
Introduction

This document is an incomplete DRAFT, provided for evaluation
purposes only. It does not constitute a commitment of any kind.

Arm’s Platform Security Architecture (PSA) is a holistic set of threat models,
security analyses, hardware and firmware architecture specifications, and an
open source firmware reference implementation. PSA provides a recipe, based
on industry best practice, that allows security to be consistently designed in, at
both a hardware and firmware level.

The PSA Cryptographic API (Crypto API) described in this document is
an important component of the PSA that provides an interface to modern
cryptographic primitives on resource-constrained devices. It constitutes an
interface that is easy to comprehend while still providing access to the primitives
used in modern cryptography. The interface does not require the user to have
access to the key material, instead using opaque key handles.

This document is part of the Platform Security Architecture (PSA) family
of specifications. It defines an interface for cryptographic services, including
cryptography primitives and a key storage functionality.

This document includes:

• A rationale for the design.
• A description of typical architectures of implementations of this specifica-

tion.
• A high-level overview of the functionality provided by the interface.
• General considerations for implementers of this specification and for appli-

cations that use the interface defined in this specification.

Refer to the companion document “Platform Security Architecture — cryptog-
raphy and keystore interface — module index” for a detailed definition of the
API.

Companion documents will define profiles for this specification. A profile is a
minimum mandatory subset of the interface that a compliant implementation
must provide.

Design goals

Suitable for constrained devices

The interface defined in this document was designed to be suitable for a vast
range of devices, from special-purpose cryptographic processors specialized to
process data with a built-in key, through constrained devices running custom

1



application code such as microcontrollers, to multi-application devices such as
servers. As a consequence, the interface is modular and scalable.

• Scalable: you shouldn’t pay pay for functionality that you don’t need.
• Modular : larger devices implement larger subsets of the same interface,

not different interfaces.

Because this specification is designed to be suitable for very constrained devices,
including devices where memory is very limited, all operations on unbounded
amounts of data allow multipart processing if the calculations on the data are
performed in a streaming manner. This means that the application does not
need to store the whole message in memory at a time.

Memory outside the keystore boundary is meant to be managed by the application.
The interface is intended to allow implementations not to retain any data between
function calls apart from the content of the keystore and other data that needs
to be stored inside the keystore security boundary.

The interface does not expose the representation of keys and intermediate data
except when required for interchange. This allows each implementation to choose
optimal data representations. Implementations with multiple components are
also free to choose which memory area to use for internal data.

A keystore interface

This specification is designed to allow cryptographic operations performed on a
key to which the application does not have direct access. Except where required
for interchange, applications access all keys indirectly, via a handle mechanism:
applications specify keys via a slot number. The key material corresponding to
that handle may reside inside a security boundary that prevents it from being
extracted (except as permitted by a policy defined when the key is created).

Optional isolation

Implementations may optionally isolate the cryptoprocessor from the calling
application, and may optionally further isolate multiple calling applications. The
interface is designed to allow the implementation to be separated between a
frontend and a backend. In an implementation with isolation, the frontend is the
part of the implementation that is located in the same isolation boundary as the
application, which the application accesses via function calls, and the backend
is the part of the implementation that is located in a different environment
which is protected from the frontend. The protection may be provided by a
technology such as process isolation in an operating system, partition isolation
with a virtual machine or partition manager, physical separation between devices,
or any suitable technology. How the frontend and the backend communicate is
out of scope of this specification.

2



In an implementation with isolation, the backend may serve more than one
implementation instance. In this case, a single backend communicates with
multiple instances of the frontend. The backend must enforce caller isolation: it
must ensure that assets of one frontend are not visible to any other frontend.
How callers are identified is out of scope of this specification. Implementations
that provide caller isolation SHALL document how callers are identified. Imple-
mentations that provide isolation SHALL document any implementaion-specific
extension of the API that may allow frontend instances to share data in any
form.

In summary, there are three types of implementations:

• No isolation: there is no security boundary between the application and
the cryptoprocessor. An example type of implementation with no isolation
is a statically or dynamically linked library.

• Cryptoprocessor isolation: there is a security boundary beween the appli-
cation and the cryptoprocessor, but the cryptoprocessor does not commu-
nicate with other applications. An example type of implementation with
cryptoprocessor isolation is a cryptoprocessor chip that is a companion to
an application processor.

• Caller isolation: there are multiple application instances, with a security
boundary between the application instances among themselves as well as
between the cryptoprocessor and the application instances. An example
type of implementation with cryptoprocessor isolation is a cryptography
service in a multiprocess environment.

Choice of algorithms

This specification defines a low-level cryptographic interface, where the caller
explicitly chooses which algorithm and which security parameters to use. This
is necessary to implement protocols that are inescapable in various use cases.
The interface is designed to support widespread protocols and data exchange
formats, as well as custom ones that applications may need to implement.

As a consequence, all cryptographic functionality operates according to the
precise algorithm specified by the caller. (This does not apply to device-internal
functionality which does not involve any form of interoperability, such as random
number generation.) This specification does not include generic higher-level
interfaces where the implementation chooses the best algorithm for a purpose,
but higher-level libraries can be built on top of it.

