls_test_rnd_std_rand, NULL, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof( buf ), &len, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof( buf ), NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof( buf ) ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_NONE, options, &pk, MBEDTLS_MD_NONE, NULL, 0, buf, sizeof( buf ) ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_encrypt( &pk, NULL, 0, NULL, &len, 0, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_decrypt( &pk, NULL, 0, NULL, &len, 0, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #if defined(MBEDTLS_PK_PARSE_C) TEST_ASSERT( mbedtls_pk_parse_key( &pk, NULL, 0, NULL, 1, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_KEY_INVALID_FORMAT ); TEST_ASSERT( mbedtls_pk_parse_public_key( &pk, NULL, 0 ) == MBEDTLS_ERR_PK_KEY_INVALID_FORMAT ); #endif /* MBEDTLS_PK_PARSE_C */ } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PK_WRITE_C */ void valid_parameters_pkwrite( data_t *key_data ) { mbedtls_pk_context pk; /* For the write tests to be effective, we need a valid key pair. */ mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_parse_key( &pk, key_data->x, key_data->len, NULL, 0, mbedtls_test_rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_write_key_der( &pk, NULL, 0 ) == MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); TEST_ASSERT( mbedtls_pk_write_pubkey_der( &pk, NULL, 0 ) == MBEDTLS_ERR_ASN1_BUF_TOO_SMALL ); #if defined(MBEDTLS_PEM_WRITE_C) TEST_ASSERT( mbedtls_pk_write_key_pem( &pk, NULL, 0 ) == MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL ); TEST_ASSERT( mbedtls_pk_write_pubkey_pem( &pk, NULL, 0 ) == MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL ); #endif /* MBEDTLS_PEM_WRITE_C */ exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE */ void pk_utils( int type, int parameter, int bitlen, int len, char * name ) { mbedtls_pk_context pk; mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_genkey( &pk, parameter ) == 0 ); TEST_ASSERT( (int) mbedtls_pk_get_type( &pk ) == type ); TEST_ASSERT( mbedtls_pk_can_do( &pk, type ) ); TEST_ASSERT( mbedtls_pk_get_bitlen( &pk ) == (unsigned) bitlen ); TEST_ASSERT( mbedtls_pk_get_len( &pk ) == (unsigned) len ); TEST_ASSERT( strcmp( mbedtls_pk_get_name( &pk), name ) == 0 ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_PK_PARSE_C:MBEDTLS_FS_IO */ void mbedtls_pk_check_pair( char * pub_file, char * prv_file, int ret ) { mbedtls_pk_context pub, prv, alt; mbedtls_pk_init( &pub ); mbedtls_pk_init( &prv ); mbedtls_pk_init( &alt ); TEST_ASSERT( mbedtls_pk_parse_public_keyfile( &pub, pub_file ) == 0 ); TEST_ASSERT( mbedtls_pk_parse_keyfile( &prv, prv_file, NULL, mbedtls_test_rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &prv, mbedtls_test_rnd_std_rand, NULL ) == ret ); #if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_RSA_ALT_SUPPORT) if( mbedtls_pk_get_type( &prv ) == MBEDTLS_PK_RSA ) { TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, mbedtls_pk_rsa( prv ), mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 ); TEST_ASSERT( mbedtls_pk_check_pair( &pub, &alt, mbedtls_test_rnd_std_rand, NULL ) == ret ); } #endif mbedtls_pk_free( &pub ); mbedtls_pk_free( &prv ); mbedtls_pk_free( &alt ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_verify_test_vec( data_t * message_str, int digest, int mod, int radix_N, char * input_N, int radix_E, char * input_E, data_t * result_str, int result ) { unsigned char hash_result[MBEDTLS_MD_MAX_SIZE]; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_pk_restart_ctx *rs_ctx = NULL; #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_ctx ctx; rs_ctx = &ctx; mbedtls_pk_restart_init( rs_ctx ); // this