/* * The LMS stateful-hash public-key signature scheme * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * The following sources were referenced in the design of this implementation * of the LMS algorithm: * * [1] IETF RFC8554 * D. McGrew, M. Curcio, S.Fluhrer * https://datatracker.ietf.org/doc/html/rfc8554 * * [2] NIST Special Publication 800-208 * David A. Cooper et. al. * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf */ #include "common.h" #if defined(MBEDTLS_LMS_C) #include #include "lmots.h" #include "psa/crypto.h" #include "mbedtls/lms.h" #include "mbedtls/error.h" #include "mbedtls/platform_util.h" #include "mbedtls/platform.h" #define SIG_Q_LEAF_ID_OFFSET (0) #define SIG_OTS_SIG_OFFSET (SIG_Q_LEAF_ID_OFFSET + \ MBEDTLS_LMOTS_Q_LEAF_ID_LEN) #define SIG_TYPE_OFFSET(otstype) (SIG_OTS_SIG_OFFSET + \ MBEDTLS_LMOTS_SIG_LEN(otstype)) #define SIG_PATH_OFFSET(otstype) (SIG_TYPE_OFFSET(otstype) + \ MBEDTLS_LMS_TYPE_LEN) #define PUBLIC_KEY_TYPE_OFFSET (0) #define PUBLIC_KEY_OTSTYPE_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \ MBEDTLS_LMS_TYPE_LEN) #define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_OTSTYPE_OFFSET + \ MBEDTLS_LMOTS_TYPE_LEN) #define PUBLIC_KEY_ROOT_NODE_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \ MBEDTLS_LMOTS_I_KEY_ID_LEN) /* Currently only support H=10 */ #define H_TREE_HEIGHT_MAX 10 #define MERKLE_TREE_NODE_AM_MAX (1u << (H_TREE_HEIGHT_MAX + 1u)) #define MERKLE_TREE_NODE_AM(type) (1u << (MBEDTLS_LMS_H_TREE_HEIGHT(type) + 1u)) #define MERKLE_TREE_LEAF_NODE_AM(type) (1u << MBEDTLS_LMS_H_TREE_HEIGHT(type)) #define MERKLE_TREE_INTERNAL_NODE_AM(type) (1u << MBEDTLS_LMS_H_TREE_HEIGHT(type)) #define D_CONST_LEN (2) static const unsigned char D_LEAF_CONSTANT_BYTES[D_CONST_LEN] = {0x82, 0x82}; static const unsigned char D_INTR_CONSTANT_BYTES[D_CONST_LEN] = {0x83, 0x83}; /* Calculate the value of a leaf node of the Merkle tree (which is a hash of a * public key and some other parameters like the leaf index). This function * implements RFC8554 section 5.3, in the case where r >= 2^h. * * params The LMS parameter set, the underlying LMOTS * parameter set, and I value which describe the key * being used. * * pub_key The public key of the private whose index * corresponds to the index of this leaf node. This * is a hash output. * * r_node_idx The index of this node in the Merkle tree. Note * that the root node of the Merkle tree is * 1-indexed. * * out The output node value, which is a hash output. */ static int create_merkle_leaf_value( const mbedtls_lms_parameters_t *params, unsigned char *pub_key, unsigned int r_node_idx, unsigned char *out ) { psa_hash_operation_t op; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned char r_node_idx_bytes[4]; op = psa_hash_operation_init( ); status = psa_hash_setup( &op, PSA_ALG_SHA_256 ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN ); if( status != PSA_SUCCESS ) goto exit; mbedtls_lms_unsigned_int_to_network_bytes( r_node_idx, 4, r_node_idx_bytes ); status = psa_hash_update( &op, r_node_idx_bytes, 4 ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, D_LEAF_CONSTANT_BYTES, D_CONST_LEN ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, pub_key, MBEDTLS_LMOTS_N_HASH_LEN(params->otstype) ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_finish( &op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type), &output_hash_len ); if( status != PSA_SUCCESS ) goto exit; exit: psa_hash_abort( &op ); return ( mbedtls_lms_error_from_psa( status ) ); } /* Calculate the value of an internal node of the Merkle tree (which is a hash * of a public key and some other parameters like the node index). This function * implements RFC8554 section 5.3, in the case where r < 2^h. * * params The LMS parameter set, the underlying LMOTS * parameter set, and I value which describe the key * being used. * * left_node The value of the child of this node which is on * the left-hand side. As with all nodes on the * Merkle tree, this