Another consequence is that this specification permits the use of algorithms, key
sizes and other parameters that are known to be insecure, but may be necessary
to support legacy protocols or legacy data. Where major weaknesses are known,
the algorithm descriptions includes applicable warnings, but the lack of a warning
does not and cannot indicate that an algorithm is secure in all circumstances.

3



Application developers should research the security of the algorithms that they
plan to use and decide according to their needs.

The interface is designed to facilitate algorithm agility. As a consequence, cryp-
tographic primitives are presented through generic functions, with a parameter
indicating the specific choice of algorithm. For example, there is a single function
to calculate a message digest, taking a parameter which identifies the specific
hash algorithm.

Ease of use

The interface is designed to be as easy to use as possible, given the aforementioned
constraints on suitability for varied types of devices and on the freedom to choose
algorithms.

In particular, the code flows are designed to reduce the chance of dangerous
misuse. The interface is intended to make misuse harder than correct use,
and for likely mistakes to result in test failures rather than subtle security
issues. Implementations are encouraged to avoid leaking data when a function is
called with invalid parameters, to the extent allowed by the C language and by
implementation size constraints.

Example use cases

This section lists some of the use cases that were considered when designing this
API. This list is not limitative, nor are all implementations required to support
all use cases.

Network Security (TLS)

This API should provide everything needed to establish TLS connections on the
device side: asymmetric key management inside a key store, symmetric ciphers,
MAC, HMAC, message digests, and AEAD.

Secure Storage

This API should provide all primitives related to storage encryption, block- or
file-based, with master encryption keys stored inside a key store.

Network Credentials

This API should provide network credential management inside a key store,
e.g. for X.509-based authentication or pre-shared keys on enterprise networks.

4



Device Pairing

This API should provide support for key agreement protocols that are often used
for secure pairing of devices over wireless channels, for example pairing an NFC
token or a bluetooth device could make use of key agreement protocols upon
first use.

Secure Boot

This API should provide primitives for use during firmware integrity and au-
thenticity validation during a secure or trusted boot process.

Attestation

This API should provide primitives used in attestation activities. Attestation is
the ability for a device to sign an arbitrary bag of bytes with a device private
key and ereturn the result to the caller. Several use cases are attached to this,
from attestation of the device state to the ability to generate a key key pair and
prove that it has been generated inside a secure key store. The API provides
access to the algorithms commonly used for attestation.

Factory Provisioning

It is exepcted that most IoT devices will receive a unique identity during a
factory provisioning process or once deployed to the field. This API should
provide the APIs necessary for populating a device with keys that represent that
identity.

Functionality overview

This section provides a high-level overview of the functionality provided by the
interface defined in this specification. Refer to the API definition for a detailed
description.

Due to the modularity of the interface, almost every part of the library is optional.
The only mandatory function is psa_crypto_init.

Library management

Before any use, applications must call psa_crypto_init to initialize the library.

5



Key management

Conceptually, all keys are stored in a key slot, and all functions access keys
indirectly via a key slot number.

This allows keys to be non-extractable, i.e. an application can perform operations
using a key without having access to the key material. Non-extractable keys are
bound to the device, can be rate-limited, and can have their usage restricted by
policies.

The interface is most naturally suited towards long-term or multiple-use keys.
The workflow for using a key is:

1. Prepare a key slot by setting a policy (see usage policies)) and any other
applicable attributes. Record the slot number, since this is how subsequent
steps will identify the key.

2. Provision the key by importing the key material into the slot, or generate
a random key in the slot.

3. Use the key with the applicable cryptographic operations, all of which
designate the key via its slot number.

4. When the key is no longer useful, erase the key and clear the slot.

For a long-term key, these steps may be performed at long time intervals, in
different contexts. At one extreme, consider a factory-provisioned hardware
unique key in write-once memory.

1. The implementation designates a slot for this key, with a hard-coded policy.
The preparation step thus conceptually happens when the implementation
is designed.

2. The key provisioning happens during the production of the device. It may
use a proprietary means to generate or import the key.

3. The key is used many times during the lifetime of the device.
4. Since the memory is write-once, the key is only erased when the device is

physically erased.

For a long-term key held in persistent memory and managed by software:

1. The provisioning software chooses a key slot and calls psa_set_key_policy
to set a usage policy for the key.

2. The provisioning software creates or generates key material using
psa_import_key or psa_generate_key.

3. The application uses the key through functions such as psa_mac_start,
psa_encrypt_setup, psa_decrypt_setup, psa_asymmetric_sign,
psa_asymmetric_verify, etc. The application can also retrieve
key metadata with psa_get_key_information and slot metadata
with psa_get_key_lifetime and psa_get_key_policy. The ap-
plication may be able to export the key with psa_export_key or
psa_export_public_key depending on the key type and policy.

6



4. When the key is no longer useful, the application or the management
software deletes it with psa_destroy_key.

For a short-term key, the sequence of function calls is similar. The minimum
necessary sequence to peform a cryptographic operation using an externally-
supplied key is:

1. Call psa_set_key_policy to authorize the intended use for the key.
2. Call psa_import_key to make the key available for operations.
3. Call the intended cryptographic operation: psa_asymmetric_sign,

psa_asymmetric_verify, psa_mac_start, psa_encrypt_setup,
psa_decrypt_setup, etc.