setting would ensure restart would happen if ECC was used mbedtls_ecp_set_max_ops( 1 ); #endif mbedtls_pk_init( &pk ); memset( hash_result, 0x00, MBEDTLS_MD_MAX_SIZE ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mbedtls_test_read_mpi( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &rsa->E, radix_E, input_E ) == 0 ); if( mbedtls_md_info_from_type( digest ) != NULL ) TEST_ASSERT( mbedtls_md( mbedtls_md_info_from_type( digest ), message_str->x, message_str->len, hash_result ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( &pk, digest, hash_result, 0, result_str->x, mbedtls_pk_get_len( &pk ) ) == result ); TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, digest, hash_result, 0, result_str->x, mbedtls_pk_get_len( &pk ), rs_ctx ) == result ); exit: #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_free( rs_ctx ); #endif mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_verify_ext_test_vec( data_t * message_str, int digest, int mod, int radix_N, char * input_N, int radix_E, char * input_E, data_t * result_str, int pk_type, int mgf1_hash_id, int salt_len, int sig_len, int result ) { unsigned char hash_result[MBEDTLS_MD_MAX_SIZE]; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; mbedtls_pk_rsassa_pss_options pss_opts; void *options; size_t hash_len; USE_PSA_INIT( ); mbedtls_pk_init( &pk ); memset( hash_result, 0x00, sizeof( hash_result ) ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mbedtls_test_read_mpi( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &rsa->E, radix_E, input_E ) == 0 ); if( digest != MBEDTLS_MD_NONE ) { const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( digest ); TEST_ASSERT( mbedtls_md( md_info, message_str->x, message_str->len, hash_result ) == 0 ); hash_len = mbedtls_md_get_size( md_info ); } else { memcpy( hash_result, message_str->x, message_str->len ); hash_len = message_str->len; } if( mgf1_hash_id < 0 ) { options = NULL; } else { options = &pss_opts; pss_opts.mgf1_hash_id = mgf1_hash_id; pss_opts.expected_salt_len = salt_len; } TEST_ASSERT( mbedtls_pk_verify_ext( pk_type, options, &pk, digest, hash_result, hash_len, result_str->x, sig_len ) == result ); exit: mbedtls_pk_free( &pk ); USE_PSA_DONE( ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ECDSA_C */ void pk_ec_test_vec( int type, int id, data_t * key, data_t * hash, data_t * sig, int ret ) { mbedtls_pk_context pk; mbedtls_ecp_keypair *eckey; mbedtls_pk_init( &pk ); USE_PSA_INIT( ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( mbedtls_pk_can_do( &pk, MBEDTLS_PK_ECDSA ) ); eckey = mbedtls_pk_ec( pk ); TEST_ASSERT( mbedtls_ecp_group_load( &eckey->grp, id ) == 0 ); TEST_ASSERT( mbedtls_ecp_point_read_binary( &eckey->grp, &eckey->Q, key->x, key->len ) == 0 ); // MBEDTLS_MD_NONE is used since it will be ignored. TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, hash->x, hash->len, sig->x, sig->len ) == ret ); exit: mbedtls_pk_free( &pk ); USE_PSA_DONE( ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ECP_RESTARTABLE:MBEDTLS_ECDSA_C:MBEDTLS_ECDSA_DETERMINISTIC */ void pk_sign_verify_restart( int pk_type, int grp_id, char *d_str, char *QX_str, char *QY_str, int md_alg, char *msg, data_t *sig_check, int max_ops, int min_restart, int max_restart ) { int ret, cnt_restart; mbedtls_pk_restart_ctx rs_ctx; mbedtls_pk_context prv, pub; unsigned char hash[MBEDTLS_MD_MAX_SIZE]; unsigned char sig[MBEDTLS_ECDSA_MAX_LEN]; size_t hlen, slen; const mbedtls_md_info_t *md_info; mbedtls_pk_restart_init( &rs_ctx ); mbedtls_pk_init( &prv ); mbedtls_pk_init( &pub ); memset( hash, 0, sizeof( hash ) ); memset( sig, 0, sizeof( sig ) ); TEST_ASSERT( mbedtls_pk_setup( &prv, mbedtls_pk_info_from_type( pk_type ) ) == 0 ); TEST_ASSERT( mbedtls_ecp_group_load( &mbedtls_pk_ec( prv )->grp, grp_id ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &mbedtls_pk_ec( prv )->d, 16, d_str ) == 0 ); TEST_ASSERT( mbedtls_pk_setup( &pub, mbedtls_pk_info_from_type( pk_type ) ) == 0 ); TEST_ASSERT( mbedtls_ecp_group_load( &mbedtls_pk_ec( pub )->grp, grp_id ) == 0 ); TEST_ASSERT( mbedtls_ecp_point_read_string( &mbedtls_pk_ec( pub )->Q, 16, QX_str, QY_str ) == 0 ); md_info = mbedtls_md_info_from_type( md_alg ); TEST_ASSERT( md_info != NULL ); hlen = mbedtls_md_get_size( md_info ); TEST_ASSERT( mbedtls_md( md_info, (const unsigned char *) msg, strlen( msg ), hash ) == 0 ); mbedtls_ecp_set_max_ops( max_ops ); slen = sizeof( sig ); cnt_restart = 0; do { ret = mbedtls_pk_sign_restartable( &prv, md_alg, hash, hlen, sig, sizeof( sig ), &slen, mbedtls_test_rnd_std_rand, NULL, &rs_ctx ); } while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart ); TEST_ASSERT( ret == 0 ); TEST_ASSERT( slen == sig_check->len ); TEST_ASSERT( memcmp( sig, sig_check->x, slen ) == 0 ); TEST_ASSERT( cnt_restart >= min_restart ); TEST_ASSERT( cnt_restart <= max_restart ); cnt_restart = 0; do { ret = mbedtls_pk_verify_restartable( &pub, md_alg, hash, hlen, sig, slen, &rs_ctx ); } while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS && ++cnt_restart ); TEST_ASSERT( ret == 0 ); TEST_ASSERT( cnt_restart >= min_restart ); TEST_ASSERT( cnt_restart <= max_restart ); hash[0]++; do { ret = mbedtls_pk_verify_restartable( &pub, md_alg, hash, hlen, sig, slen, &rs_ctx ); } while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS ); TEST_ASSERT( ret != 0 ); hash[0]--; sig[0]++; do { ret = mbedtls_pk_verify_restartable( &pub, md_alg, hash, hlen, sig, slen, &rs_ctx ); } while( ret == MBEDTLS_ERR_ECP_IN_PROGRESS ); TEST_ASSERT( ret != 0 ); sig[0]--; /* Do we leak memory when aborting? try verify then sign * This test only makes sense when we actually restart */ if( min_restart > 0 ) { ret = mbedtls_pk_verify_restartable( &pub, md_alg, hash, hlen, sig, slen, &rs_ctx ); TEST_ASSERT( ret == MBEDTLS_ERR_ECP_IN_PROGRESS ); mbedtls_pk_restart_free( &rs_ctx ); slen = sizeof( sig ); ret = mbedtls_pk_sign_restartable( &prv, md_alg, hash, hlen, sig, sizeof sig, &slen, mbedtls_test_rnd_std_rand, NULL, &rs_ctx ); TEST_ASSERT( ret == MBEDTLS_ERR_ECP_IN_PROGRESS ); } exit: mbedtls_pk_restart_free( &rs_ctx ); mbedtls_pk_free( &prv ); mbedtls_pk_free( &pub ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */ void pk_sign_verify( int type, int parameter, int sign_ret, int verify_ret ) { mbedtls_pk_context pk; size_t sig_len; unsigned char hash[32]; // Hard-coded for SHA256 size_t hash_len = sizeof( hash ); unsigned char sig[MBEDTLS_PK_SIGNATURE_MAX_SIZE]; void *rs_ctx = NULL; #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_ctx ctx; rs_ctx = &ctx; mbedtls_pk_restart_init( rs_ctx ); /* This value is large enough that the operation will complete in one run. * See comments at the top of ecp_test_vect_restart in * test_suite_ecp.function for estimates of operation counts. */ mbedtls_ecp_set_max_ops( 42000 ); #endif mbedtls_pk_init( &pk ); USE_PSA_INIT( ); memset( hash, 0x2a, sizeof hash ); memset( sig, 0, sizeof sig ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( pk_genkey( &pk, parameter ) == 0 ); TEST_ASSERT( mbedtls_pk_sign_restartable( &pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sizeof sig, &sig_len, mbedtls_test_rnd_std_rand, NULL, rs_ctx ) == sign_ret ); if( sign_ret == 0 ) TEST_ASSERT( sig_len <= MBEDTLS_PK_SIGNATURE_MAX_SIZE ); else sig_len = MBEDTLS_PK_SIGNATURE_MAX_SIZE; TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len ) == verify_ret ); if( verify_ret == 0 ) { hash[0]++; TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len ) != 0 ); hash[0]--; sig[0]++; TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len ) != 0 ); sig[0]--; } TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sizeof sig, &sig_len, mbedtls_test_rnd_std_rand, NULL ) == sign_ret ); if( sign_ret == 0 ) TEST_ASSERT( sig_len <= MBEDTLS_PK_SIGNATURE_MAX_SIZE ); else sig_len = MBEDTLS_PK_SIGNATURE_MAX_SIZE; TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256, hash, hash_len, sig, sig_len, rs_ctx ) == verify_ret ); if( verify_ret == 0 ) { hash[0]++; TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256, hash, sizeof hash, sig, sig_len, rs_ctx ) != 0 ); hash[0]--; sig[0]++; TEST_ASSERT( mbedtls_pk_verify_restartable( &pk, MBEDTLS_MD_SHA256, hash, sizeof hash, sig, sig_len, rs_ctx ) != 0 ); sig[0]--; } exit: #if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_pk_restart_free( rs_ctx ); #endif mbedtls_pk_free( &pk ); USE_PSA_DONE( ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_encrypt_test_vec( data_t * message, int mod, int radix_N, char * input_N, int radix_E, char * input_E, data_t * result, int ret ) { unsigned char output[300]; mbedtls_test_rnd_pseudo_info rnd_info; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; size_t olen; memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) ); memset( output, 0, sizeof( output ) ); mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); rsa->len = mod / 8; TEST_ASSERT( mbedtls_test_read_mpi( &rsa->N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &rsa->E, radix_E, input_E ) == 0 ); TEST_ASSERT( mbedtls_pk_encrypt( &pk, message->x, message->len, output, &olen, sizeof( output ), mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret ); TEST_ASSERT( olen == result->len ); TEST_ASSERT( memcmp( output, result->x, olen ) == 0 ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_decrypt_test_vec( data_t * cipher, int mod, int radix_P, char * input_P, int radix_Q, char * input_Q, int radix_N, char * input_N, int radix_E, char * input_E, data_t * clear, int ret ) { unsigned char output[256]; mbedtls_test_rnd_pseudo_info rnd_info; mbedtls_mpi N, P, Q, E; mbedtls_rsa_context *rsa; mbedtls_pk_context pk; size_t olen; mbedtls_pk_init( &pk ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &P ); mbedtls_mpi_init( &Q ); mbedtls_mpi_init( &E ); memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) ); /* init pk-rsa context */ TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); rsa = mbedtls_pk_rsa( pk ); /* load public key */ TEST_ASSERT( mbedtls_test_read_mpi( &N, radix_N, input_N ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &E, radix_E, input_E ) == 0 ); /* load private key */ TEST_ASSERT( mbedtls_test_read_mpi( &P, radix_P, input_P ) == 0 ); TEST_ASSERT( mbedtls_test_read_mpi( &Q, radix_Q, input_Q ) == 0 ); TEST_ASSERT( mbedtls_rsa_import( rsa, &N, &P, &Q, NULL, &E ) == 0 ); TEST_ASSERT( mbedtls_rsa_get_len( rsa ) == (size_t) ( mod / 8 ) ); TEST_ASSERT( mbedtls_rsa_complete( rsa ) == 0 ); /* decryption test */ memset( output, 0, sizeof( output ) ); olen = 0; TEST_ASSERT( mbedtls_pk_decrypt( &pk, cipher->x, cipher->len, output, &olen, sizeof( output ), mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret ); if( ret == 0 ) { TEST_ASSERT( olen == clear->len ); TEST_ASSERT( memcmp( output, clear->x, olen ) == 0 ); } exit: mbedtls_mpi_free( &N ); mbedtls_mpi_free( &P ); mbedtls_mpi_free( &Q ); mbedtls_mpi_free( &E ); mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE */ void pk_ec_nocrypt( int type ) { mbedtls_pk_context pk; unsigned char output[100]; unsigned char input[100]; mbedtls_test_rnd_pseudo_info