/* BEGIN_HEADER */ #include "mbedtls/entropy.h" #include "entropy_poll.h" #include "mbedtls/md.h" #include "string.h" typedef enum { DUMMY_CONSTANT_LENGTH, /* Output context->length bytes */ DUMMY_REQUESTED_LENGTH, /* Output whatever length was requested */ DUMMY_FAIL, /* Return an error code */ } entropy_dummy_instruction; typedef struct { entropy_dummy_instruction instruction; size_t length; /* Length to return for DUMMY_CONSTANT_LENGTH */ size_t calls; /* Incremented at each call */ } entropy_dummy_context; /* * Dummy entropy source * * If data is NULL, write exactly the requested length. * Otherwise, write the length indicated by data or error if negative */ static int entropy_dummy_source(void *arg, unsigned char *output, size_t len, size_t *olen) { entropy_dummy_context *context = arg; ++context->calls; switch (context->instruction) { case DUMMY_CONSTANT_LENGTH: *olen = context->length; break; case DUMMY_REQUESTED_LENGTH: *olen = len; break; case DUMMY_FAIL: return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED; } memset(output, 0x2a, *olen); return 0; } /* * Ability to clear entropy sources to allow testing with just predefined * entropy sources. This function or tests depending on it might break if there * are internal changes to how entropy sources are registered. * * To be called immediately after mbedtls_entropy_init(). * * Just resetting the counter. New sources will overwrite existing ones. * This might break memory checks in the future if sources need 'free-ing' then * as well. */ static void entropy_clear_sources(mbedtls_entropy_context *ctx) { ctx->source_count = 0; } #if defined(MBEDTLS_ENTROPY_NV_SEED) /* * NV seed read/write functions that use a buffer instead of a file */ static unsigned char buffer_seed[MBEDTLS_ENTROPY_BLOCK_SIZE]; int buffer_nv_seed_read(unsigned char *buf, size_t buf_len) { if (buf_len != MBEDTLS_ENTROPY_BLOCK_SIZE) { return -1; } memcpy(buf, buffer_seed, MBEDTLS_ENTROPY_BLOCK_SIZE); return 0; } int buffer_nv_seed_write(unsigned char *buf, size_t buf_len) { if (buf_len != MBEDTLS_ENTROPY_BLOCK_SIZE) { return -1; } memcpy(buffer_seed, buf, MBEDTLS_ENTROPY_BLOCK_SIZE); return 0; } /* * NV seed read/write helpers that fill the base seedfile */ static int write_nv_seed(unsigned char *buf, size_t buf_len) { FILE *f; if (buf_len != MBEDTLS_ENTROPY_BLOCK_SIZE) { return -1; } if ((f = fopen(MBEDTLS_PLATFORM_STD_NV_SEED_FILE, "w")) == NULL) { return -1; } if (fwrite(buf, 1, MBEDTLS_ENTROPY_BLOCK_SIZE, f) != MBEDTLS_ENTROPY_BLOCK_SIZE) { return -1; } fclose(f); return 0; } int read_nv_seed(unsigned char *buf, size_t buf_len) { FILE *f; if (buf_len != MBEDTLS_ENTROPY_BLOCK_SIZE) { return -1; } if ((f = fopen(MBEDTLS_PLATFORM_STD_NV_SEED_FILE, "rb")) == NULL) { return -1; } if (fread(buf, 1, MBEDTLS_ENTROPY_BLOCK_SIZE, f) != MBEDTLS_ENTROPY_BLOCK_SIZE) { return -1; } fclose(f); return 0; } #endif /* MBEDTLS_ENTROPY_NV_SEED */ /* END_HEADER */ /* BEGIN_DEPENDENCIES * depends_on:MBEDTLS_ENTROPY_C * END_DEPENDENCIES */ /* BEGIN_CASE */ void entropy_init_free(int reinit) { mbedtls_entropy_context ctx; /* Double free is not explicitly documented to work, but it is convenient * to call mbedtls_entropy_free() unconditionally on an error path without * checking whether it has already been called in the success path. */ mbedtls_entropy_init(&ctx); mbedtls_entropy_free(&ctx); if (reinit) { mbedtls_entropy_init(&ctx); } mbedtls_entropy_free(&ctx); /* This test case always succeeds, functionally speaking. A plausible * bug might trigger an invalid pointer dereference or a memory leak. */ goto