4. Call psa_destroy_key to free the resources associated with the key.

Most implementations should provide the functions psa_import_key. The only
exceptions are implementations that only give access to a key or keys that are
provisioned by proprietary means and do not allow the main application to use
its own cryptographic material.

Most implementations should provide psa_get_key_information, psa_get_key_lifetime
and psa_get_key_policy since they are easy to implement and it is difficult to
write applications and especially to diagnose issues without being able to check
the metadata.

Most implementations should also provide psa_export_public_key if they
support any asymmetric algorithm, since public-key cryptography often requires
delivery of a public key that is associated with a protected private key.

Most implementations should provide psa_export_key. However, highly con-
strained implementations that are designed to work either only with short-term
keys (no non-volatile storage) or only with long-term non-extractable keys may
omit this function.

Usage policies

All keys have an associated policy that regulates what operations are permitted on
the key. This specification defines policies that encode three kinds of attributes:

• The extractable flag PSA_KEY_USAGE_EXPORT determines whether the key
material can be extracted. The extractable flag is encoded in the usage
bitmask which has the type psa_key_usage_t.

• The usage flags PSA_KEY_USAGE_ENCRYPT, PSA_KEY_USAGE_SIGN, etc. de-
termine whether the corresponding operation is permitted on the key.
These flags are encoded in the usage bitmask as well.

• In addition to the usage bitmask, a policy specifies which algorithm is
permitted with the key. This specification only defines policies that restrict
keys to a single algorithm, which is in keeping with common practice and
with security good practice.

7



Most implementations should provide the function psa_set_key_policy. Highly
constrained implementations that only support slots with preset policies may
omit this function.

Symmetric cryptography

This specification defines interfaces for message digests (hash functions), MAC
(message authentication codes), symmetric ciphers and authenticated encryption
with associated data (AEAD).

Multipart operations

Hash, MAC and symmetric cipher primitives are exposed through multipart
operations, processing messages one chunk at a time, with the size of chunks
determined by the caller. This allows processing messages that cannot be
assembled in memory. The steps to perform a multipart operation are as follows:

1. Allocate an operation object. It is free to use any allocation strategy:
stack, heap, static, etc.

2. Initialize the operation and associate a key with the operation us-
ing the applicable function: psa_hash_setup, psa_mac_sign_setup,
psa_mac_verify_setup, psa_cipher_encrypt_setup, psa_cipher_decrypt_setup.

3. When encrypting data, generate or set an initialization vector (IV) or
similar initial value such as an initial counter value. When decrypting, set
the IV. To generate a random IV, which is recommended in most protocols,
call psa_cipher_generate_iv. To set the IV, call psa_cipher_set_iv.

4. Call the applicable update function on successive chunks of the message:
psa_hash_update, psa_mac_update or psa_cipher_update.

5. At the end of the message, call the applicable finishing function. There
are three kinds of finishing function, depending on what to do with the
verification tag.

• Unauthenticated encryption and decryption does not involve a verifi-
cation tag. Call psa_cipher_finish.

• To calculate the digest or MAC of a message, call the applicable func-
tion to calculate and output the verification tag: psa_hash_finish
or psa_mac_sign_finish.

• To verify the digest or MAC of a message against a reference value,
call the applicable function to compare the verification tag with the
reference value: psa_hash_verify or psa_mac_verify_finish.

Calling the start/setup function may allocate resources inside the implementation.
These resources are freed when calling the associated finishing function. In
addition, each family of functions defines a function psa_xxx_abort which can
be called at any time to free the resources associated with an operation.

8



Authenticated encryption

Authenticated encryption with additional data (AEAD) is only exposed as one-
shot operations, where the whole input needs to be available at once. There are
two reasons for this:

• For decryption, it is impossible to produce partial results since the message
cannot be authenticated until the whole ciphertext has been consumed.
If the implementation stored the output until the data has been authen-
ticated, this would require an unbounded amount of memory inside the
implementation. If the implementation released partial output, this output
should not be used until the end of the operation anyway since it might
not be authentic.

• For encryption, some common algorithms cannot be processed in a stream-
ing fashion. For SIV mode, the whole plaintext must be known before the
encryption can start. For CCM mode, the length of the plaintext must be
known before the encryption can start.

AEAD is available through the functions psa_aead_encrypt and psa_aead_decrypt.

Key derivation and generators

This specification defines a mechanism for key derivation that allows splitting
the output of the derivation into multiple keys as well as non-key outputs.

In an implementation with isolation, the intermediate state of the key derivation
is not visible to the caller, and if an output of derivation is a non-exportable key,
then this output cannot be recovered outside the isolation boundary.

Generators

A generator is an object that encodes a method to generate a finite stream of
bytes. This data stream is computed by the cryptoprocessor and extracted in
chunks. The intent of generators is that if two generators are constructed with
the same parameters then they will produce the same outputs.

Some examples of generators are:

• A pseudorandom generator, initialized with a seed and other parameters.
• A key derivation function, initialized with a secret, a salt and other pa-

rameters.
• A key agreement function, initialized with a public key (peer key), a key

pair (own key) and other parameters.

