/* * AES-NI support functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html */ #include "common.h" #if defined(MBEDTLS_AESNI_C) #include "aesni.h" #include #if defined(MBEDTLS_AESNI_HAVE_CODE) #if MBEDTLS_AESNI_HAVE_CODE == 2 #if !defined(_WIN32) #include #else #include #endif #include #endif /* * AES-NI support detection routine */ int mbedtls_aesni_has_support(unsigned int what) { static int done = 0; static unsigned int c = 0; if (!done) { #if MBEDTLS_AESNI_HAVE_CODE == 2 static unsigned info[4] = { 0, 0, 0, 0 }; #if defined(_MSC_VER) __cpuid(info, 1); #else __cpuid(1, info[0], info[1], info[2], info[3]); #endif c = info[2]; #else /* AESNI using asm */ asm ("movl $1, %%eax \n\t" "cpuid \n\t" : "=c" (c) : : "eax", "ebx", "edx"); #endif /* MBEDTLS_AESNI_HAVE_CODE */ done = 1; } return (c & what) != 0; } #if MBEDTLS_AESNI_HAVE_CODE == 2 /* * AES-NI AES-ECB block en(de)cryption */ int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16]) { const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset); unsigned nr = ctx->nr; // Number of remaining rounds // Load round key 0 __m128i state; memcpy(&state, input, 16); state = _mm_xor_si128(state, rk[0]); // state ^= *rk; ++rk; --nr; if (mode == 0) { while (nr != 0) { state = _mm_aesdec_si128(state, *rk); ++rk; --nr; } state = _mm_aesdeclast_si128(state, *rk); } else { while (nr != 0) { state = _mm_aesenc_si128(state, *rk); ++rk; --nr; } state = _mm_aesenclast_si128(state, *rk); } memcpy(output, &state, 16); return 0; } /* * GCM multiplication: c = a times b in GF(2^128) * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. */ static void gcm_clmul(const __m128i aa, const __m128i bb, __m128i *cc, __m128i *dd) { /* * Caryless multiplication dd:cc = aa * bb * using [CLMUL-WP] algorithm 1 (p. 12). */ *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0 *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0 __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0 __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0 ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0 ee = ff; // e1+f1:e0+f0 ff = _mm_srli_si128(ff, 8); // 0:e1+f1 ee = _mm_slli_si128(ee, 8); // e0+f0:0 *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1 *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0 } static void gcm_shift(__m128i *cc, __m128i *dd) { /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left, * taking advantage of [CLMUL-WP] eq 27 (p. 18). */ // // *cc = r1:r0 // // *dd = r3:r2 __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1 __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1 __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63 __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63 __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63 cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0 dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63 *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1 *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 } static __m128i gcm_reduce(__m128i xx) { // // xx = x1:x0 /* [CLMUL-WP] Algorithm 5 Step 2 */ __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0 return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0 } static __m128i gcm_mix(__m128i dx) { /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */ __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0' __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0' __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0' // e0'+f0'+g0' is almost e0+f0+g0, except for some missing // bits carried from d. Now get those bits back in. __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx); } void mbedtls_aesni_gcm_mult(unsigned char c[16], const unsigned char a[16], const unsigned char b[16]) { __m128i aa, bb, cc, dd; /* The inputs are in big-endian order, so byte-reverse them */ for (size_t i = 0; i < 16; i++) { ((uint8_t *) &aa)[i] = a[15 - i]; ((uint8_t *) &bb)[i] = b[15 - i]; } gcm_clmul(aa, bb, &cc, &dd); gcm_shift(&cc, &dd); /* * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 * using [CLMUL-WP] algorithm 5 (p. 18). * Currently dd:cc holds x3:x2:x1:x0 (already shifted). */ __m128i dx = gcm_reduce(cc); __m128i xh = gcm_mix(dx); cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0 /* Now byte-reverse the outputs */ for (size_t i = 0; i < 16; i++) { c[i] = ((uint8_t *) &cc)[15 - i]; } return; } /* * Compute decryption round keys from encryption round keys */ void mbedtls_aesni_inverse_key(unsigned char *invkey, const unsigned char *fwdkey, int nr) { __m128i *ik = (__m128i *) invkey; const __m128i *fk = (const __m128i *) fwdkey + nr; *ik = *fk; for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) { *ik = _mm_aesimc_si128(*fk); } *ik = *fk; } /* * Key expansion, 128-bit case */ static __m128i aesni_set_rk_128(__m128i state, __m128i xword) { /* * Finish generating the next round key. * * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST). * * On exit, xword is r7:r6:r5:r4 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 * and this is returned, to be written to the round key buffer. */ xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4 state = _mm_slli_si128(state, 