exit; } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_NV_SEED:MBEDTLS_FS_IO */ void entropy_seed_file(char *path, int ret) { mbedtls_entropy_context ctx; mbedtls_entropy_init(&ctx); TEST_ASSERT(mbedtls_entropy_write_seed_file(&ctx, path) == ret); TEST_ASSERT(mbedtls_entropy_update_seed_file(&ctx, path) == ret); exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_NV_SEED:MBEDTLS_FS_IO */ void entropy_write_base_seed_file(int ret) { mbedtls_entropy_context ctx; mbedtls_entropy_init(&ctx); TEST_ASSERT(mbedtls_entropy_write_seed_file(&ctx, MBEDTLS_PLATFORM_STD_NV_SEED_FILE) == ret); TEST_ASSERT(mbedtls_entropy_update_seed_file(&ctx, MBEDTLS_PLATFORM_STD_NV_SEED_FILE) == ret); exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE */ void entropy_no_sources() { mbedtls_entropy_context ctx; unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE]; mbedtls_entropy_init(&ctx); entropy_clear_sources(&ctx); TEST_EQUAL(mbedtls_entropy_func(&ctx, buf, sizeof(buf)), MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED); exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE */ void entropy_too_many_sources() { mbedtls_entropy_context ctx; size_t i; entropy_dummy_context dummy = { DUMMY_REQUESTED_LENGTH, 0, 0 }; mbedtls_entropy_init(&ctx); /* * It's hard to tell precisely when the error will occur, * since we don't know how many sources were automatically added. */ for (i = 0; i < MBEDTLS_ENTROPY_MAX_SOURCES; i++) { (void) mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &dummy, 16, MBEDTLS_ENTROPY_SOURCE_WEAK); } TEST_ASSERT(mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &dummy, 16, MBEDTLS_ENTROPY_SOURCE_WEAK) == MBEDTLS_ERR_ENTROPY_MAX_SOURCES); exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE depends_on:ENTROPY_HAVE_STRONG */ void entropy_func_len(int len, int ret) { mbedtls_entropy_context ctx; unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE + 10] = { 0 }; unsigned char acc[MBEDTLS_ENTROPY_BLOCK_SIZE + 10] = { 0 }; size_t i, j; mbedtls_entropy_init(&ctx); /* * See comments in mbedtls_entropy_self_test() */ for (i = 0; i < 8; i++) { TEST_ASSERT(mbedtls_entropy_func(&ctx, buf, len) == ret); for (j = 0; j < sizeof(buf); j++) { acc[j] |= buf[j]; } } if (ret == 0) { for (j = 0; j < (size_t) len; j++) { TEST_ASSERT(acc[j] != 0); } } for (j = len; j < sizeof(buf); j++) { TEST_ASSERT(acc[j] == 0); } exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE */ void entropy_source_fail(char *path) { mbedtls_entropy_context ctx; unsigned char buf[16]; entropy_dummy_context dummy = { DUMMY_FAIL, 0, 0 }; mbedtls_entropy_init(&ctx); TEST_ASSERT(mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &dummy, 16, MBEDTLS_ENTROPY_SOURCE_WEAK) == 0); TEST_ASSERT(mbedtls_entropy_func(&ctx, buf, sizeof(buf)) == MBEDTLS_ERR_ENTROPY_SOURCE_FAILED); TEST_ASSERT(mbedtls_entropy_gather(&ctx) == MBEDTLS_ERR_ENTROPY_SOURCE_FAILED); #if defined(MBEDTLS_FS_IO) && defined(MBEDTLS_ENTROPY_NV_SEED) TEST_ASSERT(mbedtls_entropy_write_seed_file(&ctx, path) == MBEDTLS_ERR_ENTROPY_SOURCE_FAILED); TEST_ASSERT(mbedtls_entropy_update_seed_file(&ctx, path) == MBEDTLS_ERR_ENTROPY_SOURCE_FAILED); #else ((void) path); #endif exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE */ void entropy_threshold(int threshold, int chunk_size, int result) { mbedtls_entropy_context ctx; entropy_dummy_context strong = { DUMMY_CONSTANT_LENGTH, MBEDTLS_ENTROPY_BLOCK_SIZE, 0 }; entropy_dummy_context weak = { DUMMY_CONSTANT_LENGTH, chunk_size, 0 }; unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE] = { 0 }; int ret; mbedtls_entropy_init(&ctx); entropy_clear_sources(&ctx); /* Set strong source that