is a hash output. * * right_node The value of the child of this node which is on * the right-hand side. As with all nodes on the * Merkle tree, this is a hash output. * * r_node_idx The index of this node in the Merkle tree. Note * that the root node of the Merkle tree is * 1-indexed. * * out The output node value, which is a hash output. */ static int create_merkle_internal_value( const mbedtls_lms_parameters_t *params, const unsigned char *left_node, const unsigned char *right_node, unsigned int r_node_idx, unsigned char *out ) { psa_hash_operation_t op; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned char r_node_idx_bytes[4]; op = psa_hash_operation_init( ); status = psa_hash_setup( &op, PSA_ALG_SHA_256 ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN ); if( status != PSA_SUCCESS ) goto exit; mbedtls_lms_unsigned_int_to_network_bytes( r_node_idx, 4, r_node_idx_bytes ); status = psa_hash_update( &op, r_node_idx_bytes, 4 ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, D_INTR_CONSTANT_BYTES, D_CONST_LEN ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, left_node, MBEDTLS_LMS_M_NODE_BYTES(params->type) ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_update( &op, right_node, MBEDTLS_LMS_M_NODE_BYTES(params->type) ); if( status != PSA_SUCCESS ) goto exit; status = psa_hash_finish( &op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type), &output_hash_len ); if( status != PSA_SUCCESS ) goto exit; exit: psa_hash_abort( &op ); return( mbedtls_lms_error_from_psa( status ) ); } void mbedtls_lms_public_init( mbedtls_lms_public_t *ctx ) { memset( ctx, 0, sizeof( *ctx ) ) ; } void mbedtls_lms_public_free( mbedtls_lms_public_t *ctx ) { mbedtls_platform_zeroize( ctx, sizeof( *ctx ) ); } int mbedtls_lms_import_public_key( mbedtls_lms_public_t *ctx, const unsigned char *key, size_t key_size ) { mbedtls_lms_algorithm_type_t type; mbedtls_lmots_algorithm_type_t otstype; type = mbedtls_lms_network_bytes_to_unsigned_int( MBEDTLS_LMS_TYPE_LEN, key + PUBLIC_KEY_TYPE_OFFSET ); if( type != MBEDTLS_LMS_SHA256_M32_H10 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } ctx->params.type = type; if( key_size != MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type) ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } otstype = mbedtls_lms_network_bytes_to_unsigned_int( MBEDTLS_LMOTS_TYPE_LEN, key + PUBLIC_KEY_OTSTYPE_OFFSET ); if( otstype != MBEDTLS_LMOTS_SHA256_N32_W8 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } ctx->params.otstype = otstype; memcpy( ctx->params.I_key_identifier, key + PUBLIC_KEY_I_KEY_ID_OFFSET, MBEDTLS_LMOTS_I_KEY_ID_LEN ); memcpy( ctx->T_1_pub_key, key + PUBLIC_KEY_ROOT_NODE_OFFSET, MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type) ); ctx->have_public_key = 1; return( 0 ); } int mbedtls_lms_export_public_key( const mbedtls_lms_public_t *ctx, unsigned char *key, size_t key_size, size_t *key_len ) { if( key_size < MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type) ) { return( MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL ); } if( ! ctx->have_public_key ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } mbedtls_lms_unsigned_int_to_network_bytes( ctx->params.type, MBEDTLS_LMS_TYPE_LEN, key + PUBLIC_KEY_TYPE_OFFSET ); mbedtls_lms_unsigned_int_to_network_bytes( ctx->params.otstype, MBEDTLS_LMOTS_TYPE_LEN, key + PUBLIC_KEY_OTSTYPE_OFFSET ); memcpy( key + PUBLIC_KEY_I_KEY_ID_OFFSET, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN ); memcpy( key +PUBLIC_KEY_ROOT_NODE_OFFSET, ctx->T_1_pub_key, MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type) ); if( key_len != NULL ) { *key_len = MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type); } return( 0 ); } int mbedtls_lms_verify( const mbedtls_lms_public_t *ctx, const unsigned char *msg, size_t msg_size, const unsigned char *sig, size_t sig_size ) { unsigned int q_leaf_identifier; unsigned char Kc_candidate_ots_pub_key[MBEDTLS_LMOTS_N_HASH_LEN_MAX]; unsigned char