The lifecycle of a generator is as follows:

9



1. Setup: construct the object and set its parameters. The setup phase
determines the generator’s capacity, which is the length of the generated
stream, i.e. the maximum number of bytes that can be generated with this
generator.

2. Generate: read bytes from the stream defined by the generator. This
can be done any number of times until the stream is exhausted because
its capacity has been reached. Each generation step can either be used
to populate a key object (psa_generator_import_key), or to read some
bytes and extract them as cleartext (psa_generator_read).

3. Terminate: clear the generator object and release associated resources
(psa_generator_abort).

A generator cannot be rewinded. Once a part of the stream has been read, it
cannot be read again. This ensures that the same part of the generator output
will not be used from different purposes.

Key derivation function

The API defines function to set up a key derivation: psa_key_derivation. This
function takes the parameters of the key derivation as arguments (secret and
public inputs, maximum capacity) and sets up a generator object.

For a simple key derivation operation, the steps are as follows:

1. Initialize a generator object to zero or to PSA_CRYPTO_GENERATOR_INIT.
2. Call psa_key_derivation, choosing a key derivation algorithm and the

required parameters, and specifying the generator object as output.
3. If necessary, prepare the key slot for the derived key and set its policy.
4. Call psa_generator_import_key to create the derived key.
5. Call psa_generator_abort to release the generator memory.

Here is an example of a more complex use case which requires generating both
an encryption key and an initialization vector (IV) for encryption from the same
derivation parameters:

1. Initialize a generator object to zero or to PSA_CRYPTO_GENERATOR_INIT.
2. Call psa_key_derivation, choosing a key derivation algorithm and the

required parameters, and specifying the generator object as output.
3. If necessary, prepare the key slot for the derived key and set its policy.
4. Call psa_generator_import_key to create the derived key.
5. Call psa_generator_read to generate the desired IV.
6. Call psa_generator_abort to release the generator memory.
7. Call psa_cipher_encrypt_setup with the derived encryption key.
8. Call psa_cipher_set_iv using the IV generated above.
9. Call psa_cipher_update one or more times to encrypt the message.
10. Call psa_cipher_finish at the end of the message.
11. Call psa_destroy_key to clear the generated key.

10



Asymmetric cryptography

The asymmetric cryptography part of this interface defines functions for
single-shot operations: psa_asymmetric_sign, psa_asymmetric_verify,
psa_asymmetric_encrypt, psa_asymmetric_decrypt.

The signature and verification functions take a hash as one of their inputs.
This hash should be calculated with psa_hash_setup, psa_hash_update and
psa_hash_finish before calling psa_asymmetric_sign or psa_asymmetric_verify.
To determine which hash algorithm to use, call the macro PSA_ALG_SIGN_GET_HASH
on the corresponding signature algorithm.

Randomness and key generation

It is strongly recommended that implementations include a random generator
consisting of a cryptographically secure pseudo-random generator (CSPRNG)
which is adequately seeded with a cryptographic-quality hardware entropy source,
commonly refered to as a true random number generator (TRNG). Constrained
implementations may omit the random generation functionality if they do not
implement any algorithm that requires randomness internally and they do
not provide a key generation functionality — for example a special-purpose
component for signature verification.

Applications should use psa_generate_key, psa_encrypt_generate_iv
or psa_aead_generate_iv to generate suitably-formatted random data as
applicable. In addition, the API includes a function psa_generate_random to
generate and extract arbitrary random data.

Future additions

We plan to cover the following features in future drafts or future editions of this
specification:

• Single-shot functions for symmetric operations.
• Multi-part operations for hybrid cryptography: hash-and-sign (e.g. for

EdDSA), hybrid encryption (e.g. for ECIES).
• Key exchange and a more general interface to key derivation. This would

enable deriving a non-extractable session key from non-extractable secrets
without leaking the intermediate material.

• Key wrapping mechanisms, to extract and import keys in a protected form
(encrypted and authenticated).

• Key discovery and slot discovery mechanisms. This would enable locating
a key through its name or attributes rather than having to hard-code slot
numbers, and finding a slot to contain a key prior to creating the key.

11



• An ownership and access control mechanism allowing a multi-client imple-
mentation to have privileged clients that are able to manage keys of other
clients.

Sample architectures

This section describes some possible architectures of implementations of the
interface described in this specification. This list of architectures is not limitative
and this section is entirely non-normative.

Single-partition architecture

In this architecture, there is no security boundary inside the system. The
application code may access all the system memory, including the memory
used by the cryptographic services described by this specification. Thus this
architecture provides no isolation.

This architecture does not conform to the Arm Platform Security Architecture
specification. However, it may be useful to provide cryptographic services using
the same interface even on devices that cannot support any security boundary.
Therefore, while this architecture is not the primary design goal of the API
defined in the present specification, it is supported.

In this case, the functions in this specification simply execute the underlying
algorithmic code. Security checks can be kept to a minimum since the crypto-
processor cannot defend against a malicious application. Key import and export
copy data inside the same memory space.