rnd_info; size_t olen = 0; int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH; mbedtls_pk_init( &pk ); memset( &rnd_info, 0, sizeof( mbedtls_test_rnd_pseudo_info ) ); memset( output, 0, sizeof( output ) ); memset( input, 0, sizeof( input ) ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( type ) ) == 0 ); TEST_ASSERT( mbedtls_pk_encrypt( &pk, input, sizeof( input ), output, &olen, sizeof( output ), mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret ); TEST_ASSERT( mbedtls_pk_decrypt( &pk, input, sizeof( input ), output, &olen, sizeof( output ), mbedtls_test_rnd_pseudo_rand, &rnd_info ) == ret ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C */ void pk_rsa_overflow( ) { mbedtls_pk_context pk; size_t hash_len = SIZE_MAX, sig_len = SIZE_MAX; unsigned char hash[50], sig[100]; if( SIZE_MAX <= UINT_MAX ) return; memset( hash, 0x2a, sizeof hash ); memset( sig, 0, sizeof sig ); mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); #if defined(MBEDTLS_PKCS1_V21) TEST_ASSERT( mbedtls_pk_verify_ext( MBEDTLS_PK_RSASSA_PSS, NULL, &pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* MBEDTLS_PKCS1_V21 */ TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sig_len ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_NONE, hash, hash_len, sig, sizeof sig, &sig_len, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); exit: mbedtls_pk_free( &pk ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_RSA_C:MBEDTLS_PK_RSA_ALT_SUPPORT */ void pk_rsa_alt( ) { /* * An rsa_alt context can only do private operations (decrypt, sign). * Test it against the public operations (encrypt, verify) of a * corresponding rsa context. */ mbedtls_rsa_context raw; mbedtls_pk_context rsa, alt; mbedtls_pk_debug_item dbg_items[10]; unsigned char hash[50], sig[64]; unsigned char msg[50], ciph[64], test[50]; size_t sig_len, ciph_len, test_len; int ret = MBEDTLS_ERR_PK_TYPE_MISMATCH; mbedtls_rsa_init( &raw ); mbedtls_pk_init( &rsa ); mbedtls_pk_init( &alt ); memset( hash, 0x2a, sizeof hash ); memset( sig, 0, sizeof sig ); memset( msg, 0x2a, sizeof msg ); memset( ciph, 0, sizeof ciph ); memset( test, 0, sizeof test ); /* Initiliaze PK RSA context with random key */ TEST_ASSERT( mbedtls_pk_setup( &rsa, mbedtls_pk_info_from_type( MBEDTLS_PK_RSA ) ) == 0 ); TEST_ASSERT( pk_genkey( &rsa, RSA_KEY_SIZE ) == 0 ); /* Extract key to the raw rsa context */ TEST_ASSERT( mbedtls_rsa_copy( &raw, mbedtls_pk_rsa( rsa ) ) == 0 ); /* Initialize PK RSA_ALT context */ TEST_ASSERT( mbedtls_pk_setup_rsa_alt( &alt, (void *) &raw, mbedtls_rsa_decrypt_func, mbedtls_rsa_sign_func, mbedtls_rsa_key_len_func ) == 0 ); /* Test administrative functions */ TEST_ASSERT( mbedtls_pk_can_do( &alt, MBEDTLS_PK_RSA ) ); TEST_ASSERT( mbedtls_pk_get_bitlen( &alt ) == RSA_KEY_SIZE ); TEST_ASSERT( mbedtls_pk_get_len( &alt ) == RSA_KEY_LEN ); TEST_ASSERT( mbedtls_pk_get_type( &alt ) == MBEDTLS_PK_RSA_ALT ); TEST_ASSERT( strcmp( mbedtls_pk_get_name( &alt ), "RSA-alt" ) == 0 ); /* Test signature */ #if SIZE_MAX > UINT_MAX TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, SIZE_MAX, sig, sizeof sig, &sig_len, mbedtls_test_rnd_std_rand, NULL ) == MBEDTLS_ERR_PK_BAD_INPUT_DATA ); #endif /* SIZE_MAX > UINT_MAX */ TEST_ASSERT( mbedtls_pk_sign( &alt, MBEDTLS_MD_NONE, hash, sizeof hash, sig, sizeof sig, &sig_len, mbedtls_test_rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( sig_len == RSA_KEY_LEN ); TEST_ASSERT( mbedtls_pk_verify( &rsa, MBEDTLS_MD_NONE, hash, sizeof hash, sig, sig_len ) == 0 ); /* Test decrypt */ TEST_ASSERT( mbedtls_pk_encrypt( &rsa, msg, sizeof msg, ciph, &ciph_len, sizeof ciph, mbedtls_test_rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( mbedtls_pk_decrypt( &alt, ciph, ciph_len, test, &test_len, sizeof