Tc_candidate_root_node[MBEDTLS_LMS_M_NODE_BYTES_MAX]; unsigned int height; unsigned int curr_node_id; unsigned int parent_node_id; const unsigned char* left_node; const unsigned char* right_node; mbedtls_lmots_parameters_t ots_params; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if( ! ctx->have_public_key ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( ctx->params.otstype != MBEDTLS_LMOTS_SHA256_N32_W8 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( sig_size != MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype) ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } if( sig_size < SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_TYPE_LEN ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } if( mbedtls_lms_network_bytes_to_unsigned_int( MBEDTLS_LMOTS_TYPE_LEN, sig + SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_SIG_TYPE_OFFSET ) != MBEDTLS_LMOTS_SHA256_N32_W8 ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } if( sig_size < SIG_TYPE_OFFSET(ctx->params.otstype) + MBEDTLS_LMS_TYPE_LEN ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } if( mbedtls_lms_network_bytes_to_unsigned_int( MBEDTLS_LMS_TYPE_LEN, sig + SIG_TYPE_OFFSET(ctx->params.otstype)) != MBEDTLS_LMS_SHA256_M32_H10 ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } q_leaf_identifier = mbedtls_lms_network_bytes_to_unsigned_int( MBEDTLS_LMOTS_Q_LEAF_ID_LEN, sig + SIG_Q_LEAF_ID_OFFSET ); if( q_leaf_identifier >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type) ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } memcpy( ots_params.I_key_identifier, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN ); mbedtls_lms_unsigned_int_to_network_bytes( q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN, ots_params.q_leaf_identifier ); ots_params.type = ctx->params.otstype; ret = mbedtls_lmots_calculate_public_key_candidate( &ots_params, msg, msg_size, sig + SIG_OTS_SIG_OFFSET, MBEDTLS_LMOTS_SIG_LEN(ctx->params.otstype), Kc_candidate_ots_pub_key, sizeof( Kc_candidate_ots_pub_key ), NULL ); if( ret != 0 ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } create_merkle_leaf_value( &ctx->params, Kc_candidate_ots_pub_key, MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier, Tc_candidate_root_node ); curr_node_id = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier; for( height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type); height++ ) { parent_node_id = curr_node_id / 2; /* Left/right node ordering matters for the hash */ if( curr_node_id & 1 ) { left_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) + height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type); right_node = Tc_candidate_root_node; } else { left_node = Tc_candidate_root_node; right_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) + height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type); } create_merkle_internal_value( &ctx->params, left_node, right_node, parent_node_id, Tc_candidate_root_node); curr_node_id /= 2; } if( memcmp( Tc_candidate_root_node, ctx->T_1_pub_key, MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)) ) { return( MBEDTLS_ERR_LMS_VERIFY_FAILED ); } return( 0 ); } #if defined(MBEDTLS_LMS_PRIVATE) /* Calculate a full Merkle tree based on a private key. This function * implements RFC8554 section 5.3, and is used to generate a public key (as the * public key is the root node of the Merkle tree). * * ctx The LMS private context, containing a parameter * set and private key material consisting of both * public and private OTS. * * tree The output tree, which is 2^(H + 1) hash outputs. * In the case of H=10 we have 2048 tree nodes (of * which 1024 of them are leaf nodes). Note that * because the Merkle tree root is 1-indexed, the 0 * index tree node is never used. */ static int calculate_merkle_tree( const mbedtls_lms_private_t *ctx, unsigned char *tree ) { unsigned int priv_key_idx; unsigned int r_node_idx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* First