4); // r2:r1:r0:0 xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4 state = _mm_slli_si128(state, 4); // r1:r0:0:0 xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4 state = _mm_slli_si128(state, 4); // r0:0:0:0 state = _mm_xor_si128(xword, state); // r7:r6:r5:r4 return state; } static void aesni_setkey_enc_128(unsigned char *rk_bytes, const unsigned char *key) { __m128i *rk = (__m128i *) rk_bytes; memcpy(&rk[0], key, 16); rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01)); rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02)); rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04)); rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08)); rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10)); rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20)); rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40)); rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80)); rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B)); rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36)); } /* * Key expansion, 192-bit case */ #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword, unsigned char *rk) { /* * Finish generating the next 6 quarter-keys. * * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4 * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON * (obtained with AESKEYGENASSIST). * * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10 * and those are written to the round key buffer. */ xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0 *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0 xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0 xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0 xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 *state0 = xword; // = r9:r8:r7:r6 xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9 xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4 *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0 xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4 *state1 = xword; // = stuff:stuff:r11:r10 /* Store state0 and the low half of state1 into rk, which is conceptually * an array of 24-byte elements. Since 24 is not a multiple of 16, * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */ memcpy(rk, state0, 16); memcpy(rk + 16, state1, 8); } static void aesni_setkey_enc_192(unsigned char *rk, const unsigned char *key) { /* First round: use original key */ memcpy(rk, key, 24); /* aes.c guarantees that rk is aligned on a 16-byte boundary. */ __m128i state0 = ((__m128i *) rk)[0]; __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7); aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8); } #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ /* * Key expansion, 256-bit case */ #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword, __m128i *rk0, __m128i *rk1) { /* * Finish generating the next two round keys. * * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON * (obtained with AESKEYGENASSIST). * * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12 */ xword = _mm_shuffle_epi32(xword, 0xff); xword = _mm_xor_si128(xword, state0); state0 = _mm_slli_si128(state0, 4); xword = _mm_xor_si128(xword, state0); state0 = _mm_slli_si128(state0, 4); xword = _mm_xor_si128(xword, state0); state0 = _mm_slli_si128(state0, 4); state0 = _mm_xor_si128(state0, xword); *rk0 = state0; /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 ) * and proceed to generate next round key from there */ xword = _mm_aeskeygenassist_si128(state0, 0x00); xword = _mm_shuffle_epi32(xword, 0xaa); xword = _mm_xor_si128(xword, state1); state1 = _mm_slli_si128(state1, 4); xword = _mm_xor_si128(xword, state1); state1 = _mm_slli_si128(state1, 4); xword = _mm_xor_si128(xword, state1); state1 = _mm_slli_si128(state1, 4); state1 = _mm_xor_si128(state1, xword); *rk1 = state1; } static void aesni_setkey_enc_256(unsigned char *rk_bytes, const unsigned char *key) { __m128i *rk = (__m128i *) rk_bytes; memcpy(&rk[0], key, 16); memcpy(&rk[1], key + 16, 16); /* * Main "loop" - Generating one more key than necessary, * see definition of mbedtls_aes_context.buf */ aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]); aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]); aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]); aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]); aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]); aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]); aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]); } #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */ #if defined(__has_feature) #if __has_feature(memory_sanitizer) #warning \ "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code." #endif #endif /* * Binutils needs to be at least 2.19 to support AES-NI instructions. * Unfortunately, a lot of users have a lower version now (2014-04). * Emit bytecode directly in order to support "old" version of gas. * * Opcodes from the Intel architecture reference manual, vol. 3. * We always use registers, so we don't need prefixes for memory operands. * Operand macros are in gas order (src, dst) as opposed to Intel order * (dst, src) in order to blend better