This architecture also describes a subset of some larger systems where the
cryptographic services are implemented inside a high-security partition, separate
from the code of the main application, but it shares this high-security partition
with other platform security services.

Cryptographic token and single-application processor

This example system is composed of two partitions: one partition is a cryp-
toprocessor, and the other partition runs an application. There is a security
boundary between the two partitions, so that the application cannot access the
cryptoprocessor except through its public interface. Thus this architecture pro-
vides cryptoprocessor isolation. The cryptoprocessor includes some nonvolatile
storage, a TRNG, and possibly some cryptographic accelerators.

There are multiple possible physical realizations: the cryptoprocessor may be
a separate chip, a separate processor on the same chip, or a logical partition

12



using a combination of hardware and software to provide the isolation. These
realizations are functionally equivalent in terms of the offered software interface,
but they would typically offer different levels of security guarantees.

The PSA crypto API in the application processor consists of a thin layer of code
that translates function calls to remote procedure calls in the cryptoprocessor. All
cryptographic computations are therefore performed inside the cryptoprocessor.
Non-volatile keys are stored inside the cryptoprocessor.

Cryptoprocessor with no key storage

Like the previous one, this example system is composed of two partitions sepa-
rated by a security boundary. Thus this architecture also provides cryptoprocessor
isolation. Unlike the previous architecture, in this case, the cryptoprocessor does
not have any secure persistent storage that could be used to store application
keys.

If the cryptoprocessor is not capable of storing any cryptographic material, then
there is little use for a separate cryptoprocessor, since all data would have to be
imported by the application.

The cryptoprocessor can provide useful services if it is able to store at least one
key. This may be a hardware unique key that is burnt to one-time programmable
memory during the manufacturing of the device. This key may be used for one
or more purposes including:

• Encrypt and authenticate data whose storage is delegated to the application
procssor.

• Communicate with a paired device.
• Allow the application to perform operations with keys that are derived

from the hardware unique key.

Multi-client cryptoprocessor

This is an expanded variant of the cryptographic token plus application architec-
ture. In this variant, the cryptoprocessor serves multiple applications that are
mutually untrustworthy. This architecture provides caller isolation.

In this architecture, API calls are translated to remote procedure calls which
encode the identity of the client application. The cryptoprocessor carefully
segments its internal storage to ensure that a client’s data is never leaked to
another client.

13



Multi-cryptoprocessor architecture

In this example, the system includes multiple cryptoprocessors. Some reasons to
have multiple cryptoprocessors include:

• Different compromises between security and performance for different keys.
Typically this means a cryptoprocessor running on the same hardware
as the main application and processing short-term secrets, and a secure
element or similar separate chip that retains long-term secrets.

• Independent provisioning of certain secrets.
• A combination of a non-removable cryptoprocessor and removable ones

(e.g. a smartcard or HSM).

The keystore implementation needs to dispatch each request to the correct
processor. All requests involving a non-extractable key must be processed in the
cryptoprocessor that holds that key. Other requests may target a cryptoprocessor
based on parameters supplied by the application or based on considerations such
as performance inside the implementation. A typical choice for dispatch is for
the implementation to define ranges of key slot numbers, such that each range
corresponds to one of the cryptoprocessors.

Library conventions

Error handling

Almost all functions return a status indication of type psa_status_t. This is
an enumeration of integer values, with 0 (PSA_SUCCESS) conveying successful
operation and other values indicating errors. The exception is data structure
accessor functions that cannot fail: such functions may return void or a data
value.

All function calls must be implemented atomically:

• When a function returns a type other than psa_status_t, the requested
action has been carried out.

• When a function returns the status PSA_SUCCESS, the requested action has
been carried out.

• When a function returns another status of type psa_status_t, no action
has been carried out. The content of output parameters is undefined, but
otherwise the state of the system has not changed except has described
below.

Generally speaking, functions that modify the system state (modifying the
content of a key slot or its metadata) must leave the system state unchanged if
they return an error code. However, there are a few exceptions to this general
principle in exceptional conditions:

14



• The status PSA_ERROR_BAD_STATE indicates that a supplied parameter was
not in a valid state for the requested action. The corresponding object
may have been modified by the call and must not be used for any further
action except to abort the corresponding object.

• The status PSA_ERROR_INSUFFICIENT_CAPACITY indicates that a generator
has reached its maximum capacity. The generator object may have been
modified by the call and any further attempt to read from the generator
will return PSA_ERROR_INSUFFICIENT_CAPACITY.

• The status PSA_ERROR_COMMUNICATION_FAILURE indicates that the com-
munication between the application and the cryptoprocessor has broken
down. In this case, it may be impossible to know whether the action
has been carried out. Upon detection of a communication failure, the
cryptoprocessor must either finish carrying out the request or roll back to
the original state, but the application may not be able to find out which
of these two possibilities happened.

• The statuses PSA_ERROR_STORAGE_FAILURE, PSA_ERROR_HARDWARE_FAILURE
and PSA_ERROR_TAMPERING_DETECTED may indicate data corruption in
the system state. Thus, when a function returns one of these statuses, the
system state may have changed compared to before the function call, even
though the function call failed.