create the leaf nodes, in ascending order */ for( priv_key_idx = 0; priv_key_idx < MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type); priv_key_idx++ ) { r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + priv_key_idx; ret = create_merkle_leaf_value( &ctx->params, ctx->ots_public_keys[priv_key_idx].public_key, r_node_idx, &tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)] ); if( ret != 0 ) { return( ret ); } } /* Then the internal nodes, in reverse order so that we can guarantee the * parent has been created */ for( r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) - 1; r_node_idx > 0; r_node_idx-- ) { ret = create_merkle_internal_value( &ctx->params, &tree[( r_node_idx * 2 ) * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)], &tree[( r_node_idx * 2 + 1 ) * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)], r_node_idx, &tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)] ); if( ret != 0 ) { return( ret ); } } return( 0 ); } /* Calculate a path from a leaf node of the Merkle tree to the root of the tree, * and return the full path. This function implements RFC8554 section 5.4.1, as * the Merkle path is the main component of an LMS signature. * * ctx The LMS private context, containing a parameter * set and private key material consisting of both * public and private OTS. * * leaf_node_id Which leaf node to calculate the path from. * * path The output path, which is H hash outputs. */ static int get_merkle_path( mbedtls_lms_private_t *ctx, unsigned int leaf_node_id, unsigned char *path ) { unsigned char tree[MERKLE_TREE_NODE_AM_MAX][MBEDTLS_LMS_M_NODE_BYTES_MAX]; unsigned int curr_node_id = leaf_node_id; unsigned int adjacent_node_id; unsigned int height; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ret = calculate_merkle_tree( ctx, ( unsigned char * )tree ); if( ret != 0 ) { goto exit; } for( height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type); height++ ) { adjacent_node_id = curr_node_id ^ 1; memcpy( &path[height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)], &tree[adjacent_node_id], MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type) ); curr_node_id >>=1; } ret = 0; exit: mbedtls_platform_zeroize( tree, sizeof( tree ) ); return( ret ); } void mbedtls_lms_private_init( mbedtls_lms_private_t *ctx ) { memset( ctx, 0, sizeof( *ctx ) ) ; } void mbedtls_lms_private_free( mbedtls_lms_private_t *ctx ) { unsigned int idx; if( ctx->have_private_key ) { if( ctx->ots_private_keys != NULL ) { for( idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++ ) { mbedtls_lmots_private_free( &ctx->ots_private_keys[idx] ); } } if( ctx->ots_public_keys != NULL ) { for( idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++ ) { mbedtls_lmots_public_free( &ctx->ots_public_keys[idx] ); } } mbedtls_free( ctx->ots_private_keys ); mbedtls_free( ctx->ots_public_keys ); } mbedtls_platform_zeroize( ctx, sizeof( *ctx ) ); } int mbedtls_lms_generate_private_key( mbedtls_lms_private_t *ctx, mbedtls_lms_algorithm_type_t type, mbedtls_lmots_algorithm_type_t otstype, int (*f_rng)(void *, unsigned char *, size_t), void* p_rng, const unsigned char *seed, size_t seed_size ) { unsigned int idx = 0; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if( type != MBEDTLS_LMS_SHA256_M32_H10 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( otstype != MBEDTLS_LMOTS_SHA256_N32_W8 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( ctx->have_private_key ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } ctx->params.type = type; ctx->params.otstype = otstype; ctx->have_private_key = 1; ret = f_rng( p_rng, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN ); if( ret != 0 ) { goto exit; } /* Requires a cast to size_t to avoid an implicit cast warning on certain * platforms (particularly Windows) */ ctx->ots_private_keys = mbedtls_calloc( ( size_t )MERKLE_TREE_LEAF_NODE_AM(ctx->params.type), sizeof( *ctx->ots_private_keys ) ); if( ctx->ots_private_keys == NULL ) { ret = MBEDTLS_ERR_LMS_ALLOC_FAILED; goto exit; } /* Requires a cast to size_t to avoid an implicit cast warning on certain * platforms (particularly Windows) */ ctx->ots_public_keys = mbedtls_calloc( ( size_t )MERKLE_TREE_LEAF_NODE_AM(ctx->params.type), sizeof( *ctx->ots_public_keys ) ); if( ctx->ots_public_keys == NULL ) { ret = MBEDTLS_ERR_LMS_ALLOC_FAILED; goto exit; } for( idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++ ) { mbedtls_lmots_private_init( &ctx->ots_private_keys[idx] ); mbedtls_lmots_public_init( &ctx->ots_public_keys[idx] ); } for( idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++ ) { ret = mbedtls_lmots_generate_private_key( &ctx->ots_private_keys[idx], otstype, ctx->params.I_key_identifier, idx, seed, seed_size ); if( ret != 0 ) goto exit; ret = mbedtls_lmots_calculate_public_key( &ctx->ots_public_keys[idx], &ctx->ots_private_keys[idx] ); if( ret != 0 ) goto exit; } ctx->q_next_usable_key = 0; exit: if( ret != 0 ) { mbedtls_lms_private_free(ctx); } return( ret ); } int mbedtls_lms_calculate_public_key( mbedtls_lms_public_t *ctx, const mbedtls_lms_private_t *priv_ctx ) { unsigned char tree[MERKLE_TREE_NODE_AM_MAX][MBEDTLS_LMS_M_NODE_BYTES_MAX]; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if( ! priv_ctx->have_private_key ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( priv_ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( priv_ctx->params.otstype != MBEDTLS_LMOTS_SHA256_N32_W8 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } memcpy( &ctx->params, &priv_ctx->params, sizeof( mbedtls_lmots_parameters_t ) ); ret = calculate_merkle_tree( priv_ctx, ( unsigned char * )tree ); if( ret != 0 ) { goto exit; } /* Root node is always at position 1, due to 1-based indexing */ memcpy( ctx->T_1_pub_key, &tree[1], MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type) ); ctx->have_public_key = 1; ret = 0; exit: mbedtls_platform_zeroize( tree, sizeof( tree ) ); return( ret ); } int mbedtls_lms_sign( mbedtls_lms_private_t *ctx, int (*f_rng)(void *, unsigned char *, size_t), void* p_rng, const unsigned char *msg, unsigned int msg_size, unsigned char *sig, size_t sig_size, size_t *sig_len ) { uint32_t q_leaf_identifier; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if( ! ctx->have_private_key ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( sig_size < MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype) ) { return( MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL ); } if( ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( ctx->params.otstype != MBEDTLS_LMOTS_SHA256_N32_W8 ) { return( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } if( ctx->q_next_usable_key >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type) ) { return( MBEDTLS_ERR_LMS_OUT_OF_PRIVATE_KEYS ); } q_leaf_identifier = ctx->q_next_usable_key; /* This new value must _always_ be written back to the disk before the * signature is returned. */ ctx->q_next_usable_key += 1; if ( MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype) < SIG_OTS_SIG_OFFSET ) { return ( MBEDTLS_ERR_LMS_BAD_INPUT_DATA ); } ret = mbedtls_lmots_sign( &ctx->ots_private_keys[q_leaf_identifier], f_rng, p_rng, msg, msg_size, sig + SIG_OTS_SIG_OFFSET, MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype) - SIG_OTS_SIG_OFFSET, NULL ); if( ret != 0 ) { return( ret ); } mbedtls_lms_unsigned_int_to_network_bytes( ctx->params.type, MBEDTLS_LMS_TYPE_LEN, sig + SIG_TYPE_OFFSET(ctx->params.otstype) ); mbedtls_lms_unsigned_int_to_network_bytes( q_leaf_identifier, MBEDTLS_LMOTS_Q_LEAF_ID_LEN, sig + SIG_Q_LEAF_ID_OFFSET ); ret = get_merkle_path( ctx, MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier, sig + SIG_PATH_OFFSET(ctx->params.otstype) ); if( ret != 0 ) { return( ret ); } if( sig_len != NULL ) { *sig_len = MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype); } return( 0 ); } #endif /* defined(MBEDTLS_LMS_PRIVATE) */ #endif /* defined(MBEDTLS_LMS_C) */