test, mbedtls_test_rnd_std_rand, NULL ) == 0 ); TEST_ASSERT( test_len == sizeof msg ); TEST_ASSERT( memcmp( test, msg, test_len ) == 0 ); /* Test forbidden operations */ TEST_ASSERT( mbedtls_pk_encrypt( &alt, msg, sizeof msg, ciph, &ciph_len, sizeof ciph, mbedtls_test_rnd_std_rand, NULL ) == ret ); TEST_ASSERT( mbedtls_pk_verify( &alt, MBEDTLS_MD_NONE, hash, sizeof hash, sig, sig_len ) == ret ); TEST_ASSERT( mbedtls_pk_debug( &alt, dbg_items ) == ret ); exit: mbedtls_rsa_free( &raw ); mbedtls_pk_free( &rsa ); mbedtls_pk_free( &alt ); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_SHA256_C:MBEDTLS_USE_PSA_CRYPTO:MBEDTLS_ECDSA_C */ void pk_psa_sign( int grpid_arg, int psa_curve_arg, int expected_bits_arg ) { mbedtls_ecp_group_id grpid = grpid_arg; mbedtls_pk_context pk; unsigned char hash[32]; unsigned char sig[MBEDTLS_ECDSA_MAX_LEN]; unsigned char pkey_legacy[200]; unsigned char pkey_psa[200]; unsigned char *pkey_legacy_start, *pkey_psa_start; size_t sig_len, klen_legacy, klen_psa; int ret; mbedtls_svc_key_id_t key_id; psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; psa_key_type_t expected_type = PSA_KEY_TYPE_ECC_KEY_PAIR( psa_curve_arg ); size_t expected_bits = expected_bits_arg; /* * This tests making signatures with a wrapped PSA key: * - generate a fresh ECP legacy PK context * - wrap it in a PK context and make a signature this way * - extract the public key * - parse it to a PK context and verify the signature this way */ PSA_ASSERT( psa_crypto_init( ) ); /* Create legacy EC public/private key in PK context. */ mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_setup( &pk, mbedtls_pk_info_from_type( MBEDTLS_PK_ECKEY ) ) == 0 ); TEST_ASSERT( mbedtls_ecp_gen_key( grpid, (mbedtls_ecp_keypair*) pk.pk_ctx, mbedtls_test_rnd_std_rand, NULL ) == 0 ); /* Export underlying public key for re-importing in a legacy context. */ ret = mbedtls_pk_write_pubkey_der( &pk, pkey_legacy, sizeof( pkey_legacy ) ); TEST_ASSERT( ret >= 0 ); klen_legacy = (size_t) ret; /* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */ pkey_legacy_start = pkey_legacy + sizeof( pkey_legacy ) - klen_legacy; /* Turn PK context into an opaque one. */ TEST_ASSERT( mbedtls_pk_wrap_as_opaque( &pk, &key_id, PSA_ALG_SHA_256 ) == 0 ); PSA_ASSERT( psa_get_key_attributes( key_id, &attributes ) ); TEST_EQUAL( psa_get_key_type( &attributes ), expected_type ); TEST_EQUAL( psa_get_key_bits( &attributes ), expected_bits ); TEST_EQUAL( psa_get_key_lifetime( &attributes ), PSA_KEY_LIFETIME_VOLATILE ); memset( hash, 0x2a, sizeof hash ); memset( sig, 0, sizeof sig ); TEST_ASSERT( mbedtls_pk_sign( &pk, MBEDTLS_MD_SHA256, hash, sizeof hash, sig, sizeof sig, &sig_len, NULL, NULL ) == 0 ); /* Export underlying public key for re-importing in a psa context. */ ret = mbedtls_pk_write_pubkey_der( &pk, pkey_psa, sizeof( pkey_psa ) ); TEST_ASSERT( ret >= 0 ); klen_psa = (size_t) ret; /* mbedtls_pk_write_pubkey_der() writes backwards in the data buffer. */ pkey_psa_start = pkey_psa + sizeof( pkey_psa ) - klen_psa; TEST_ASSERT( klen_psa == klen_legacy ); TEST_ASSERT( memcmp( pkey_psa_start, pkey_legacy_start, klen_psa ) == 0 ); mbedtls_pk_free( &pk ); TEST_ASSERT( PSA_SUCCESS == psa_destroy_key( key_id ) ); mbedtls_pk_init( &pk ); TEST_ASSERT( mbedtls_pk_parse_public_key( &pk, pkey_legacy_start, klen_legacy ) == 0 ); TEST_ASSERT( mbedtls_pk_verify( &pk, MBEDTLS_MD_SHA256, hash, sizeof hash, sig, sig_len ) == 0 ); exit: /* * Key attributes may have been returned by psa_get_key_attributes() * thus reset them as required. */ psa_reset_key_attributes( &attributes ); mbedtls_pk_free( &pk ); USE_PSA_DONE( ); } /* END_CASE */