/* BEGIN_HEADER */ #include "../library/alignment.h" #include #if defined(__clang__) #pragma clang diagnostic ignored "-Wunreachable-code" #endif /* * Convert a string of the form "abcd" (case-insensitive) to a uint64_t. */ int parse_hex_string(char *hex_string, uint64_t *result) { uint8_t raw[8]; size_t olen; if (mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0) { return 0; } *result = 0; for (size_t i = 0; i < olen; i++) { if (MBEDTLS_IS_BIG_ENDIAN) { *result |= ((uint64_t) raw[i]) << (i * 8); } else { *result |= ((uint64_t) raw[i]) << ((olen - i - 1) * 8); } } return 1; } /* END_HEADER */ /* BEGIN_CASE */ void mbedtls_unaligned_access(int size, int offset) { /* Define 64-bit aligned raw byte array */ uint64_t raw[2]; /* Populate with known data */ uint8_t *x = (uint8_t *) raw; for (size_t i = 0; i < sizeof(raw); i++) { x[i] = (uint8_t) i; } TEST_ASSERT(size == 16 || size == 32 || size == 64); uint64_t r = 0; switch (size) { case 16: r = mbedtls_get_unaligned_uint16(x + offset); break; case 32: r = mbedtls_get_unaligned_uint32(x + offset); break; case 64: r = mbedtls_get_unaligned_uint64(x + offset); break; } /* Generate expected result */ uint64_t expected = 0; for (uint8_t i = 0; i < 8; i++) { uint8_t shift; if (MBEDTLS_IS_BIG_ENDIAN) { /* * Similar to little-endian case described below, but the shift needs * to be inverted */ shift = 7 - (i * 8); } else { /* example for offset == 1: * expected = (( 1 + 0 ) << (0 * 8)) | (( 1 + 1 ) << (1 * 8)) | (( 1 + 2 ) << (2 * 8))) * = (1 << 0) | (2 << 8) | (3 << 16) ... * = 0x0807060504030201 * x = { 0, 1, 2, 3, ... } * ie expected is the value that would be read from x on a LE system, when * byte swapping is not performed */ shift = i * 8; } uint64_t b = offset + i; expected |= b << shift; } /* Mask out excess bits from expected result */ switch (size) { case 16: expected &= 0xffff; break; case 32: expected &= 0xffffffff; break; } TEST_EQUAL(r, expected); /* Write sentinel to the part of the array we will testing writing to */ for (size_t i = 0; i < (size_t) (size / 8); i++) { x[i + offset] = 0xff; } /* * Write back to the array with mbedtls_put_unaligned_uint16 and validate * that the array is unchanged as a result. */ switch (size) { case 16: mbedtls_put_unaligned_uint16(x + offset, r); break; case 32: mbedtls_put_unaligned_uint32(x + offset, r); break; case 64: mbedtls_put_unaligned_uint64(x + offset, r); break; } for (size_t i = 0; i < sizeof(x); i++) { TEST_EQUAL(x[i], (uint8_t) i); } } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_byteswap(char *input_str, int size, char *expected_str) { uint64_t input, expected; TEST_ASSERT(parse_hex_string(input_str, &input)); TEST_ASSERT(parse_hex_string(expected_str, &expected)); /* Check against expected result */ uint64_t r = 0; switch (size) { case 16: r = MBEDTLS_BSWAP16(input); break; case 32: r = MBEDTLS_BSWAP32(input); break; case 64: r = MBEDTLS_BSWAP64(input); break; default: TEST_ASSERT(!"size must be 16, 32 or 64"); } TEST_EQUAL(r, expected); /* * Check byte by byte by extracting bytes from opposite ends of * input and r. */ for (size_t i = 0; i < (size_t) (size / 8); i++) { size_t s1 = i * 8; size_t s2 = ((size / 8 - 1) - i) * 8; uint64_t a = (input & ((uint64_t) 0xff << s1)) >> s1; uint64_t b = (r & ((uint64_t) 0xff << s2)) >> s2; TEST_EQUAL(a, b); } /* Check BSWAP(BSWAP(x)) == x */ switch (size) { case 16: r = MBEDTLS_BSWAP16(r); TEST_EQUAL(r, input & 0xffff); break; case 32: r = MBEDTLS_BSWAP32(r); TEST_EQUAL(r, input & 0xffffffff); break; case 64: r = MBEDTLS_BSWAP64(r); TEST_EQUAL(r, input); break; } } /* END_CASE */ /* BEGIN_CASE */ void get_byte() { uint8_t data[16]; for (size_t i = 0; i < sizeof(data); i++) { data[i] = (uint8_t) i; } uint64_t u64 = 0x0706050403020100; for (size_t b = 0; b < 8; b++) { uint8_t expected = b; uint8_t actual = b + 1; switch (b) { case 0: actual = MBEDTLS_BYTE_0(u64); break; case 1: actual = MBEDTLS_BYTE_1(u64); break; case 2: actual = MBEDTLS_BYTE_2(u64); break; case 3: actual = MBEDTLS_BYTE_3(u64); break; case 4: actual = MBEDTLS_BYTE_4(u64); break; case 5: actual = MBEDTLS_BYTE_5(u64); break; case 6: actual = MBEDTLS_BYTE_6(u64); break; case 7: actual = MBEDTLS_BYTE_7(u64); break; } TEST_EQUAL(actual, expected); } uint32_t u32 = 0x03020100; for (size_t b = 0; b < 4; b++) { uint8_t expected = b; uint8_t actual = b + 1; switch (b) { case 0: actual = MBEDTLS_BYTE_0(u32); break; case 1: actual = MBEDTLS_BYTE_1(u32); break; case 2: actual = MBEDTLS_BYTE_2(u32); break; case 3: actual = MBEDTLS_BYTE_3(u32); break; } TEST_EQUAL(actual, expected); } uint16_t u16 = 0x0100; for (size_t b = 0; b < 2; b++) { uint8_t expected = b; uint8_t actual = b + 1; switch (b) { case 0: actual = MBEDTLS_BYTE_0(u16); break; case 1: actual = MBEDTLS_BYTE_1(u16); break; } TEST_EQUAL(actual, expected); } uint8_t u8 = 0x01; uint8_t actual = MBEDTLS_BYTE_0(u8); TEST_EQUAL(actual, u8); } /* END_CASE */ /* BEGIN_CASE */ void unaligned_access_endian_aware(int size, int offset, int big_endian) { TEST_ASSERT(size == 16 || size == 24 || size == 32 || size == 64); TEST_ASSERT(offset >= 0 && offset < 8); /* Define 64-bit aligned raw byte array */ uint64_t raw[2]; /* Populate with known data: x == { 0, 1, 2, ... } */ uint8_t *x = (uint8_t *) raw; for (size_t i = 0; i < sizeof(raw); i++) { x[i] = (uint8_t) i; } uint64_t read = 0; if (big_endian) { switch (size) { case 16: read = MBEDTLS_GET_UINT16_BE(x, offset); break; case 24: read = MBEDTLS_GET_UINT24_BE(x, offset); break; case 32: read = MBEDTLS_GET_UINT32_BE(x, offset); break; case 64: read = MBEDTLS_GET_UINT64_BE(x, offset); break; } } else { switch (size) { case 16: read = MBEDTLS_GET_UINT16_LE(x, offset); break; case 24: read = MBEDTLS_GET_UINT24_LE(x, offset); break; case 32: read = MBEDTLS_GET_UINT32_LE(x, offset); break; case 64: read = MBEDTLS_GET_UINT64_LE(x, offset); break; } } /* Build up expected value byte by byte, in either big or little endian format */ uint64_t expected = 0; for (size_t i = 0; i < (size_t) (size / 8); i++) { uint64_t b = x[i + offset]; uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i); expected |= b << shift; } /* Verify read */ TEST_EQUAL(read, expected); /* Test writing back to memory. First write sentiel */ for (size_t i = 0; i < (size_t) (size / 8); i++) { x[i + offset] = 0xff; } /* Overwrite sentinel with endian-aware write macro */ if (big_endian) { switch (size) { case 16: MBEDTLS_PUT_UINT16_BE(read, x, offset); break; case 24: MBEDTLS_PUT_UINT24_BE(read, x, offset); break; case 32: MBEDTLS_PUT_UINT32_BE(read, x, offset); break; case 64: MBEDTLS_PUT_UINT64_BE(read, x, offset); break; } } else { switch (size) { case 16: MBEDTLS_PUT_UINT16_LE(read, x, offset); break; case 24: MBEDTLS_PUT_UINT24_LE(read, x, offset); break; case 32: MBEDTLS_PUT_UINT32_LE(read, x, offset); break; case 64: MBEDTLS_PUT_UINT64_LE(read, x, offset); break; } } /* Verify write - check memory is correct */ for (size_t i = 0; i < sizeof(raw); i++) { TEST_EQUAL(x[i], (uint8_t) i); } } /* END_CASE */ /* BEGIN_CASE */ void mbedtls_is_big_endian() { uint16_t check = 0x1234; uint8_t *p = (uint8_t *) ✓ if (MBEDTLS_IS_BIG_ENDIAN) { /* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */ TEST_EQUAL(p[0], 0x12); TEST_EQUAL(p[1], 0x34); } else { /* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */ TEST_EQUAL(p[0], 0x34); TEST_EQUAL(p[1], 0x12); } } /* END_CASE */