• Some system state cannot be rolled back, for example the internal state of
the random number generator, or the content of logs if the implementation
keeps access logs.

Unless otherwise documented, the content of output parameters is not defined
when a function returns a status other than PSA_SUCCESS. Implementations
should set output parameters to safe defaults to avoid leaking confidential data
and to limit the risks in case an application does not properly handle all errors.

Parameter conventions

Pointer conventions

Unless explicitly stated in the documentation of a function, all pointers must be
valid pointers to an object of the specified type.

A parameter is considered a buffer if it points to an array of bytes. A buffer
parameter always has the type uint8_t * or const uint8_t *, and always has
an associated parameter indicating the size of the array. Note that a parameter
of type void * is never considered a buffer.

All parameters of pointer type must be valid, non-null pointers unless the pointer
is to a buffer of length 0 or the function’s documentation explicitly describes
the behavior when the pointer is null. Implementations where a null pointer
dereference usually aborts the application, passing NULL as a function parameter
where a null pointer is not allowed should abort the caller in the habitual manner.

15



Pointers to input parameters may be in read-only memory. Output parameters
must be in writable memory. Output parameters that are not buffers must
also be readable, and the implementation must be able to write to a non-buffer
output parameter and read back the same value, as explained in the section
“Stability of parameters”.

Input buffer sizes

For input buffers, the parameter convention is:

• const uint8_t *foo: pointer to the first byte of the data. The pointer
may be invalid if the buffer size is 0.

• size_t foo_length: size of the buffer in bytes.

The interface never uses input-output buffers.

Output buffer sizes

For output buffers, the parameter convention is:

• uint8_t *foo: pointer to the first byte of the data. The pointer may be
invalid if the buffer size is 0.

• size_t foo_size: the size of the buffer in bytes.
• size_t *foo_length: on successful return, contains the length of the

output in bytes.

The content of the data buffer and of *foo_length on error is unspecified unless
explicitly mentioned in the function description. They may be unmodified or set
to a safe default. On successful completion, the content of the buffer between
the offsets *foo_length and foo_size is also unspecified.

Functions return PSA_ERROR_BUFFER_TOO_SMALL if the buffer size is insufficient
to carry out the requested operation. The interface defines macros to calculate a
sufficient buffer size for each operation that has an output buffer. These macros
return compile-time constants if their arguments are compile-time constants, so
they are suitable for static or stack allocation. Refer to individual functions’
documentation for the associated output size macro.

Some functions always return exactly as much data as the size of the output
buffer. In this case, the parameter convention changes to:

• uint8_t *foo: pointer to the first byte of the output. The pointer may
be invalid if the buffer size is 0.

• size_t foo_length: the number of bytes to return in foo if successful.

16



Overlap between parameters

Output parameters that are not buffers may not overlap with any input buffer
or with any other output parameter. Otherwise the behavior is undefined.

Output buffers may overlap with input buffers. If this happens, the implementa-
tion must return the same result as if the buffers did not overlap. In other words,
the implementation must behave as if it had copied all the inputs into temporary
memory, as far as the result is concerned. However application developers should
note that overlap between parameters may affect the performance of a function
call. Overlap may also affect the security of how memory is managed if the
buffer is located in memory that the caller shares with another security context,
as described in the section “Stability of parameters”.

Stability of parameters

In some environments, it is possible for the content of a parameter to change
while a function is executing. It may also be possible for the content of an
output parameter to be read before the function terminates. This can happen
if the application is multithreaded. In some implementations, memory can be
shared between security contexts, for example, between tasks in a multitasking
operating system, or between a user land task and the kernel, or between the
non-secure world and the secure world of a trusted execution environment. This
section describes what implementations need or need not guarantee in such cases.

Parameters that are not buffers are assumed to be under the caller’s full control.
In a shared memory environment, this means that the parameter must be in
memory that is exclusively accessible by the application. In a multithreaded
environment, this means that the the parameter may not be modified during
the execution and the value of an output parameter is undetermined until the
function returns. The implementation may read an input parameter that is not
a buffer multiple times and expect to read the same data. The implementation
may write to an output parameter that is not a buffer and expect to read back
the value that it last wrote. The implementation has the same permissions on
buffers that overlap with a buffer in the opposite direction.

In an environment with multiple threads or with shared memory, the imple-
mentation shall access non-overlapping buffer parameters carefully in order to
prevent any unsafety if the content of the buffer is modified or observed during
the execution of the function. In an input buffer that does not overlap with an
output buffer, the implementation shall read each byte of the input at most once.
The implementation shall not read from an output buffer that does not overlap
with an input buffer. Additionally, the implementation shall not write data to
a non-overlapping output buffer if this data is potentially confidential and the
implementation has not yet verified that outputting this data is authorized.

17



Key types and algorithms

Types and cryptographic keys and cryptographic algorithms are encoded sep-
arately. Each is encoded using an integral type, respectively psa_key_type_t
and psa_algorithm_t.

There is some overlap in the information conveyed through keys and algorithms.
Both types include enough information so that the meaning of an algorithm
type value does not depend on what type of key it is used with and vice versa.
However, the particular instance of an algorithm may depend on the key type.
For example, the algorithm PSA_ALG_GCM can be instantiated as any AEAD
algorithm using the GCM mode over a block cipher; the underlying block cipher
is determined by the key type.

