/* * Arm64 crypto extension support functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "common.h" #if defined(MBEDTLS_AESCE_C) #include "aesce.h" #if defined(MBEDTLS_HAVE_ARM64) #if defined(__clang__) # if __clang_major__ < 4 # error "A more recent Clang is required for MBEDTLS_AESCE_C" # endif #elif defined(__GNUC__) # if __GNUC__ < 6 # error "A more recent GCC is required for MBEDTLS_AESCE_C" # endif #else # error "Only GCC and Clang supported for MBEDTLS_AESCE_C" #endif #if !defined(__ARM_FEATURE_CRYPTO) # error "`crypto` feature moddifier MUST be enabled for MBEDTLS_AESCE_C." # error "Typical option for GCC and Clang is `-march=armv8-a+crypto`." #endif /* !__ARM_FEATURE_CRYPTO */ #include #if defined(__linux__) #include #include #endif /* * AES instruction support detection routine */ int mbedtls_aesce_has_support(void) { #if defined(__linux__) unsigned long auxval = getauxval(AT_HWCAP); return (auxval & (HWCAP_ASIMD | HWCAP_AES)) == (HWCAP_ASIMD | HWCAP_AES); #else /* Assume AES instructions are supported. */ return 1; #endif } static uint8x16_t aesce_encrypt_block(uint8x16_t block, unsigned char *keys, int rounds) { for (int i = 0; i < rounds - 1; i++) { /* AES AddRoundKey, SubBytes, ShiftRows (in this order). * AddRoundKey adds the round key for the previous round. */ block = vaeseq_u8(block, vld1q_u8(keys + i * 16)); /* AES mix columns */ block = vaesmcq_u8(block); } /* AES AddRoundKey for the previous round. * SubBytes, ShiftRows for the final round. */ block = vaeseq_u8(block, vld1q_u8(keys + (rounds -1) * 16)); /* Final round: no MixColumns */ /* Final AddRoundKey */ block = veorq_u8(block, vld1q_u8(keys + rounds * 16)); return block; } static uint8x16_t aesce_decrypt_block(uint8x16_t block, unsigned char *keys, int rounds) { for (int i = 0; i < rounds - 1; i++) { /* AES AddRoundKey, SubBytes, ShiftRows */ block = vaesdq_u8(block, vld1q_u8(keys + i * 16)); /* AES inverse MixColumns for the next round. * * This means that we switch the order of the inverse AddRoundKey and * inverse MixColumns operations. We have to do this as AddRoundKey is * done in an atomic instruction together with the inverses of SubBytes * and ShiftRows. * * It works because MixColumns is a linear operation over GF(2^8) and * AddRoundKey is an exclusive or, which is equivalent to addition over * GF(2^8). (The inverse of MixColumns needs to be applied to the * affected round keys separately which has been done when the * decryption round keys were calculated.) */ block = vaesimcq_u8(block); } /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the * last full round. */ block = vaesdq_u8(block, vld1q_u8(keys + (rounds - 1) * 16)); /* Inverse AddRoundKey for inverting the initial round key addition. */ block = veorq_u8(block, vld1q_u8(keys + rounds * 16)); return block; } /* * AES-ECB block en(de)cryption */ int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16]) { uint8x16_t block = vld1q_u8(&input[0]); unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset); if (mode == MBEDTLS_AES_ENCRYPT) { block = aesce_encrypt_block(block, keys, ctx->nr); } else { block = aesce_decrypt_block(block, keys, ctx->nr); } vst1q_u8(&output[0], block); return 0; } /* * Compute decryption round keys from encryption round keys */ void mbedtls_aesce_inverse_key(unsigned char *invkey, const unsigned char *fwdkey, int nr) { int i, j; j = nr; vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16)); for (i = 1, j--; j > 0; i++, j--) { vst1q_u8(invkey + i * 16, vaesimcq_u8(vld1q_u8(fwdkey + j * 16))); } vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16)); } static inline uint32_t aes_rot_word(uint32_t word) { return (word << (32 - 8)) | (word >> 8); } static inline uint32_t aes_sub_word(uint32_t in) { uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in)); uint8x16_t zero = vdupq_n_u8(0); /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields * the correct result as ShiftRows doesn't change the first row. */ v = vaeseq_u8(zero, v); return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0); } /* * Key expansion function */ static void aesce_setkey_enc(unsigned char *rk, const unsigned char *key, const size_t key_bit_length) { static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf * - Section 5, Nr = Nk + 6 * - Section 5.2, the key expansion size is Nb*(Nr+1) */ const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */ const size_t round_key_len_in_words = 4; /* Nb */ const size_t round_keys_needed = key_len_in_words + 6; /* Nr */ const size_t key_expansion_size_in_words = round_key_len_in_words * (round_keys_needed + 1); /* Nb*(Nr+1) */ const uint32_t *rko_end = (uint32_t *) rk + key_expansion_size_in_words; memcpy(rk, key, key_len_in_words * 4); for (uint32_t *rki = (uint32_t *) rk; rki + key_len_in_words < rko_end; rki += key_len_in_words) { size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words; uint32_t *rko; rko = rki + key_len_in_words; rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1])); rko[0] ^= rcon[iteration] ^ rki[0]; rko[1] = rko[0] ^ rki[1]; rko[2] = rko[1] ^ rki[2]; rko[3] = rko[2] ^ rki[3]; if (rko + key_len_in_words > rko_end) { /* Do not write overflow words.*/ continue; } switch (key_bit_length) { case 128: break; case 192: rko[4] = rko[3] ^ rki[4]; rko[5] = rko[4] ^ rki[5]; break; case 256: rko[4] = aes_sub_word(rko[3]) ^ rki[4]; rko[5] = rko[4] ^ rki[5]; rko[6] = rko[5] ^ rki[6]; rko[7] = rko[6] ^ rki[7]; break; } } } /* * Key expansion, wrapper */ int mbedtls_aesce_setkey_enc(unsigned char *rk, const unsigned char *key, size_t bits) { switch (bits) { case 128: case 192: case 256: aesce_setkey_enc(rk, key, bits); break; default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } return 0; } #endif /* MBEDTLS_HAVE_ARM64 */ #endif /* MBEDTLS_AESCE_C */