reaches its threshold immediately and * a weak source whose threshold is a test parameter. */ TEST_ASSERT(mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &strong, 1, MBEDTLS_ENTROPY_SOURCE_STRONG) == 0); TEST_ASSERT(mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &weak, threshold, MBEDTLS_ENTROPY_SOURCE_WEAK) == 0); ret = mbedtls_entropy_func(&ctx, buf, sizeof(buf)); if (result >= 0) { TEST_ASSERT(ret == 0); #if defined(MBEDTLS_ENTROPY_NV_SEED) /* If the NV seed functionality is enabled, there are two entropy * updates: before and after updating the NV seed. */ result *= 2; #endif TEST_ASSERT(weak.calls == (size_t) result); } else { TEST_ASSERT(ret == result); } exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE */ void entropy_calls(int strength1, int strength2, int threshold, int chunk_size, int result) { /* * if result >= 0: result = expected number of calls to source 1 * if result < 0: result = expected return code from mbedtls_entropy_func() */ mbedtls_entropy_context ctx; entropy_dummy_context dummy1 = { DUMMY_CONSTANT_LENGTH, chunk_size, 0 }; entropy_dummy_context dummy2 = { DUMMY_CONSTANT_LENGTH, chunk_size, 0 }; unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE] = { 0 }; int ret; mbedtls_entropy_init(&ctx); entropy_clear_sources(&ctx); TEST_ASSERT(mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &dummy1, threshold, strength1) == 0); TEST_ASSERT(mbedtls_entropy_add_source(&ctx, entropy_dummy_source, &dummy2, threshold, strength2) == 0); ret = mbedtls_entropy_func(&ctx, buf, sizeof(buf)); if (result >= 0) { TEST_ASSERT(ret == 0); #if defined(MBEDTLS_ENTROPY_NV_SEED) /* If the NV seed functionality is enabled, there are two entropy * updates: before and after updating the NV seed. */ result *= 2; #endif TEST_ASSERT(dummy1.calls == (size_t) result); } else { TEST_ASSERT(ret == result); } exit: mbedtls_entropy_free(&ctx); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_NV_SEED:MBEDTLS_FS_IO */ void nv_seed_file_create() { unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE]; memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE); TEST_ASSERT(write_nv_seed(buf, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_ENTROPY_NV_SEED:MBEDTLS_FS_IO:MBEDTLS_PLATFORM_NV_SEED_ALT */ void entropy_nv_seed_std_io() { unsigned char io_seed[MBEDTLS_ENTROPY_BLOCK_SIZE]; unsigned char check_seed[MBEDTLS_ENTROPY_BLOCK_SIZE]; memset(io_seed, 1, MBEDTLS_ENTROPY_BLOCK_SIZE); memset(check_seed, 0, MBEDTLS_ENTROPY_BLOCK_SIZE); mbedtls_platform_set_nv_seed(mbedtls_platform_std_nv_seed_read, mbedtls_platform_std_nv_seed_write); /* Check if platform NV read and write manipulate the same data */ TEST_ASSERT(write_nv_seed(io_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); TEST_ASSERT(mbedtls_nv_seed_read(check_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == MBEDTLS_ENTROPY_BLOCK_SIZE); TEST_ASSERT(memcmp(io_seed, check_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); memset(check_seed, 0, MBEDTLS_ENTROPY_BLOCK_SIZE); /* Check if platform NV write and raw read manipulate the same data */ TEST_ASSERT(mbedtls_nv_seed_write(io_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == MBEDTLS_ENTROPY_BLOCK_SIZE); TEST_ASSERT(read_nv_seed(check_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); TEST_ASSERT(memcmp(io_seed, check_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); } /* END_CASE */ /* BEGIN_CASE depends_on:MBEDTLS_MD_C:MBEDTLS_ENTROPY_NV_SEED:MBEDTLS_PLATFORM_NV_SEED_ALT */ void entropy_nv_seed(data_t *read_seed) { #if defined(MBEDTLS_ENTROPY_SHA512_ACCUMULATOR) const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA512); #elif