Key types do not encode the key size. For example AES-128, AES-192 and
AES-256 share a key type PSA_KEY_TYPE_AES.

Structure of key and algorithm types

Both types use a partial bitmask structure which allows analyzing and building
values from parts. However the interface defines constants so that applications
do not need to depend on the encoding and an implementation may care about
the encoding only for code size optimization.

The encodings follows a few conventions:

• The highest bit is a vendor flag. Values with this bit clear are reserved for
values defined by this specification, and values with this bit set will not be
defined by this specification.

• The next few highest bits indicate the corresponding algorithm category:
hash, MAC, symmetric cipher, asymmetric encryption, etc.

• The following bits identify a family of algorithms in a category-dependent
manner.

• In some categories and algorithm families, the lowest-order bits indicate
a variant in a systematic way. For example, algorithm families that are
parametrized around a hash function encode the hash in the 8 lowest bits.

Concurrent calls

In some environments, it is possible for an application to make calls to the PSA
crypto API in separate threads. In such an environment, concurrent calls SHALL
be performed correctly, as if the calls had been executed in sequence, provided
that they obey the following constraints:

• There must not be any overlap between an output parameter of one call
and an input or output parameter of another call. (Overlap between input
parameters is permitted.)

18



• If a call modifies a key slot, then no other call must modify or use that
key slot. Using, in this context, includes all functions of multipart opera-
tions using the key. (Concurrent calls that merely use the same key are
permitted.)

• Concurrent calls may not use the same operation or generator object.

If any of these constraints is violated, the behavior is undefined.

Individual implementations may provide additional guarantees.

Implementation considerations

Implementation-specific aspects of the interface

Implementation profile

Implementations may implement a subset of the API and a subset of the available
algorithms. The implemented subset is known as the implementation’s profile.
The documentation of each implementation SHALL document what profile it
implements. Companion documents to this specification will define standard
profiles.

Implementation-specific types

This specification defines some platform-specific types to represent data structures
whose content depends on the implementation. These types are C struct
types. In the associated header files, crypto.h declares the struct tags and
crypto_struct.h provides a definition for the structures.

Implementation-specific macros

Some macros compute a result based on an algorithm or a key type. This
specification provides a sample implementation of these macros which works for
all standard types. If an implementation defines vendor-specific algorihms or key
types, it must provide an implementation of such macros that takes all relevant
algorithms and types into account. Conversely, an implementation that does not
support a certain algorithm or key type may define such macros in a simpler
way that does not take unsupported argument values into account.

Some macros define the minimum sufficient output buffer size for certain functions.
In some cases, implementations are allowed to require a buffer size that is larger
than the theoretical minimum. Implementations SHALL define minimum-size
macros in such a way as to guarantee that a buffer of the resulting size is

19



sufficient for the output of the corresponding function. Refer to each macro’s
documentation for the applicable requirements.

Porting to a platform

Platform assumptions

This specification is designed for a C89 platform. The interface is defined in
terms of C macros, functions and objects.

This specification assumes 8-bit bytes. In this specification, “byte” and “octet”
are used synonymously.

Platform-specific types

The specification makes use of some platform-specific types which should be
defined in crypto_platform.h (possibly via a header included by this file).
crypto_platform.h must define the following types:

• uint8_t, uint16_t, uint32_t: unsigned integer types with 8, 16 and 32
value bits respectively. These may be the types defined by the C99 header
stdint.h.

• psa_key_slot_t: an unsigned integer type of the implementation’s choice.

Cryptographic hardware support

Implementations are encouraged to make use of hardware accelerators where
available. A future version of this specification will define a function interface to
call drivers for hardware accelerators and external cryptographic hardware.

Security requirements and recommendations

Error detection

Implementations that provide isolation between the caller and the cryptography
processing environment SHALL validate parameters to ensure that the cryp-
tography processing environment is protected from attacks caused by passing
invalid parameters.

Even implementations that do not provide isolation should strive to detect bad
parameters and fail safe as much as possible.

20



Memory cleanup

Implementations SHALL wipe all sensitive data from memory when it is no
longer used. Implementations should wipe sensitive data as soon as possible. In
any case, all temporary data (such as stack buffers) used during the execution
of a function shall be wiped before the function returns, and all data associated
with an object (such as a multipart operation) shall be wiped at the latest
when the object becomes inactive (for example, when a multipart operation is
aborted).

The rationale for this non-functional requirement is to minimize the impact if
the system is compromised. If sensitive data is wiped immediately after use, a
data leak only leaks data that is currently in use, but does not compromise past
data.

Safe outputs on error

Implementations SHALL ensure that no confidential data is written to output
parameters before validating that the disclosure of this confidential data is
authorized. This requirement is especially important on implementations where
the caller may share memory with another security context as described in the
section “Stability of parameters”.

In most cases, this specification does not define the content of output parameters
when an error occurs. Implementations should ensure that the content of
output parameters is as safe as possible in case it ends up being used due to
an application flaw or a data leak. In particular, implementations should avoid
placing partial output in output buffers if an action is interrupted. The definition
of “safe” is left up to each implementation as different environments may require
different compromises between implementation complexity, overall robustness
and performance. Some common strategies include leaving output parameters
unchanged in case of errors, or zeroing them out.