into the surrounding assembly code. */ #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t" #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t" #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t" #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t" #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t" #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t" #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t" #define xmm0_xmm0 "0xC0" #define xmm0_xmm1 "0xC8" #define xmm0_xmm2 "0xD0" #define xmm0_xmm3 "0xD8" #define xmm0_xmm4 "0xE0" #define xmm1_xmm0 "0xC1" #define xmm1_xmm2 "0xD1" /* * AES-NI AES-ECB block en(de)cryption */ int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16]) { asm ("movdqu (%3), %%xmm0 \n\t" // load input "movdqu (%1), %%xmm1 \n\t" // load round key 0 "pxor %%xmm1, %%xmm0 \n\t" // round 0 "add $16, %1 \n\t" // point to next round key "subl $1, %0 \n\t" // normal rounds = nr - 1 "test %2, %2 \n\t" // mode? "jz 2f \n\t" // 0 = decrypt "1: \n\t" // encryption loop "movdqu (%1), %%xmm1 \n\t" // load round key AESENC(xmm1_xmm0) // do round "add $16, %1 \n\t" // point to next round key "subl $1, %0 \n\t" // loop "jnz 1b \n\t" "movdqu (%1), %%xmm1 \n\t" // load round key AESENCLAST(xmm1_xmm0) // last round "jmp 3f \n\t" "2: \n\t" // decryption loop "movdqu (%1), %%xmm1 \n\t" AESDEC(xmm1_xmm0) // do round "add $16, %1 \n\t" "subl $1, %0 \n\t" "jnz 2b \n\t" "movdqu (%1), %%xmm1 \n\t" // load round key AESDECLAST(xmm1_xmm0) // last round "3: \n\t" "movdqu %%xmm0, (%4) \n\t" // export output : : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output) : "memory", "cc", "xmm0", "xmm1"); return 0; } /* * GCM multiplication: c = a times b in GF(2^128) * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. */ void mbedtls_aesni_gcm_mult(unsigned char c[16], const unsigned char a[16], const unsigned char b[16]) { unsigned char aa[16], bb[16], cc[16]; size_t i; /* The inputs are in big-endian order, so byte-reverse them */ for (i = 0; i < 16; i++) { aa[i] = a[15 - i]; bb[i] = b[15 - i]; } asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0 "movdqu (%1), %%xmm1 \n\t" // b1:b0 /* * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 * using [CLMUL-WP] algorithm 1 (p. 12). */ "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0 "movdqa %%xmm1, %%xmm3 \n\t" // same "movdqa %%xmm1, %%xmm4 \n\t" // same PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0 PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0 PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0 PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0 "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0 "movdqa %%xmm4, %%xmm3 \n\t" // same "psrldq $8, %%xmm4 \n\t" // 0:e1+f1 "pslldq $8, %%xmm3 \n\t" // e0+f0:0 "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1 "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0 /* * Now shift the result one bit to the left, * taking advantage of [CLMUL-WP] eq 27 (p. 18) */ "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0 "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2 "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1 "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1 "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63 "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63 "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63 "pslldq $8, %%xmm3 \n\t" // r0>>63:0 "pslldq $8, %%xmm4 \n\t" // r2>>63:0 "psrldq $8, %%xmm5 \n\t" // 0:r1>>63 "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1 "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1 "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63 /* * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 * using [CLMUL-WP] algorithm 5 (p. 18). * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). */ /* Step 2 (1) */ "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0 "movdqa %%xmm1, %%xmm4 \n\t" // same "movdqa %%xmm1, %%xmm5 \n\t" // same "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c /* Step 2 (2) */ "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c "pslldq $8, %%xmm3 \n\t" // a+b+c:0 "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0 /* Steps 3 and 4 */ "movdqa %%xmm1,%%xmm0 \n\t" // d:x0 "movdqa %%xmm1,%%xmm4 \n\t" // same "movdqa %%xmm1,%%xmm5 \n\t" // same "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0' "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0' "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0' "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0' "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0' // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing // bits carried from d. Now get those\t bits back in. "movdqa %%xmm1,%%xmm3 \n\t" // d:x0 "movdqa %%xmm1,%%xmm4 \n\t" // same "movdqa %%xmm1,%%xmm5 \n\t" // same "psllq $63, %%xmm3 \n\t" // d<<63:stuff "psllq $62, %%xmm4 \n\t" // d<<62:stuff "psllq $57, %%xmm5 \n\t" // d<<57:stuff "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0 "pxor %%xmm1, %%xmm0 \n\t" // h1:h0 "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0 "movdqu %%xmm0, (%2) \n\t" // done : : "r" (aa), "r" (bb), "r" (cc) : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5"); /* Now