defined(MBEDTLS_ENTROPY_SHA256_ACCUMULATOR) const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); #else #error "Unsupported entropy accumulator" #endif mbedtls_md_context_t accumulator; mbedtls_entropy_context ctx; int (*original_mbedtls_nv_seed_read)(unsigned char *buf, size_t buf_len) = mbedtls_nv_seed_read; int (*original_mbedtls_nv_seed_write)(unsigned char *buf, size_t buf_len) = mbedtls_nv_seed_write; unsigned char header[2]; unsigned char entropy[MBEDTLS_ENTROPY_BLOCK_SIZE]; unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE]; unsigned char empty[MBEDTLS_ENTROPY_BLOCK_SIZE]; unsigned char check_seed[MBEDTLS_ENTROPY_BLOCK_SIZE]; unsigned char check_entropy[MBEDTLS_ENTROPY_BLOCK_SIZE]; memset(entropy, 0, MBEDTLS_ENTROPY_BLOCK_SIZE); memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE); memset(empty, 0, MBEDTLS_ENTROPY_BLOCK_SIZE); memset(check_seed, 2, MBEDTLS_ENTROPY_BLOCK_SIZE); memset(check_entropy, 3, MBEDTLS_ENTROPY_BLOCK_SIZE); // Make sure we read/write NV seed from our buffers mbedtls_platform_set_nv_seed(buffer_nv_seed_read, buffer_nv_seed_write); mbedtls_md_init(&accumulator); mbedtls_entropy_init(&ctx); entropy_clear_sources(&ctx); TEST_ASSERT(mbedtls_entropy_add_source(&ctx, mbedtls_nv_seed_poll, NULL, MBEDTLS_ENTROPY_BLOCK_SIZE, MBEDTLS_ENTROPY_SOURCE_STRONG) == 0); // Set the initial NV seed to read TEST_ASSERT(read_seed->len >= MBEDTLS_ENTROPY_BLOCK_SIZE); memcpy(buffer_seed, read_seed->x, MBEDTLS_ENTROPY_BLOCK_SIZE); // Do an entropy run TEST_ASSERT(mbedtls_entropy_func(&ctx, entropy, sizeof(entropy)) == 0); // Determine what should have happened with manual entropy internal logic // Init accumulator header[1] = MBEDTLS_ENTROPY_BLOCK_SIZE; TEST_ASSERT(mbedtls_md_setup(&accumulator, md_info, 0) == 0); // First run for updating write_seed header[0] = 0; TEST_ASSERT(mbedtls_md_starts(&accumulator) == 0); TEST_ASSERT(mbedtls_md_update(&accumulator, header, 2) == 0); TEST_ASSERT(mbedtls_md_update(&accumulator, read_seed->x, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); TEST_ASSERT(mbedtls_md_finish(&accumulator, buf) == 0); TEST_ASSERT(mbedtls_md_starts(&accumulator) == 0); TEST_ASSERT(mbedtls_md_update(&accumulator, buf, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); TEST_ASSERT(mbedtls_md(md_info, buf, MBEDTLS_ENTROPY_BLOCK_SIZE, check_seed) == 0); // Second run for actual entropy (triggers mbedtls_entropy_update_nv_seed) header[0] = MBEDTLS_ENTROPY_SOURCE_MANUAL; TEST_ASSERT(mbedtls_md_update(&accumulator, header, 2) == 0); TEST_ASSERT(mbedtls_md_update(&accumulator, empty, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); header[0] = 0; TEST_ASSERT(mbedtls_md_update(&accumulator, header, 2) == 0); TEST_ASSERT(mbedtls_md_update(&accumulator, check_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); TEST_ASSERT(mbedtls_md_finish(&accumulator, buf) == 0); TEST_ASSERT(mbedtls_md(md_info, buf, MBEDTLS_ENTROPY_BLOCK_SIZE, check_entropy) == 0); // Check result of both NV file and entropy received with the manual calculations TEST_ASSERT(memcmp(check_seed, buffer_seed, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); TEST_ASSERT(memcmp(check_entropy, entropy, MBEDTLS_ENTROPY_BLOCK_SIZE) == 0); exit: mbedtls_md_free(&accumulator); mbedtls_entropy_free(&ctx); mbedtls_nv_seed_read = original_mbedtls_nv_seed_read; mbedtls_nv_seed_write = original_mbedtls_nv_seed_write; } /* END_CASE */ /* BEGIN_CASE depends_on:ENTROPY_HAVE_STRONG:MBEDTLS_SELF_TEST */ void entropy_selftest(int result) { TEST_ASSERT(mbedtls_entropy_self_test(1) == result); } /* END_CASE */