Attack resistance

Cryptographic code tends to manipulate high-value secrets from which other
secrets can be unlocked. As such it is a high-value target for attacks. A vast
body of literature exists on attack types such as side channel attacks and glitch
attacks. Typical side channels include timing, cache access patterns, branch
prediction access patterns, power consumption, radio emissions and more.

This specification does not place any particular requirement regarding attack
resistance. Implementers should consider the attack resistance that is expected
in each use case and design their implementation accordingly. Security standards
that define targets for attack resistance may be applicable in certain use cases.

21



Other implementation considerations

Philosophy of resource management

This specification allows most functions to return PSA_ERROR_INSUFFICIENT_MEMORY.
This gives implementations the freedom to manage memory as they please.

Nonetheless the interface is designed to allow conservative strategies for memory
management. In particular, an implementation may avoid dynamic memory
allocation altogether by obeying certain restrictions:

• Pre-allocate memory for a predefined number of key slots, each with
sufficient memory for all key types that can be stored in that slot.

• For multipart operations, in an implementation without isolation, place
all the data that needs to be carried over from one step to the next in the
operation object. The application is then fully in control of how memory
is allocated for the operation.

• In an implementation with isolation, pre-allocate memory for a predefined
number of operations inside the cryptoprocessor.

Usage considerations

Security recommendations

Always check for errors

Most functions in this API can return errors. All functions that can fail have the
return type psa_status_t. A few functions cannot fail, and thus return void
or some other type.

If an error occurs, unless otherwise specified, the content of output parameters
is undefined and must not be used.

Some common causes of errors include:

• In implementations where the keys are stored and processed in a separate
environment from the application, all functions that need to access the
cryptography processing environment may fail due to an error in the
communication between the two environments.

• If an algorithm is implemented with a hardware accelerator which is
logically separate from the application processor, this accelerator may fail
even when the application processor keeps running normally.

• All functions may fail due to a lack of resources, although some imple-
mentations may guarantee that certain functions always have sufficient
memory.

• All functions that access persistent keys may fail due to a storage failure.

22



• All functions that require randomness may fail due to a lack of entropy. Im-
plementations are encouraged to seed the random generator with sufficient
entropy during the execution of psa_crypto_init; however some security
standards require periodic reseeding from a hardware random generator
which can fail.

Shared memory and concurrency

Some environment allow applications to be multithreaded. In some environments,
applications may share memory with a different security context. In such
environments, applications must be written carefully to avoid data corruption or
leakage. This specification requires the application to obey certain constraints.

In general, this API allows either one writer or any number of simultaneous
readers on any given object. In other words, if two or more calls access the same
object concurrently, the behavior is well-defined only if all the calls are only
reading from the object and do not modify it. Read accesses include reading
memory via input parameters and reading key store content by using a key. For
more details, refer to the section “Concurrent calls”.

If an application shared memory with another security contexts, it may pass
shared memory blocks as input buffers or output buffers, but not as non-buffer
parameters. For more details from the implementation’s perspective, refer to
the section “Stability of parameters”.

Cleaning up after use

In order to minimize the impact if the system is compromised, applications
should wipe all sensitive data from memory when it is no longer used. This way,
a data leak only leaks data that is currently in use, but does not compromise
past data.

Wiping sensitive data includes:

• Clearing temporary buffers in the stack or on the heap.
• Aborting operations if they will not be finished.
• Destroying key slots that are no longer used.

23


	Introduction
	Design goals
	Suitable for constrained devices
	A keystore interface
	Optional isolation
	Choice of algorithms
	Ease of use
	Example use cases
	Network Security (TLS)
	Secure Storage
	Network Credentials
	Device Pairing
	Secure Boot
	Attestation
	Factory Provisioning


	Functionality overview
	Library management
	Key management
	Usage policies
	Symmetric cryptography
	Multipart operations
	Authenticated encryption

	Key derivation and generators
	Generators
	Key derivation function

	Asymmetric cryptography
	Randomness and key generation
	Future additions

	Sample architectures
	Single-partition architecture
	Cryptographic token and single-application processor
	Cryptoprocessor with no key storage
	Multi-client cryptoprocessor
	Multi-cryptoprocessor architecture

	Library conventions
	Error handling
	Parameter conventions
	Pointer conventions
	Input buffer sizes
	Output buffer sizes
	Overlap between parameters
	Stability of parameters

	Key types and algorithms
	Structure of key and algorithm types

	Concurrent calls

	Implementation considerations
	Implementation-specific aspects of the interface
	Implementation profile
	Implementation-specific types
	Implementation-specific macros

	Porting to a platform
	Platform assumptions
	Platform-specific types
	Cryptographic hardware support

	Security requirements and recommendations
	Error detection
	Memory cleanup
	Safe outputs on error
	Attack resistance

	Other implementation considerations
	Philosophy of resource management


	Usage considerations
	Security recommendations
	Always check for errors
	Shared memory and concurrency
	Cleaning up after use