byte-reverse the outputs */ for (i = 0; i < 16; i++) { c[i] = cc[15 - i]; } return; } /* * Compute decryption round keys from encryption round keys */ void mbedtls_aesni_inverse_key(unsigned char *invkey, const unsigned char *fwdkey, int nr) { unsigned char *ik = invkey; const unsigned char *fk = fwdkey + 16 * nr; memcpy(ik, fk, 16); for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) { asm ("movdqu (%0), %%xmm0 \n\t" AESIMC(xmm0_xmm0) "movdqu %%xmm0, (%1) \n\t" : : "r" (fk), "r" (ik) : "memory", "xmm0"); } memcpy(ik, fk, 16); } /* * Key expansion, 128-bit case */ static void aesni_setkey_enc_128(unsigned char *rk, const unsigned char *key) { asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key "movdqu %%xmm0, (%0) \n\t" // as round key 0 "jmp 2f \n\t" // skip auxiliary routine /* * Finish generating the next round key. * * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff * with X = rot( sub( r3 ) ) ^ RCON. * * On exit, xmm0 is r7:r6:r5:r4 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 * and those are written to the round key buffer. */ "1: \n\t" "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4 "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0 "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4 "pslldq $4, %%xmm0 \n\t" // etc "pxor %%xmm0, %%xmm1 \n\t" "pslldq $4, %%xmm0 \n\t" "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time! "add $16, %0 \n\t" // point to next round key "movdqu %%xmm0, (%0) \n\t" // write it "ret \n\t" /* Main "loop" */ "2: \n\t" AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t" AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t" : : "r" (rk), "r" (key) : "memory", "cc", "0"); } /* * Key expansion, 192-bit case */ #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) static void aesni_setkey_enc_192(unsigned char *rk, const unsigned char *key) { asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key "movdqu %%xmm0, (%0) \n\t" "add $16, %0 \n\t" "movq 16(%1), %%xmm1 \n\t" "movq %%xmm1, (%0) \n\t" "add $8, %0 \n\t" "jmp 2f \n\t" // skip auxiliary routine /* * Finish generating the next 6 quarter-keys. * * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. * * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 * and those are written to the round key buffer. */ "1: \n\t" "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4 "pslldq $4, %%xmm0 \n\t" // etc "pxor %%xmm0, %%xmm2 \n\t" "pslldq $4, %%xmm0 \n\t" "pxor %%xmm0, %%xmm2 \n\t" "pslldq $4, %%xmm0 \n\t" "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6 "movdqu %%xmm0, (%0) \n\t" "add $16, %0 \n\t" "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9 "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10 "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0 "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10 "movq %%xmm1, (%0) \n\t" "add $8, %0 \n\t" "ret \n\t" "2: \n\t" AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t" : : "r" (rk), "r" (key) : "memory", "cc", "0"); } #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ /* * Key expansion, 256-bit case */ #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) static void aesni_setkey_enc_256(unsigned char *rk, const unsigned char *key) { asm ("movdqu (%1), %%xmm0 \n\t" "movdqu %%xmm0, (%0) \n\t" "add $16, %0 \n\t" "movdqu 16(%1), %%xmm1 \n\t" "movdqu %%xmm1, (%0) \n\t" "jmp 2f \n\t" // skip auxiliary routine /* * Finish generating the next two round keys. * * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON * * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 * and those have been written to the output buffer. */ "1: \n\t" "pshufd $0xff, %%xmm2, %%xmm2 \n\t" "pxor %%xmm0, %%xmm2 \n\t" "pslldq $4, %%xmm0 \n\t" "pxor %%xmm0, %%xmm2 \n\t" "pslldq $4, %%xmm0 \n\t" "pxor %%xmm0, %%xmm2 \n\t" "pslldq $4, %%xmm0 \n\t" "pxor %%xmm2, %%xmm0 \n\t" "add $16, %0 \n\t" "movdqu %%xmm0, (%0) \n\t" /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) * and proceed to generate next round key from there */ AESKEYGENA(xmm0_xmm2, "0x00") "pshufd $0xaa, %%xmm2, %%xmm2 \n\t" "pxor %%xmm1, %%xmm2 \n\t" "pslldq $4, %%xmm1 \n\t" "pxor %%xmm1, %%xmm2 \n\t" "pslldq $4, %%xmm1 \n\t" "pxor %%xmm1, %%xmm2 \n\t" "pslldq $4, %%xmm1 \n\t" "pxor %%xmm2, %%xmm1 \n\t" "add $16, %0 \n\t" "movdqu %%xmm1, (%0) \n\t" "ret \n\t" /* * Main "loop" - Generating one more key than necessary, * see definition of mbedtls_aes_context.buf */ "2: \n\t" AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t" AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t" : : "r" (rk), "r" (key) : "memory", "cc", "0"); } #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ #endif /* MBEDTLS_AESNI_HAVE_CODE */ /* * Key expansion, wrapper */ int mbedtls_aesni_setkey_enc(unsigned char *rk, const unsigned char *key, size_t bits) { switch (bits) { case 128: aesni_setkey_enc_128(rk, key); break; #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) case 192: aesni_setkey_enc_192(rk, key); break; case 256: aesni_setkey_enc_256(rk, key); break; #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } return 0; } #endif /* MBEDTLS_AESNI_HAVE_CODE */ #endif /* MBEDTLS_AESNI_C */